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The possibility of super'radiant spin-phonon relaxation is theoretically investigated in the framework of
the Jacobsen-Stevens model for spins coupled to the lattice. The equations derived are similar to those
of the optical case, so that under appropriate conditions superradiance should occur as in the optical
case.

As suggested by Dicke and recently observed
by Skribanowitz e~ al. , '3 a large assembly of
molecules, initially all in the excited state, can
emit all of its energy in a burst of highly direc-
tional optical radiation many orders of magnitude
shorter than the single-molecule decay time T,.
This effect, called superradiance, occurs because
the molecules do not relax independently, but in-
stead radiate in a collective mode of decay. The
characteristic radiation rate in this process is
enhanced from T,' by a factor ~ X L/8m (= 10 in
the experiments ), where no is the excitation den-
sity of molecules, X the optical wavelength, and L
the length of the sample (L» &). The superradiant
burst is preceded by a delay typically an order of
magnitude longer than the duration of the burst and,
under appropriate conditions, is accompanied by
ringing. The basic condition for optical superra-
diance to occur is that all relaxation times must
be long compared to the characteristic superradi-
ant radiation time.

The purpose of this paper is to explore the possi-
bility that under appropriate conditions, superradi-
ant behavior can also occur in the spin-phonon in-
teraction process in paramagnetic crystals. The
system would be prepared with all the spins in-
verted and the lattice unexcited. Then, under appro-
pri3te conditions, 0T fluctuations of the lattice
would trigger the collective de-excitation of the
spins, leaving all the spins in the ground state and

all the energy in lattice vibrations. As shall be
shown, the characteristic rate T~' of this process
would be enhanced from the spin-lattice relaxation
rate T~~ by the factor no A. L/4m (which can be» 1),
where now no is the spin density and X the acoustic
wavelength. The condition for spin-phonon super-
radiance to occur is that all relaxation times for
the spin and lattice processes must be long com-
pared to the characteristic superradiant time T~.
Under this condition, such a system should exhibit
all the features of optical superradiance.

Reported results of an experiment by Brya and

Wagner on paramagnetic relaxation show a behavior
which on the surface appears to be similar to that
described in the previous paragraph. The time

dependence of the spin-level population difference
was observed after excitation of the paramagnetic
transition to a negative spin temperature. It was
found that after a delay much shorter than the nor-
mal spin-lattice relaxation time Tj, the spin system
quickly released its energy to the resonant lattice
modes ("phonon avalanche" ). In contrast to the
anticipated behavior, however, no ringing was ob-
served, and the rapid decay stopped as soon as the
population of the two spin levels equalized.

Since the emission rate in a superradiant process
reaches its maximum when the level populations
have become equal, ' the lack of further rapid de-
cay indicates the absence of a coherent transverse
component of the paramagnetic spins. Therefore,
this experiment does not exhibit superradiance in
the sense of the optical superradiance experiments
in which, according to the theory, a sizeable co-
herent dipole moment is created. This statement
is supported by the fact that the Brya-Wagner ex-
perimental results can be fit' to a rate-equation
analysis, which omits phase coherence. ' The lack
of coherence in the radiation process occurs be-
cause the spin-spin relaxation time T~ is suffi-
ciently short, compared to the characteristic time
T&, to destroy phase correlations in the motion
of the transverse component of the paramagnetic
spins. This has been verified by shortening T~

sufficiently in the theoretical model describing
optical superradiance, in which case the computer
solution becomes similar to the behavior observed
by Brya and Wagner.

We now present some preliminary theoretical
results. We use the Jacobsen-Stevens model for
spins coupled to the lattice. ' Although this model
assumes a concentrated lattice with adjacent spins,
it should be equally suitable for more dilute sys-
tems provided that there are many spins per
acoustic wavelength. This Jacobsen-Stevens mod-
el contains the essential physical features needed
to produce the behavior under discussion. The
treatment is similar to the one used to explain
the experimental results in the optical case. '

The Jacobsen-Stevens Hamiltonian for the sys-
tem is
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where one atom of mass m aod spin —,
' is assumed

per unit ceQ. U, is the displacement operator and
0', the momentum operator of atom j in the x direc-
tion. K is the restoring force between nearest
neighbors and H is the dc magnetic field in the z
direction. S„'~' and S,'~' are the x and s components
of the spin operator for the unpaired electron on
atom j, normalized such that [8„"',8,'"]= iS,'~', and

p~ = eK/2me. The coupling cons'tant between the
strain at position j and the spin components S„' '

is e. This coupling is chosen so that a component
in U&,j —U» at the resonance frequency of the
spin is able to induce spin transitions.

In the spirit of the work of Jacobsen and Stevens,
we adopt the semiclassical approximation in which
the lattice vibrations are treated classically [i.e. ,
the operator U; becomes a classical quantity U (j )]
and the spins are treated quantum mechanically.
Consider first the quantum-mechanical Hamil-
tonian, omitting classical terms which contribute
only to the lattice motion:

where A&uo=gps H, n(j, t) is the spin-population
difference per unit volume,

n(j, t) -=2~(+lsl"I +& =no(lal'-
I
&I'}, (6)

"=g(l[P(j)]'/ +l [ (') — (j+I))'+lap

& an(j }/n, ——.
' ke[P(j+1) —P(j-1)]U,/n, ],

(6)
and Hamilton's equations give

s' U(j) =(K/m) [U(j+1)+U(j-1) -2U(j)]

P(j, t)= 2no(@I-SU'
I
@)=no(a+5+ah+},

where no is the number of spins per unit volume.
In order to obtain a wave equation for U( j ), we

treat the original Hamiitonian [Eq. (1)] classically,
with operators replaced by their expectation values
(8„'~'- (@I &„' 'I 4')}. Then Eq. (1) becomes

ff =gfgt, aS."'+ k~ [U(j+ I) - U(j- I)]S„"'j.

(2)
Since the quantity in curly brackets depends only
on the operators' S„'~' and S,'~', the total spin-wave
function 0 of the system is separable into a prod-
uct of single spin-wave functions P~. We then.
have a single-particle problem with

where D = e [U( j+1) —U( j—1)]. 5'„and 8, are quan-
tum-mechanical operators on the spin-wave func-
tion g&(t) of the spin- —,

' system, which we expand in
the form g& =a(j, t) I 0 ) + b(j, t) I 0). Then Schroding-
er's equation, Hog~ =ifi8$~/et, gives'

+(-. @~/mno) [P{j+1)—P(j-1)] (9)

Equations (4), (5), and (9) are the coupled semi-
classical equations describing the spin-phonon in-
teraction. Equations (4) and (9) are similar to
Eqs. (2) and (&) of Jacobsen and Stevens' with the
operators replaced by average values. Equation
{5)has no counterpart in Ref. 9 because there
(S,) is assumed to be time-independent, whereas
we allow n to vary in both space and time.

We now let P=Re (P' e'"' '~') ard U
=Re (U'e'"' "~') in Eqs. (4), (5), and (9), where
a is the spacing between paramagnetic ions. As-
suming that the amplitudes P' and U' are slowly
varying in space and time, such that 8P '/st
«&uP', P'(j+1) —P'(j)«kaP'(j), etc. , these
equations become

288
. & ([1—e ' ——,'(ka)~] U'(j+1}+[1—e'~ --,'(ka)'] U'(j —1)j+ — = — - sin(ka) P'(j)

—+ T~ +i((o-(o,) P'(j) =- n(j),s, , (uoeaU'( j}
(10a)

en(j) ' + e sin(ka) Re[P' (j )+ U' (j)],
Tg

{10c)

where phenomenological damping terms have been
added. Here, T, is the spin-lattice relaxation
time, Tz is the spin-spin relaxation time, and

l

6 = oP/k =Xa2/m. Equations {10)are similar to
Eqs. (14)-(16) of Ref. 8, which describe optical
superradiance and coherent pulse propagation, and
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therefore all of the coherent optical effects should
have analogs in paramagnetic systems. In fact,
self-induced transparency in a paramagnetic sys-
tem has recently' been observed by Shiren.

The similarity with the coherent optical equations
is most easily seen in the case ka & —, (which is
almost always the case). Then U', P', and n can
be treated as continuous functions of x, and Eqs.
(10) can be rewritten using retarded time coordi-
nates (f ' = t- x/v, x' = x) so that they are identical
in form with the optical equations.

In the limit where relaxation effects can be
ignored (i. e. , the T's are sufficiently long), it is
found that the important superradiant features can
be obtained in the simple case of exact resonance
(~ = ~0), assuming that ka is small and that the
initial conditions for P' and U'(j) are real. Then
Eqs. (10) have the solution

&„= —c(K /2mNru) sin(ka), (is)
where N is the total number of paramagnetic spins.
The number of modes per unit energy interval is

p, (5(u) = L/h, mv.

Then in the limit ka«1,

deriving a relation between T& and T& in the para-
magnetic case. Time -dependent perturbation the-
ory gives

Tii'= (»/a)
I
c, e'""I 'pi(k ~)

where T» is the relaxation time in our linear chain
at zero temperature. The quantity e~ e'~~ ' is the
matrix element between the state in which only
atom j' is excited and the lattice is in the ground
state, and the state in which atom j' is de-excited
and one phonon has been emitted into the 0th mode.
Then"

n(j, t)=nocosy(j),

P'(j, t) = —n, sing (j),
(ii)
(i2) M VQ)

~'a'ek' L ' (20)

= keaU'( j),

j+1j1+
2 sin j ~ (14)

Since ka is small, U'(j) and Q(j) become continuous
variables, and using retarded time coordinates,
Eg. (14) is identical in form to Eq. (43) of Ref. 3, ~~

The relaxation time in three dimensions at zero
temperature should be

Tg = Tgr p&(@&)/p(k&) i (21)

where p(k&u)= uPV/2m hv is the number of modes
per unit energy interval in a sample of volume V,

and for the sake of simplicity it is assumed that the
magnitude of the matrix element for emission is the
same in all directions. Using Eg. (20), one gets

s'y(x', t') sing
Bx'Bt' T I

with

T~=2mv /Skag a'L (16)

A. 1 tv N
ala SEk V

and, using Eg. (16),

Ts = Tz(noh L/4m)

(22)

(23)

for the paramagnetic system. Computer solutions
of Eq. (15) subject to the initial condition g(x', t'
=0)=6, with 6«1 (which corresponds to the small
kT fluctuations ), exhibit the superradiant features
described previously including delay, rapid radia-
tion, and ringing. The close connection between
Eqs. (10) and (15) leads us to expect similar be-
havior for paramagnetic systems whenever T1» T„
and Tp&& Tg.

The striking similarity between the paramagnetic
and the optical equations is further exemplified by

where no= N/V. This relationship is almost iden-
tical to that between T& and TI, in the optical super-
radiance case, except that there T~ is the single
atom radiation time ("T~" of Ref. 3), no is the
molecular excitation density, and A. is the optical
wavelength.
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