
I'HYSICA L HE VIE%' 8 VOLUME 11, NUMBER 9 1 MAY

Derivation of the two-fluid model for Bose-condensed excitonse

H. Haug~
Institut fiir Struktur der Materie der Universitat Karlsruhe, 75.Karlsruhe, Federal Republic of Germany

E. Hanamura
Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, Tokyo, Japan

(Received 5 November 1974)

The second reduced electron-hole density matrix is shown to have the property of off-diagonal
long-range order for a Bose-condensed system of Wannier excitons. From the equations of motion for
this density matrix the conservation laws for the density, the particle current density, and the energy
density of the excitons are derived, as well as the equation of motion for the velocity of the
condensate. These equations are obtained by projecting the electron-hole density matrices into the
exciton space. From the above-mentioned conservation laws the two-fluid model is deduced, which

describes the superfluid flow of excitation energy. In the low-density limit all hydrodynamical quantities
are calculated explicitly. Extensions to the case of condensation in the presence of static homogeneous

electromagnetic fields and to the case of indirect semiconductors are given.

I. INTRODUCTION

The idea of a Bose condensation of Wannier exci-
tons was first discussed by Blatt et al. in terms of
an ideal Bose gas. They noted that due to the small
effective masses in semiconductors the critical ex-
citon concentration for a Bose condensation at he-
lium temperatures is of the order of 10' em '.
Casella2 investigated more closely the following
problem: in which types of semiconductors these
concentrations of excitons could be obtained in a
quasiequilibrium situation. The excitons system
is in a quasiequilibrium if the thermal relaxation
time of the exciton gas is much sma1.1er than the
exciton lifetime. Subsequently, several authors
discussed, in analogy with superfluid helium, as-
pects of the superfluidity of such a condensed sys-
tem of exciton bosons, both in terms of a Landau
two-fluid model and in terms of a Landau-Ginzburg
theory. In recent years, theoretical interest has
turned to the statistical properties of exeitons at
high densities. Owing to the Fermi statistics of
the electrons and holes, the exciton statistics de-
viate from the simple Bose statistics. This is
evident at exeiton concentrations e, for which
na f'=I, where a*is the exciton Bohr radius. At
these concentrations, the bound exciton states
merge into the ionization continuum, i.e. , the
exciton system goes over into a electron-hole
plasma. But even at concentrations far below
the Mott transition, where ma~t, '«1 and where the
Bose condensation is supposed to occur at suffi-
ciently low temperatures, the influence of the un-
derlying Fermi statistics is important. The prob-
lem is closely related to that of composite particles
in nuclear physics. It is therefore not surprising
that the same methods which have been proven to
be successful in nuclear physics found application

in the exciton problem. Keldysh and Kozlov used
a BCS-type pairing theory for the electrons and
holes and found a Bogolubov spectrum for the ele-
mentary excitations in a condensed system. Hana-
murae made use of a boson description by Usui~ and
Marumori, in which the real excitons are pro-
jected into an ideal boson space. Deviations of the
exciton statistics from that of bosons results in ef-
fective interactions between the excitons. The
methods of Refs. 5 and 6 have been shown to be
equivalent in the lowest order of exciton concen-
tration. Kohn and Sherrington pointed out that
only composite bosons, which are built from Fermi
particles, show off-diagonal long-range order
(ODLRO) in the reduced particle density matrices.
Composite bosons consisting of particles and holes,
such as excitons, show diagonal long-range order
(DLRO) in the reduced particle density matrices.
Because ODLRO in this sense is a necessary and
sufficient condition for superfluid flow of charge
and mass, Kohn and Sherrington concluded that an
exciton system can never become superfluid.

It is the purpose of this paper'~ to investigate
the connection between the long-range order in the
reduced density matrices and the possibility of
superfluidity in a condensed exciton system again.
The characteristic long-range order in an exciton
system is the correlation between an annihilation
of an exciton and the generation of another one at
distant locations. Such a correlation is described
by the second reduced electron-hole density matrix
and not by the second reduced particle density ma-
trix which has been considered by Kohn and Sher-
rington. The reduced electron-hole density ma-
trices will be shown (Sec. II) to have ODLRO for a
condensed exciton system (this corresponds to the
DLRO found by Kohn and Sherrington for the re-
duced particle density matrices). Subsequently, it
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will be shown that the property of ODLRO of the
reduced electron-hole density matrices leads di-
rectly to a two-fluid model, which describes the
superfluid flow of excitation energy in contrast to
a superfluid flow of charge or mass. For this pur-
pose, we project the electron-hole reduced density
matrices into the exciton space to obtain reduced
exciton density matrices, which obey the equations
of motion which are typical for an interacting Bose
system (Sec. III)."

The resulting exciton-exciton interaction is re-
pulsive for spinless electrons and holes owing to
the Pauli principle. From the equations of motion
for the exciton density matrices we deduce (Sec.
IV) the conservation laws of the density, the parti-
cle current density, and the energy density of the
excitons, together with an equation of motion for
the velocity of the condensate component (which is
equivalent with the velocity of the superfluid com-
ponent). The equations form the basis of the two-
fluid model. In the low-density limit na 0'«1, to
which we confine ourselves, all hydrodynamic
quantities of the two-fluid model can be evaluated
within the Bogolubov approximation (Sec. V). This
derivation provides us with the dependences of all
hydrodynamic quantities on the temperature, the
exciton concentration, and the relative velocity be-
tween the super and the normal component of the
exciton system. In Sec. VI we will extend the
treatment to the case gf excitons in static, homo-
geneous electromagnetic fields and to the case of
excitons in indirect semiconductors.

II. ODLRO OF THE REDUCED ELECTRON-HOLE DENSITY
MATRICES

Here, ((x,) and P(x„) are the electron and hole field
operators, respectively, which obey Fermi statis-
tics. The reduced density matrix can be calculated
for a low-density exciton gas by making use of the

BCS-type theory of Ref. 5. The leading term of
the result is

p~ "(x)„x„.x „', x,') = V) (r')y (x)ne' "'"" ', (2. 2)

where y(r) is the wave function of the internal ex-
citon motion in the lowest state. The coordinates
r and R are given by

r =x, —x„and R= nx„+ Px, , (2. 6)

with

o, =m„/M and P=m, /M,

where M = m, +rn„ is the translational mass of an

The correlation of the annihilation of one elec-
tron-hole pair and the generation of another one at
a different location is described by the second re-
duced electron-hole density matrix

pz "(x„,x„x„',x,') =((~(x,')pt(x„')(t)(x„)P(x,)). (2. 1)

exciton. K is the center-of-mass wave vector, n

is the exciton density. The same result can be de-
rived within the boson formalism of Ref. 8, by as-
suming a coherent antisymmetrized Glauber state
for the condensed exciton system. The form (2. 2)
shows complete ODLRO in the sense, that p2

~ does
not decay as the pair (x„x„)is taten far apart from
the pair (x,', x „'), i.e. , r = r '= 0 and t R —R '

]
—~.

If only a fraction of all excitons is condensed, p~
~

will be of the form

p2 "(x„,x„x„',x,') =y*(x')y(r)p, (R; R'),
p (R; R '

) = ~ (R ' )@(R)+ p (R; R ' ),
where p, (R; R'), which is only a function of the
center-of-mass coordinates of the excitons, will
be called the first reduced exciton density matrix.
4'(R) is the exciton order parameter, which in a
fully condensed and homogeneous system [Eq. (2.1)]
is of the form @(R)=n~~ae'" . The function

P&(R, R') stems from the noncondensate and decays
as R- R' gets large. The product of the pair wave
functions y*(r'}y(r) appears as a factor in front of
both the condensate and the noncondensate of the
excitons, reflecting the fact that both fractions con-
sist of bound electron-hole pairs. This has to be
contrasted with the case of a superconductor, in
which the second reduced particle density matrix

p2 has GDLRO in the form

p, (x&, y&; y'&, x'&) =(0'(x'&)0'(y'&)&

x&y( yS)q(x&)& +p . (2. 6)

Here the Cooper pair functions ($(y4)g(x0)& appear
only in the condensate part, because these bound

pairs are formed not until the process of condensation.
The first reduced exciton density matrix can be

obtained from Eq. (2.4) as

pg(R' R ) = f d'r d'r ' q" (r)q (r ')pf "(x„,x„x„',x')

(2. 6)
and the exciton order parameter as

&(R) = J d'~ 0"(~)(( (* )((*.) ) . (&. 7)

Equations (2. 6) and (2. 7) can be considered to be
slightly more general definitions of p, and + than
the ones given in Eq. (2. 4). The definitions [(2.6)
and (2. 7)] are motivated by the fact that we are not
interested in the internal motion of excitons, but in
the long-range correlation of the center-of-mass
motion of excitons. Therefore, we introduce the
projection of the electron-hole density matrix and
of the electron-hole order parameter (P(x„)P(x,))
into the exciton space. This is done by multiplying
these functions with the wave functions of the in-
ternal motion of the excitons and by integrating with
respect to the internal coordinates.

For the fourth reduced electron-hole density ma-
trix we generalize Eq. (2. 4) to
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p', "(x„"',x,'", x„, x„x„',x,', x„",x,")= y*(~ ")y*(r ')cp(r)y(r "')p,(R'", R; R,', R")
—y*(x,'-x„")y*(x,"-x„')y(x)y(~"')p2(R"', R; R„;.,„i, R„, „i,), (2. 8)

The second term is the exchange term, which is
obtained by forming the pairs (x,', x„")and (x,", x„').
R ~ " and R ", are the center-of-mass coordi-

X@y Xfg Xe y X|]l

nates of these pairs. The pairs (x„"',x,"') and

(x„, x~) are kept fixed as a reference system. The
exchange contribution will be shown to be essential
in producing the repulsive exciton-exciton interac-
tion. All the formulas for the exciton density ma-
trices given in this chapter should only be applied
in the low-density limit na~o'«1.

III. EQUATIONS OF MOTION FOR THE REDUCED
EXCITON DENSITY MATRICES

In this section we will study the time develop-
ment of the exciton order parameter l/(8) and of the
reduced exciton density matrices p, (R, R') and

p2(R, R'; R, R'). The equations of motion for these
three quantities are needed for the derivation of the
four basic conservation laws of a superfluid. ~~ The
kinetics of the reduced exciton density matrices
can be obtained from the equations of motion for
the reduced electron-hole density matrices by ap-
plying the projection techniques described in Sec.
D.

We will limit ourselves to the investigation of a
spinless electron-hole system. In a system of par-

ticles with spin, the interaction between the exci-
tons has been shown to be attractive, which leads
to the formation of exciton molecules, ~3 which them-
selves can undergo a Bose condensation. Fur-
thermore, we will not study the subtle problem of
how the exciton interaction is modified due to their
interaction with phonons. The assumption is made
that the thermal relaxation time of the exciton gas
is small as compared to the exciton lifetime. Under
these conditions one can take into account the. acti.on
of an external pump field (e.g. , laser excitation)
by means of chemical potentials for the electrons
and holes. Otherwise, we do not include any ex-
plicit interaction of the system with photons. Es-
pecially, we do not study the complications for the
condensation which are brought about by-the polarl-
ton effect. Both assumptions, that of a long life-
time and that of the absence of the polariton effect
are fulfilled in indirect band-gap materials. In the
following sections we will treat the slightly simpler
case of direct semiconductors. In Sec. VIB the
modifications are given, which are necessary for
excitons in indirect semiconductors. If the coupling
to the phonons is too weak to guarantee a thermal
quasiequilibrium distribution, one could try to
establish the condensation by a selective accumula-
tion of excitons in one 0 state by means of a specific
optical excitation. ~5

The total Hamiltonian of the electron-hole system in the effective mass approximation is

d x~ x —8 2tPs V p, ~ +Eg x~ + cPx~ xg 8 2f@g V P, g xy

+— d gq, d Xe V X~. —Xe X~ X@ X~ Xe +— d Xy, d XpV Xg-Xp Xp Xg Xp Xp,

d XpV X~-Xp Xe Xg Xg X (3. l)

where p,, and p.„are the chemical potentials of the electrons in the conduction band and of the holes in the
valence band, respectively. E, is the gap energy, and t/'(x) is the Coulomb potential e //sos, where (.o is the
static dielectric constant.

The time derivative of the electron-hole order parameter can be obtained from the Heisenberg equations
for the field operators g(x, ) and P(x/), which have the following form

i»/)(x ) = (('(x ), ii]= (-((i'/2l )x'+x, »]('(x )+f&'»", &(Ix—l' —x I)(»(x)t)(x)0(*),",",
d X'g V Xp —Xe Xy Xg X~ (3.2)

ili(I(x )=(-()i'/2m)x'„— »„]((x )+fd' )'(Ix,„"-»»„I )('(x,")((x„")((x)
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V (3 3)

From these equations we obtain

ih —(y(x„)g(x,)) = [- (h /2m, )v„' —(5 /2m„)v„„—V(I x, —x„I)—(p, , + p. „)+ E, ](P(x„)$(x,))

d x, V x, -x,' —V x„—x,' x,' x,' x„x,

+ d x~V x„-x„—V xe h xh h h e

Multiplying this equation with y*(r) and integrating over the relative coordinate r, we find [according to Eq.
(2. 7)]

N4(R) = [—(h' /2M)V'„+E, E',„——(p,,—p.„)]@(R)+ d'~ d'x,' Jl d'x,"5'(x,' -x,")[V(I x, x,'I ) —-V(I x„-x,'I )]

xg~(x')g(x,")y(x,)y(x, ) )rp" (x) + f d'v Jd'x„' frt'x„5'(x„' —"x„")[v(~x„—x„'~ ) —v(~ i, —x„'~ )]

x(y (x„')y(x„")y(x„)q(x,) )y*(r),
where the exciton binding energy Z',„=e'/2soa 0 is the lowest eigenvalue of the Wannier equation

[- (8'/2m)v'„— V(r)]y(~) = —E',„p(r) .

(3.5)

(3.6)

The reduced mass m is given by m, m„/M. The exciton Bohr radius a~0 is equal to co@3/me'. In the po-
tential terms of Eq. (3. 5) 5 functions have been inserted to obtain formally the two unpaired field operators
at different locations. As a next step, we transform these density matrices into complete electron-hole-
pair density matrices by inserting the missing electron and hole operators and by averaging over the rela-
tive motions of these pairs, because we are only interested in situations in which nearly all electrons are
bound into the lowest exciton states. The integrations over x', and x," (or x„' and x„") in the first (second) po-
tential term are now changed into integrations over the center-of-mass coordinates R' and R". In the low-
density limit, where the excitons are well separated and the overlap is very small, we can approximate the
& functions by

5'(x,' —x,")= 5 (x„' —x„")= &'(R' —R") .

This approximation holds as long as na0' «1. Equation (3.5} then takes the form

i'd%'(R) = [- (h /2M)V~s +E,—E',„—(p,, + p, „)]4'(R)

+ d x d'x' d'r" d'R' d'R" 6' R' —R" V R —R'+n r —r'

V(IR R-~ P rn"I) V(+R —R' —P(r-r')I) V(IR —R'+mr —Pr'I))

x(y'(x,")y'(x,")y(x'„)y(x,')4(x„)y(x,))p*(r)p*(~'}q (~") (3.7)

It is shown in the Appendix that the procedure of supplementing each unpaired field operator by its corre-
sponding partner in the bound state and of subsequent averaging over the internal exciton motion is correct
in the low-density limit na 0 «1, where the contribution of the higher-excited exciton bound state and of the
ionization continuum states to the reduced density matrices is still negligibly small and where the excitons
are spatially well separated.

The electron-hole density matrix is again decomposed into the product of the wave functions of the in-
ternal motion of the three pairs and into an exciton three-leg function p, &~

which describes the center-of-
mass motion

&&'(!'}4'( l')0( ',)y(!)y(,)y(.))=9'( ")0( ')9( )P (R, R';R")

(r )0(r, ')&P('Y„', „)pg(p(R„',„„R„„'„'R ),
where as in Eq. (2. 8) the exchange terms have been taken into account. The exchange contribution simpli-
fies considerably if the masses of electron and hole differ strongly. For a heavy hole mass, e.g. , one has
n=1, P=O. In this case Eq. (3. 7) can be written as
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N4(R) = [-(ff'/2M)V', +Z, -E',„-(q,+ q„)]e(R)+
~I

d'R' W(~ R, —R'~ )p, ~(R, R'; R, '),

where the effective scattering potential between two excitons is given by

(3.9)

(3.11)

»(IR-R'I&= J~'r J~'~'»(IR-R'&&+&'(IR-R'+~-~'I&

-I( R-R'-r' )-I( R-R'+r ))[ q(~)l' V(~') '
—y(l r+R —R'~ )y*(&)y(l r +R' —RI )y*(r')]. {3.10)

The same effective potential has been found in the framework of the boson treatment for excitons. In
Ref. 6 it has been shown that due to the exchange term the potential W(IR' —Rl) is repulsive. The Pauli
pxinciple, which govexns the statistics of the constituting electrons and holes causes thus a repulsive inter-
action between two excitons. Fox particles with spin the Pauli principle is not so influential. The interac-
tion between two excitons in which both electrons and holes have opposite spins is attractive and leads to the
formation of exciton molecules. The interaction between these bi-excitons can in tuxn be shown to be re-
pulsive~4 so that the condensation of bi-excitons can be treated in analogy to the exciton condensation.

Equation (3.10) has apart from the appearance of the excitation energy Z~ —E„the same form as the order
parameter equation of an interacting Bose system. '2 lf we factorize the three-leg function

p„,(R, R'; R') =
~

~(R')
~

'+(R) + p, (R; R')+(R') + P,(R'; R')+(R) +P.(R, R')~(R')
= p, (R'; R')+(R)+ p, (R; R')+(R')+ p.(R, R')~(R').

Equation (3. 10) takes the form which for He II has been derived by Frohlich, '6 if one neglects the anomalous
function p,(R, R'). In equilibrium, where the space and time derivatives are zero, we find for the chemical
potential [neglecting the noncondensate part in Eq. (3. 11)]

(3. 12)

which has been shown in Ref. 6 to be equal to

p = E~ E,„(l—2SS—I mn+~~) . (3.13)

The same result has been derived by Keldysh and Koslov.
Now we turn to the derivation of the equation of motion for the first reduced exciton density matrix. As

above, we start with the equation of motion for the corresponding electron-hole density matrix which is ob-
tained directly from Eqs. (3.2) and (3.3). One finds

i&i—(i&i(x'&pi(x'&p(x„&i&(x, »=(- i', — i',„—v(~x, —xJ &

+ v&. + ii,„+& (~ x,'-x„'~ &)(i&~&x,'&i& "(x„'&g(x~&i&(x&&

+ d x~ V x, -x," —V x,'-x," —V x„-x," + V x„'-x,"
&&&0'(x.')0'(x&)4'{x!')l(x.")A(x&)4{x.)&

+ dsg'„' V x~-x~ —V x„'-xI", —V x, -x'„' + V x,'-x„"

~ &&I&'(x')4 '(xh) 4 '(xa') e(xa') 4 (xh) &1&(x.)& . (3.14)

We proceed precisely ~ above. First, we project
Eq. (3. 14) into the exciton space by multiplying
with y*(r)y(x') and by integrating over x and r '

ln the potential terms we insert the corresponding
partners to the unpaired operators and average
over the internal motion of these newly generated
pairs. Finally, we decompose the fourth-order

electron-hole reduced density matrix according to
Eq. (2. 8) and arrive in the case m~»m, at

f@—, p, (R; R')=- (V', -V', ,)p, (R; R')

+ d3R" %' R-R" —O' R —R'



3322 H. HAUG AND E. HANAMU RA

x pz(R, R"; R", R'), (3.15)

where again the interaction potential W' appears,
which has been defined in Eq. (3.10). Equation
(3. 15) has again the same form as the equation of
motion for the first reduced density matrix of a
system of Bose particles, which interact through
the two-particle potential W( I'R' —R l ). '2

In Sec. IV we will also need the time derivative
of the diagonal elements of the second reduced ex-
citon density matrix. From the equation of motion
for the fourth reduced electron-hole density matrix
we deduce

ik —p2(R, R'; R, R') = —[V~v(R, R') —V~.v(R', R)],

(3. 16)
where

Q—j+V'II=0
Bt (4. 1)

8—E+VQ= 0at )

—v, + V( «v, + p/M) = 0 .

Here, 11 is the stress tensor and Q the energy cur-
rent density. The exciton density is given by the
diagonal element of p&.

density n, the particle current density j, the energy
density E, and for the extra hydrodynamical vari-
able which is characteristic for a condensed sys-
tem, namely, the superfluid velocity v, :

8—n+Vj =0,

v(R, R') = . »m (V„—V„,)pz(R, R''; R', R").
2'LM Rl g R

This result too is of the same form as that for an
interacting Bose system. ~~ The obtained equations
of motion for the exciton order parameter + and the
reduced exciton density matrices p, and p2 show
that the kinetics of a condensed exciton gas is in-
deed that of a Bose gas with an effective interac-
tion potential 8' and lent thus further support to the
boson method of Ref. 6.

IV. CONSERVATION LAWS

The equations of motion for +, p„and p, allow
one to derive the conservation laws for the particle

(4. 2)

j(R)=, lim (V —V, )p (R; R') .
R~~R

(4. 3)

Applying the off-diagonal derivative to Eq. (3.15),
one finds in the limit R'- R the conservation law
for the exciton current density. After some calcu-
lations (for details of the derivation see Ref. 12)
the stress tensor turns out to be

From Eq. (3.15) we find at once the first of the
conservation laws Eq. (4. 1) with an exciton particle
current density

II(R) = — l(m (V N V),(R; )(') - —f d'~
R~~R

r r r rx dtp«R+(t —1)—,R+(t+1)—;R+(t-1)—,R+(t+1)—
-1

(4. 4)

The symbol e is the sign for a tensor product. The last term simplifies in the hydrodynamic limit [which
means the case of negligible spatial variations on a scale given by the range of the effective potential W(r)]

1 «BW(r) r e rd'r p2(R, R+r; R, R+r).

Tb&s form was first derived by Martin and Schwinger. '7 In order to obtain the third conservation law, we
have to calculate first the exciton energy density from the electron-hole Hamiltonian [Eq. (3.1)]. Taking
the expectation value of Eq. (3.1) and applying the techniques which have been developed in Sec. III, we find

(H) = d'R d«R' d'r d r'y*(r)p(r') 5 "(R—R')

x [-(ft'/2M)V„' -(a'/2m)V„'- V(r) -(p.+u«)+&~]Q' (x.)4 ("«)4( «)&(

+ [ d'R d'R' d R"

x y(r)y(r ')p~(r ")p*(r' )[V(R —R'+n(r —r'))+ V(R —R' —8(r —r')) —V(R —R'+ nr —pr')

V(R —R'+ nr' —p r)] (q (x,)(t) (x«)(j' (x&)(t) (x«)(t (x«'))j(x,")(t)(x«'")p(x,"')) . (4. 5)
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To obtain this result, one has to give special cire to the treatment of the electron-hole interaction term
of the Hamiltonian [Eq. (3.1) (last row)]. Firstly, we consider the operators g'(x,') and p'(x„') [and similar-
ly P{x„), g(x, )] as paired and obtain thus the electron-hole interaction V(t)'in the Wannier-Hamiltonian of
the exciton. Then, we get the next-higher-order contribution of this term by considering the operators as
unpaired and by supplementing each of the four operators with the corresponding partner. In this manner
we obtain a contribution of the effective interaction between two excitons [the two negative contributions in
the last term of Eq. (4. 6)].

Introducing pl and pa by Eqs. (2.4) and (2. 8), we obtain from &H) + pN = f E(R)d'ft the energy density

E(R) = lim [+(K'/2M)V„V' +E, E,'„-]p,(R; R')+ —
J

&'R'W(~ R —R'~ )pg(R, R'; R, R'), (4. V)

which is apart from the appearance of the excitation energy of the same form as the energy density of an in-
teracting Bose system (see Ref. 12). The time derivative of E(R) together with the equations of motion for
pl and p2 [Eqs. (3.15) and (3.16)] give the third conservation law with an energy current density

~ 3

Q(R) =l(R)(E, -E'..)+, »m (~.-~..)(~.-~. )'p, (R; R')
Zvx Rs R

sw(r) r+- li d'a W(R-R')v(R, R')- — d'r
et'

x r dt v R+ t-1 —,R+ t+1 — +v R+ t+1 —,R+ t-1—2' 2 2' 2 (4. 8)

v has been defined in Eq. (3.16). The first term
in Eq. (4. 8) is specific to the exciton problem. It
shows that the exciton energy current density is
primarily given by the flow of excitation energy.
The remaining terms in Eq. (4. 8) are the same as
those appearing in Q for liquid helium. In the hy-
dl'odyllallllc lillllt 'tile last expl'essloll 111 Eq. (4. 8)
reduces to

d3xr v R, R+r +v R+r, R V'„8'x

(4 9)
Finally, we will derive the last of the hydrody-

namic equations given in Eq. (4. 1), namely, the
equation of motion for the superfluid velocity v, .
%riting the order parameter in the form

g(R) [n (R)]1/1 818(R)

one obtains the contribution of the condensate to the
current density from Eq. (4. 3) in the form

n, (ff/M)v e(R) =n,v, (R) . (4. 10)

Equation (4. 10) defines v, as the gradient of the
phase of the order parameter. Equations of motion
for both no and v, can be obtained from Eq. (3.9)
for +(R). However, the equation for no is no extra
hydrodynamic equation, because no approaches al-
ways its equilibrium value very fast, i.e. , in a
nonhydrodynamical wRy. For the comparison w1th
the theory for superfluid helium in Ref. 12, one
has to take into account the explicit appearance of
the chemical potentials in the Hamiltonian [Eq.
(3. 1)]. This gives rise to a phase factor in the
order parameter which is equal to e'"'~". Using

+Re aa'W R-R' p„, R, R';R' R .

(4. 11)
In equilibrium and under the neglection of the non-
condensate, Eq. (4. 11) reduces to the result, Eq.
(3.12).

%e have now completed the derivation of the four
basic conservation laws for a superfluid. In the
following chapter, we will use explicit approxima-
tions for the reduced density matrices in order to
get the full hydrodynamic and thermodynamic two-
fluid model for an exciton system.

V. TWO-FLUID MODEL

The four conservation laws [Eq. (3.1)], together
with the hydrodynamic relations between the vari-
ous quantities which appear in these equations, de-
scribe the hydrodynamics of a superfluid complete-
ly. 13 The thermodynamic relations Rre especially
simple in a coordinate system K in which the con-
densRte Rnd thus Rlso the supe1fluld component ls
at rest, i.e. , v~=0 and vo=v„—v„where v„ is the
velocity of the normal component. Here one has

Sg + Pffft P

3 =s„v

(6.1)

(6.2)

t

the identity 6 = (4/+ —4*/+*)/2i and Eq. (4. 10),
we obtain the equation of motion for v, from the or-
der parameter equation {3.9) with a chemical po-
tential
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IIO& =P6;&+Mnv„;v . ,
Q'= v.'(E'+P —~.l/),

(5.3)

(5.4)

where P is the pressure. The entropy density S is
given by

nST = Eo +P —n p, —Mn„(v„) (5. 5)

n —no n @ MTVO

n 3m
(5. 7)

Inserting 8'o, E',„and using the definition of the ex.

The Qalilei transformations for the quantities in
(5. 1)-(5.4) are given in Ref. 18. Though the phe-
nomenological two-fluid model for superfluid heli-
um and for condensed excitons is the same, one
has to keep the physical differences between the two
systems in mind. While in the case of helium M
is the real mass of a helium atom, it is for exci-
tons just the effective total mass which describes
the dynamical behavior of excitons in the crystal.
Thus, for excitons the two-fluid model does not
describe the superfluid flow of real mass but that
of excitation energy.

In the following we will calculate the relevant
hydrodynamical quantities of the superfluid exciton
system. The derivation of the conservation laws
expressed the quantities in terms of the reduced
exciton density matrices. Now, we will evaluate
these density matrices by assuming local thermal
equilibrium. The evaluation is simplified by the
fact that the exciton gas is equivalent to a system
of boson particles, which interact through the ef-
fective potential W(l R —R' I), as has already been
shown in Ref. 6 and has been demonstrated again
from a different point of view in the preceeding
sections. The range of the validity of the given
derivation has been shown to be na 0'«1. On the
other hand, the Bogolubov approximation for a con-
densed Bose gas is valid as long as the depletion
of the condensate is small, i.e. , (n —no)/n«1. We
can approximately replace the effective potential
W(R —R') by W05 (R —R'), where Wo is given by

(5. 8)

[see E(ls. (3. 12) and (3.13)]. This procedure is
equivalent to expressing the action of the potential
in terms of a scattering amplitude. ~e Then, one
can show that at T = 0 (see, e.g. , Ref. 12)

citon Bohr radius, one finds the following condition
for the validity of the Bogolubov approximation

(M/m)'n~*, '«1. (5. 8)

This condition is more restrictive than na~o «1,
especially in the case of strongly different electron
and hole masses. For the following, we will as-
sume that this more restrictive low-density cri-
terion is fulfilled.

It is now straightforward to evaluate the exciton
reduced density matrices, which are given by

~(R) = &((R)&,

p (R; R') =&0'(R')0(R)&,

p. .(R, R';R") = &4'(R")C(R')k(R)&,

pg(R, R'; R", R"') =&tP(R"')(t(R")((R')$(R)&,

where (t(, P~ are Bose field operators. In a homo-
geneous situation the field operator is according to
Bogolubov 0 given by

+(R) = +(R)+ f(R)

The excitation spectrum E~ and the transformation
function L~ are given by

E» =(T»+2T»~) I » =(E» T» ~)» -( )
T» ——k K /2M, 6 = n Wo .

In thermal equilibrium the number of elementary
excitations is given by

&$»tg»& =n»(vo, T) = (exp[(E» —vo» KK)/ksT] —1j '.
(5. 13)

In the coordinate system K the reduced exciton
density matrices are within the Bogolubov approxi-
mation given by

e &e(R) +I /2 + I/ -1/2 W '
e iK a 4 +I» g.

0 + ~ (1 IR )l(z

(5. 10)
where 4, (»~ are the operators in which the Hamil-
tonian is diagonal

&=&0+ &z z z (5. 11)

where

+'(R) = ~~„
pt(R; R') =no+ p, (R; R'),

P'(R; R') =&0'(R')4(R)&e*"'" ' "'",
P3/z(R, R'; R') =[p,(R, R')+p, (R', R')+p~~(R;R')] no~/,

A A

p'(R R') =&4(R)4(R')& e """'""'"
(5. 14)
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p,'(R, R'; R, R') =no+no[p', (R, R')+po(R'; R)+p', (R; R}+p',(R'; R')+ po(R, R')+p, (R, R')].
The equations (5. 10)-(5.14) allow us to calculate n, T, H, E, Q, and p according to the formulas de-

rived in Sec. IV. Because the calculations of these quantities are, with minor differences, the same as
those given in Ref. 12, we will just list the results up to second order in the relative velocity v„. For the
total density [Eq. (4. 2)] one finds

(5. 15)

At T=O, the depletion is given by the second term on the right-hand side of Eq. (5.15). This result was
used in Eq. (5. V). The exciton current density [Eq. (4. 3)] is obtained as

a n an»(O, r) m(v„')' a' n»(o, r)
)

(5.16)

which defines the normal fluid density n„. Further, we find for the pressure [Eqs. (4.4) and (5. 1)]

o z —(=z,-z,') —
a Q ((z» —r —o)(z —r )+-', r (r»+o)n (0, r)

0 3„...(o, r&r, (r, vo&)z;,

for the chemical potential [Eq. (3.13)]

1 1 T —E T M(uo) T» s nr(0, T)

for the energy density [Eq. (4. V)]

'z= (nz, - '.z) vl ((»a'n—a P l(z» —r» o)+n, (or)z-, + "
,

'
(( r,z,),

(5. 1V)

(5. 18)

(5. 19)

(5.20)

and for the energy current density [Eq. (4. 13)]

, 2 ~, en, (0, T) M(v„')' e'n (0, T}

The listed results fulfill the two-fluid relation [Eq. (5.4)]. Finally, one gets for the entropy density [Eq.
(5. 5)]

Z'
SC E'

(5.21)

The results are in such a form that it is natural to
use n, T, and v„as independent thermodynamic
variables. For these variables the following ther-
modynamic identity holds

dE0= p,dn-nor-Mj'dv0, (5. 22)

where I' is the free-energy density

F (Fta T, vz) = E —FLTS —Mv ' J = —p+S(L( . (5. 23}

Finally, we mention that in the low-temperature
limit n„, E', n, Q, and nz')T all vary with the fourth
power of the temperature.

VI. EXTENSIONS

A. Static homogeneous electromagnetic fields

An interesting question is, how one can establish

a gradi. ent in the chemical potential, which could
cause an acceleration of the superfluid component.
Qne obvious way to achieve this is to generate a
gradient in the exciton concentration. Qne might
further think to influence the chemical potential via
electromagnetic fields. For the time being, we
will limit ourselves to static and homogeneous
fields H and E (for interactions of a condensed ex-
citon system with a light field see Ref. 21). As
usual, we choose the magnetic vector potential
A(r) in the form

A(r ) = z(H& r) .

Then, the electron-hole Hamiltonian takes the form
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1d3g ~ x —P —A x +gx «E+g p2me

+ «))(t) (x))) I
—&x + A(x)) I

—ex/'E. I) Axe)+Hue&~j 2' p

(6.3)

where (/)(r) obeys the e(luation

v p $88 t 1 1—Z,„(H, E)(/)(r) = — — +
)
—— — A(r) ' V2~ fog C (2Ãe

where H«, t is the same potential operator as in E(l. (3.1). From the work on single excitons in static elec-
tromagnetic fields, one knows (see, e.g. , Ref. 22) that one can treat this problem by making the following
ansatz for the exciton wave function

)I) (r R) = V '/' exp(i [K —(e/ch)A(r)] R}(/) (r)

2

+2 ~ A~(r) — A(r) K+eE rsvp(. r) . (6.4)

The field-dependent additional terms in the reduced
Wannier equation are the Zeeman term, the dia-
magnetic term, the Lorentz force term, and the
Stark term. The last two contributions can be put
together to produce an effective electric field term
erE,ff=er [E+(v&H)e/c], where v=hK/M. Making
use of the ansatz (6. 3) we can generalize the deri-
vation of the equations of motion for the reduced
exciton density matrices. The assumption of
ODLRG now takes the form

(("(x')(t(x')( (x„)((x,)) =xxp~~ (Hx R)r -(HxH')x' )
&&m*(r')9)(r)p&(R R'). (6 6)

Similarly, the order parameter is given by

&(R)= I&'x(((*,)((*.))xxX(-, (H"R)x))"(x) .

(6; 6)
With E(ls. (6. 5) and (6. 6) one gets in the presence
of fields forIIlRlly the SRD1e results Rs 1D Sec. III,
with the only difference that ///(r) is now the lowest
solution of E(l. (6.4) and that the exciton binding

energy E,~ is replaced by the field-dependent eigen-
value of (6.4}, i.e. , by Z',„(H, E). With the same
modifications the conservation laws and all the two-
fluid expressions remain valid. Specifically, the
chemical potential is given by

/ a', e'&
IV'(r)=-z q(r).2m " qoyj

(6. 10)

The total exciton energy is given by

z = z, —z'„+(n'/2~){K —K,)', (6. 11)

where Ko=k~ —k„o is the center-of-mass wave vec-
tor at the extrema. The assumption of QDLRQ
therefore takes the form

&0"(x!)0'(x&)A(x~)4(x.)&

=e""O'"""V*(r')y(r)pg(R; R') (6. 12)

Hzgn — &e e x eo + Eg P e

+ &&y xg ~ x kao -pIt xa ~2m'

(6. 6)
while the potential part is again unchanged. The
Wannier equRtlon of Rn exclton ln such Rn 1Ddll ect
semiconductor can be transformed into a hydrogen-
like equation by

(r R) y -1/2es(K'a k)(0 rx)~(r) (6. O)

where k, a=k„+ Pk„, is the relative wave vector at
the extrema. (/)(r) obeys the usual reduced Wannier
equRtloD

i =Z, -Z', „(H, E)(1-'-/vive*, '), (6. 7}

In an indirect-band gap material with isotropic
effective masses near the extrema at p~=hk, o and

p~= —@kz, thekineticpart of the Hamiltonian is
glve11 by

showing that one could indeed generate gradients in
the chemical potential by spatially, slowly varying
electromagnetic fields.

8. Indirect semiconductors

~(R) f~'x(((*)((*)=)~'(x)x. (6. 13)

With E(ls. (6. 12) and (6.13) one can follow the der-
ivation of motion for +, p~, and p2 of Sec. III. All
the results remain valid provided that iV'~ is re-
placed by (AT„—K()). The lowest chemical potential
[E(l. (3.13)] is no longer obtained for a, constant-
order parameter but for an order parameter which
varies as @(R)=no'/ e'"o'", i.e. , for a condensate
which moves with a velocity v, =hKO/M. Pulling
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the extra phase factor out of the order parameter
and the reduced density matrices, e.g, , vt'(R)
=)lv (R)e'"0'" and p, (R; R'}= p, (R, R')e'"o'" "', we
go over to a coordinate system moving with v,

= RK()/M. In this coordinate system the formulas
of Sec. IV for the hydrodynamic quantities ex-
pressed in terms of the reduced density matrices
(with index 0) are valid.

APPENDIX

%e will check the validity of supplementing each unpaired field operator with its partner in the bound state
and of subsequent averaging over the internal exciton motion. For this purpose we confine ourselves to
T=O and to a ground state for a system of N excitons, which is of the form

(Al)(xl,x2 ''' x() yl» y2» ~ ~ yN»IO) (I" N. } ~( 1) g(x)» yp)}»
P

where y(x„ys) is the lowest exciton wave function for an electron at x, bound together with a hole at ys. P
generates all permutations of the N indices. In (A1) no contributions of higher-excited exciton states are
taken into account. This is correct if the zero point energy due to the localization of the excitons in the
system is much smaller than the exciton binding energy, i.e. , hn '/2M «e2/2a~() e(), which yields
sd,"2(m/M)'" & 1.

A typical expression which we have to evaluate is

(d (*,)d(d))=J, , :«d v»(*„",*„v»,",v» dd (*.)d(*.) *»,",*»:v„",v, ).
At T= 0 the density matrix operator is simple p = IO)(0l, so that (A2) gives

(A2)

3 3 (3)....d rid y«xl» ~ »xx» yl»»y~l }0( Ol Xl '»~ ~ »Xd1»xs» Xl+1» ~ ~ ~ »XN» yl» ~ ~ ~ »y~)t) (Xl xs)

)
I2+P~

2 (f &d y 2, "'p (Xl yp))p(xl Yp ~ 1)~

Decomposing the permutation P'=P +@, we can sum over the permutations P and find

((/v") 2J. .. d'd d'v; I, (-))' . ,s'(»»„v )v(», v )»"'(*,-*.). (A4)
z q

The contribution of the off-diagonal elements (I()l vl I is by a factor ((ls22/V)N =n(2() 2 smaller and can in the low-
concentration limit be neglected. The result is

(I/V) g d'y1y*(x„y1)y(x„yl) =n.

On the other hand, we approximated in Sec. III expressions such as (A2) in the following manner

d Xs „,d Xl d $15 (Xs —Xs)(xl, ~ ~ ~, X1»»' yl, ~ ~ ~, yN~ pip(X s)Q (X 2)

&& (t»(x„)p(x,) ~
x„..., x„;y„.. ., y~)p(1")y*(l') d2l d'r '.

This expression is equal to

(AB)

d d dx ](g xl yl ( s —x }(xl, ~, ~, xl 1, xs, x)+1» ' '» x1»» yl»' ' » yl-1» ys» ye+1» ' ' '» yvdl 0)

I
&~ xl» ' ' '» xl 1» xs» Xl+1»' ' '» X1»1 yl»' ' '» yl 1» yh» y1+1» ' ' '» yN~((( (+ 3'P (2 3 (Xl Xs)5 (yl y2)d l d 2

, Z Jd'» .' [d»»; d»V, ))»»»(x, -x,') Z (- )) ' '
P,P'

~ P+I ~

q*,.(xl, ypl)v(x&, yp 1)~"'(~&—X.)~"'(~& —y.)m(&')v'(&)d'«'~', (A I)

where we indicated by the index j' that in cp~&, one has to substitute xz-x,' and y&- y'„. The main contribution
Q=O yields

dx~.~ x~ — eQ x~q ygpx~~ yap

lpga'

6f8t' (AB)



3328 H. HAUG AND E. HANAMURA

Going over to an integration over R', we get with 5"'(x, —x,') = 5"'(R —R ') again the result (A5). The last
approximation is justified, if the mean exciton separation is much larger than the extension of an exciton,
i.e. , (IR —R'I)=n '~'»a~a or nacho'«1. So we see, that the procedure used in Sec. II is correct inthe low-
density limit, where higher-excited states do not contribute and where the excitons are still well separated.
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