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The theory of spin-density oscillations (SDO) caused by local-moment-conduction-electron (s-d)
exchange in simple metals is reviewed and restated in terms of spherical components of the exchange
interaction on the Fermi surface. Both direct and s-d mixing exchange sources are included, and
calculations are presented to account for the effects of potential scattering, in terms of phase shifts, and
conduction-band exchange enhancement of the SDO. The SDO amplitude is related to inhomogeneous
broadening of host nuclear-magnetic-resonance lines using the theory of such broadening given recently

by the authors. The measurements of s-d exchange parameters by impurity-state susceptibility and EPR
linewidth are also discussed, with particular emphasis on the effect of conduction-band exchange on
these phenomena. We apply the above considerations to the alloy systems Cu Mn and Ag Mn. For
Cu Mn, estimates of the predominant s-d mi.xing exchange from (i) 'Cu NMR linewidths, (ii) Mn
impurity-state susceptibility, and {iii} indirect high-temperature measurement of the single-impurity EPR
linewidth are compared. Values so obtained range over a factor of —1.5 with the SDO values smallest
and the susceptibility values largest, This variation is in apparent conflict with the Hartree-Pock
solution of the Anderson model. The exchange values found may also be combined with the
Anderson-model theory to establish an upper limit of —5,5 d electrons on the Mn site. For AgMn
the impurity susceptibility corresponds to a rather smaller mixing exchange coupling in agreement with
recent EPR work by Davidov et al. The ' Ag NMR linewidth results of Mizuno are shown to be
caused by more than one species of broadening agent, preventing a firm conclusion on the SDO
measurement of exchange from being drawn.

I. INTRODUCTION

Over the past two decades numerous studies have
been reported on the properties of 3d local mo-
ments in simple metals, and several model theories
have been advanced to describe such systems.
Only in rare cases, however, have quantitative de-
terminations of the fundamental physical parameters
which govern these systems been reported. W'e
report here an attempt to make such a determina-
tion for the case of CuMn; the AgMn situation is
discussed as well.

The particular quantities sought in the present
wox'k ax'8 the local- moment- conduction-electron
(8-d) exchange parameters. These originate from
direct exchange coupling as well as from the mixing
of the localized d orbitals with band states nearby
in energy. The mixing effect is found (as expect-
ed } 'to clo111inate 1n tile syste1118 cotlsldel'ecl slid will

become our main focus of attention in Sec. V. The
mixing exchange involves all the basic parameters
of the Anderson model. 4 It is a major point of em-
phasis here that the comparison of various mea-
sures of this quantity which we undertake consti-
tutes an ioteresting experimental test of the con-
sistency of this model.

The s-d exchange interaction is reflected in a
wide variety of experimental effects. For CuMn,

one primary source of exchange data, namely EPR
studies, is excluded because the relaxation bottle-
neck has never been successfully broken. We
thex'efore turn to other measures of s-d exchange,

three in particular being analyzed in detail in this
paper. They are (a} long-range spin-density os-
cillations (SDO) caused by the impurity, as re-
flected by host NMR line broadening, (b) high-tem-
perature Mn nuclear relaxation by moment fluc-
tuations due to exchange scattering of conduction
electrons, and (c) saturation moment or suscepti-
bility of the impurity. We comment on these ef-
fects in turn.

(a) The long-range SDO generated by the direct
exchange and also by s-d mixing are derived here
in a coherent formulation. The mixing effect is
discussed in terms of the degenerate Anderson
model, 4'6 whereas the dix'ect exchange effect is
formulated in terms of the impurity Green's func-
tion~ in order to take into account potential scatter-
ing effects. The xesulting spin-density-oscillation
(SDO) range function is expressed in terms of
Fermi-surface exchange matrix elements such as
determine the g shift and dynamic width of an iso-
lated moment. A similar result, without the po-
tential scattering effects, has been given by Davidov
et ul. The SDO amplitude is subsequently re-
lated to host NMR linewidth data using recent cal-
culations of impux'ity-induced NMR line shapes.

(b) Recent high-temperature NMR studies of~ in Cu~ have revealed a dominant relaxation
process originating in the fluctuating local-moment
hyperfine field. These fluctuations are in turn gov-
erned by s-d exchange coupling. This experiment
yields data equivalent to the EPR Linewidth in the
single- impurity Limit.
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(c) The total impurity-state moment is known to
reflect changes from the free-spin value due to (di-
rect) exchange polarization of the host band. it
is also known that the mixing effect is expressible
in the same form, ' except that the moment re-
duction does not correspcnd to an actual spin po-
larization in the band. Thus, the net moment
should reflect the same exchange parameters as (a)
and (b) above, given that the deviation from free-
spin behavior is not great.

One might also have included here the negative
magnetoresistance work by Monod as a measure
of s-d exchange. This was excluded from detailed
consideration because of theoretical uncertainties,
but will be commented upon later in the paper.

Much of the theory necessary to interpret the
foregoing effects was either contained in or im-
plied by earlier work. The primary task here has
been one of assembly, with two pieces of minor
theoretical development relegated to appendixes.
Our general approach has been to express the rel-
evant measured quantities in terms of phase shifts
and exchange parameters evaluated on an assumed
spherical Fermi surface. Band-theoretical refine-
ments of such a picture do not seem warranted at
the present time.

Conduction-band exchange effects in Cu and Ag
metals are thought to be appreciable, though
smaller than earlier evidence 6 indicated. Care
has been taken to include them here, using the
susceptibility- enhancement model developed by
Singwi, Sjolander, and co-workers. This model
has been successfully applied to the interpretation
of nuclear-relaxation enhancement in alkali metals
by Shaw and Warren and by Bhattacharyya et al.
In the present context we use this formulation to
derive the exchange enhancement of the SDO and to
calculate the enhanced local- moment- conduction-
electron relaxation process using a slight modifi-
cation of the random-phase-approximation (RPA)
model theory of Moriya. Enhancement effects
are also incorporated in the saturation-moment ex-
pression for the Mn-impurity state. No attempt
is made here to take account of Kondo condensation
phenomena, the temperature being assumed well
above T~ in the measurements considered. Fur-
thermore, it was recently demonstrated experi-
mentally that SDO are unaffected by the Kondo
transition.

The paper is organized as follows. The theory
of SDOin these systems is spelled out in Sec. II.
In Sec. III we discuss the conduction-electron en-
hancement effect. Formulas for local-moment
relaxation rates and the saturation moment of the
impurity state, including band enhancement effects,
are given in Sec. IV. In Sec. V we discuss the in-
terpretation of NMR line shapes in terms of SDO
amplitudes, review the available host NMR line-

width data on CuMn, and AgMn, and work out
experimental s-d exchange parameters for the sys-
tems considered using the formulas of Secs. II, III
and IV. Some discussion of the Anderson-model
parameters is also presented in Sec. V. Conclu-
sions are discussed in Sec. VI.

II. THEORY OF SPIN-DENSITY OSCILLATIONS

The potential disturbance created by a magnetic
impurity in a metal generates both charge and spin-
density oscillations. The SDO are caused by the
spin-dependent nature of the potential, which in turn
is a direct consequence of the s-d exchange coupling
energy of the impurity. In this section we relate
the long-range SDO amplitude to the Fermi-surface
s-d exchange parameters and scattering phase
shifts.

The present problem separates conveniently into
two parts, namely, the effects of direct and mixing
contributions to the s-d exchange, respectively. We
shall consider these contributions in separate cal-
culations. In both cases the results may be ex-
pressed in terms of the scattering phase shifts 5',

at the Fermi energy and the Fermi wave vector k~
in a spherical band

1
~n(~)= —,g (21+ 1)sin(5', —5, )4m

x cos(2ky 1'+ 5g + 5g )/g (2)

From (2) and the Friedel sum rule,

Z' = Q Z', = —Q (2 l + 1)5,'
l

we see that the amplitude of the SDO contribution
of symmetry E depends only on the net polarization
Z; —Z,. of the screening charge bound in the Lth

partial wave. The total screening charge of the
impurity state is Z'+ Z and is determined by the
number of electrons outside closed shells in the
neutral impurity atom.

The polarization of the partial waves which give
rise to the SDO via Eq. (2) is presumed to come
about as follows. The L = 2 term is driven by the
s-d mixing effect and is controlled by the magnitude
of the 3d moment itself, which is

n'(r) = no —
4 z g (21+ 1)sin (5) ) cos (2kz x+ 5', )/xs

(1)

(valid for large ~), where + denotes spin orienta-
tion and the index / labels the spherical components
of the scattered wave.

The spin density 4n(x)=n'(x) —n (r) follows im-
mediately from (1):
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Za-Za= (5/v)(5'3 —5~) (in p, )

In our discussion below, an expression for this
quantity will be given in terms of Anderson-model
parameters. ' On the reasonable assumption of
a spherically symmetric mixing potential, polar-
ization of the l c 2 waves comes about only through
direct exchange between Bloch electrons and the
3d moment. Let us first consider the formulation
of the direct-exchange problem.

VYe treat the polarization effect due to direct ex-
change in a Green's function perturbation scheme
in order to include the effects of potential scatter-
ing. The direct-exchange Hami. ltonian is conven-
tionally written

1
EE 2 Q ~lT' I [SS(c)('+c5 )(' k )

f~, pT

der perturbation, with the Green's function ex-
panded as

G = Gp+ Gp J,~ Gp+ ' ~ ~

where

1
Go= T+ V —E —i5

(6)

and J„is the exchange operator corresponding to
Eqs. (4) and (5). The main body of this calcula-
tion, in which we have drawn upon Anderson's dis-
cussion of G for the impurity problem in the r rep-
resentation, is presented in Appendix A.

The principal result from Appendix A is

+S CP Cg +S CfE Cj~] (4)
&icos(5', —5, ) cos(2k~r+5,'+5, ), (10)

with

+E,(. IIEgfE'r1 /+2 9 N (E2) q':.(Ei)

x rp~„(r2) y~&r, ) Ir& (5)

where p).,(r) is a Bloch function and the sum on i), is
taken over five equally occupied d orbitals which
form the spin-only moment. For k and k' in the
vicinity of the Fermi surface it is convenient to
expand the exchange as

(6)

The impurity-state properties of interest in this
paper are expressible in terms of the J,, (k~, k~)-=J, . It is noteworthy that the mixing exchange
contribution also has the form of the appropriate
l term in Eq. (6).

The direct-exchange polarization effect is altered
by the presence of the impurity potential V(r) seen
by the conduction electrons. First, V(r) gives
rise to SDO phase effects [5', + 5, &0, Eqs. (2) and

(2)] through charge screening. In addition, the
Bloch functions ((()), (r) are no longer the eigenfunc-
tions of the unperturbed Hamiltonian (i. e. , omitting
X,„)when V(x) is important; thus, the exchange
parameters in Eqs. (5) and (6) must be redefined.
These matters can be dealt with by using the re-
tarded Green's function G to calculate the SDO via sin5,'= ~[(Z, -Z,')'+ ~'] '",

cos5', = - (Z, Z,') [(Z„-Z,')'+ &'] "',- (12)

where p(Ez) is the density of states at the Fermi
surface for one spin direction exclusive of elec-
tron- electron and electron-phonon coupling effects,
and J, is the direct-exchange parameter generalized
to the case of V(r) WO by Eq. (AV). The 5, are the
phase shifts due to V(x) in the absence of exchange,
where 5;=5, for l&2. Comparing Eq. (2) with

Eq. (10) one finds that exchange produces equal
and opposite changes in 6', in first order, the dif-
ference being

a(5', —5, ) = m(-I)' (S,)p(E„)Z, (11)

Equation (11) establishes the connection between
scattering phase shifts and exchange parameters
of the same symmetry. Comparison with Eq. (6)
shows, as expected, that scattering for 8». = m

dominates the picture. In the absence of potential
scattering 5', + 5, = 0. Equation (10) then reduces
for large tto Yosida's'Eq. (2. 23), where only
l = 0 exchange is considered.

Ne only need expressions for the phase shifts
6& caused by s-d mixing to complete our formula-
tion of long-range SDO. These are straightfor-
wardly obtained from the Green's function for the
degenerate Anderson model, * assuming the five
spin-up d orbitals to be degenerate and nearly full
with the spin-down ones degenerate and nearly emp-
ty. Under these circumstances the required phase
shifts are given by

where the trace is over spin coordinates and f(E)
is the Fermi' function. For this purpose we have

adopted a free-electron model with the impurity
potential V(x) assumed to be spherically symmet-
ric. The direct exchange is treated as a first-or-

where E~ is the energy of the + spin d state and &
= vp(Ez) (V~„),is the d-state width parameter eval-
uated at the Fermi surface. In ~ the squared ma-
trix element V~ is averaged over the Fermi sur-
face. It is clear from Eq. (12) that for 6 «[Ez
—E„'), the limit we consider here, 5z and m- 6z are
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small, positive angles. Vfe therefore write

~(E,-E'„)
s1n( 2 2) [(E E+)2 ~2]1/2 [(E E )2 g2]1/2

(13)

[(E E+)2 g2]1/2[(E E )2 g2]1/2 I ( )($5

where (S2) is the saturated spin value of the
magnetized impurity, and where we take cos(52'
—5z)- —1 throughout. Equation (10) may then be
taken to include both direct and mixing exchange
sources, where for I = 2 we have Z2(total) cos(62
—6z) =- —(Z 2z + J2). The mixing contributions to
exchange which characterize other experimental
quantities are discussed in Sec. IV.

III. ENHANCEMENT OF HOST-BAND
SUSCEPTIBILITY BY CONDUCTION-BAND

EXCHANGE: SDO ENHANCEMENT

The band susceptibility X(q, ~) of a nearly-free-
electron gas is known to be enhanced by intraband
exchange coupling. ' It follows generally that the
SDO generated by a magnetic impurity will also be
enhanced. This was explicitly shown to be the case
by Moriya in a study of host-band polarization ef-
fects using the Anderson model with a q-indepen-
dent conduction-band exchange potential. How-

ever, calculations of nuclear relaxation enhance-
ment using a q-independent potential have been
found to give incorrect results for the alkali met-
als, where the theory can be tested directly.

We have sought to avoid the assumption of a q-
independent potential by making use of a recent
theory of susceptibility enhancement, 7 in which the
particle distribution-function equations of motion
are decoupled in second order. Self-consistent
numerical solution of these equations has been found
to yield better pair-correlation functions than pre-
vious theories. The susceptibility is found to be
given by

Xo(q, ~)
1-I(q) X2(q, ~) ' (16)

52+ 62—- m+ tan [n/(E2 —Er )]—tan [n/(Eg —E2)] .
(14)

The phase of the d wave is therefore nearly g, and
it is convenient to define the SDO exchange parame-
ter due to mixing as

2

(S2 &~„

functions for parallel and antiyarallel syins. As is
well known, however, the solution of the RPA-mod-
el integral equation2 is not of the form of Eq. (16).
There has apparently been no attempt to solve the
RPA model with a realistic potential.

Equation (16) has been used with some measure
of success to calculate enhanced nuclear spin-lat-
tice relaxation rates. ' We adopt this equation
for the calculation of enhancement effects in this
and the following sections. The choice of the func-
tion I(q) is taken up in Sec. IV.

In calculating the SDO enhancement, we shall
utilize the spin-density response to a 5-function
potential, namely, the Fourier transform of Eq.
(16). The long-range (r ) part of this response
will then yield the desired enhancement factor. For
I(q)= 0, this procedure yields simply the Ruder-
man-Kittel-Kasuya- Yosida (RKKY) function. ' '

Equation (16) is Fourier transformed using the
methods' in Lighthill's book, and the r term is
calculated explicitly in Appendix B. The associated
enhancement factor is found tobe [1—I(2hz) X2(2k+)]
i. e. , the square of the enhancement of Re X(q, 0)
at q = 2k+. A similar inverse-squared deenhance-
ment factor for charge-density oscillations has been
derived by Langer and Vosko and by Blandin.
For the discussion of experimental data, then, Eq.
(10) is modified to read

[hn(r)]„„„=y(2k+) nn(r) [Eq. (10)], (17)

with

y(2u, ) = [i- —,'~(2u, )] ',
where (1 —n) is the uniform susceptibility-en-
hancement factor and I (q) = I(q)/I(0).

(is):

IV. OTHER MEASUREMENTS OF EXCHANGE

In Sec. V we discuss s-d exchange values yielded
by several types of measurement on the alloys con-
sidered in addition to the SDO amplitude. The ef-
fects discussed include impurity susceptibility and
EPR linewidth as measured directly or through
high-temper ature nuclear spin-lattice relaxation.
Here we summarize the theoretical results needed
to discuss these measurements. Effects of elec-
tran-electron coupling in the host band have been
included according to the discussion of Sec. III.

A. Impurity-state susceptibility

This effect measures the diagonal component of
X,„[Eq. (4)] summed over occupied states, where
Z2, 2 is taken from Eq. (6) (modified to include the
mixing-exchange contribution in the l = 2 term). In
the absence of conduction-band exchange one finds
the Curie susceptibility to be corrected by a fac-

ii, iP,

where X2(q, &u) is the noninteracting band suscepti-
bility and I(q) is a functional of the pair correlation X .,(&)/X, (~)=[i -'P(E.)~;,,; ] (19)
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where & ~(T) is the free-spin Curie susceptibility
and Jp p denotes evaluation for k'= k on the Fermi
surface.

In order to take account of band enhancement, we
must at this point draw a physical distinction be-
tween the effects of direct and mixing contributions
to Jp, p on the impurity susceptibility. It is noted
that the direct-exchange terms in Eq. (19) repre
sent an actual host-band polarization effect, which
is therefore enhanced by the q = 0 enhancement fac-
tor (1 —o.) . On the other hand, the mixing term
in Eq. (19) represents a reduction in the saturation
moment due to the finite width of the virtual d states
[see, e. g. , Eq. (12)]. By the Anderson-Clogston
compensation theorem4' the associated net band
polarization is small. Moreover, Moriya has
shown that only the net polarization is enhanced by
band exchange. To a good approximation, then,
the impurity-moment reduction due to mixing in
Eq. (19) is not affected by band enhancement in
free-electron-like metals. This picture holds for
V@p(Ez) «1.

Considering only / = 0, 1, and 2 terms to be im-
portant for the present work, we therefore express
the impurity susceptibility as

.X,~(T)/x ~(T)= (1+ -,'p(E9-) [(Jo+ 3Jg+ 5 Jp)/

(1 —&)+ 5J"„]]', (20)

where J„ is the mixing exchange as reflected by the
impurity-state moment. Combining Eqs. (3) and

(12) and putting the result in the form of gp, s 8[1
+ 5p(E9)Jz /2], we find

J'„= —[1/v p(E )S] sin ILn.(E —E')

X [(Eg —E~) + 4 ] [(E~-Eg) + LP] j . (21)

J'„ is seen to coincide with J»o [Eq. (15)] in the
limit of small 4.

B. EPR linewidth and high-temperature spin-lattice
relaxation of the impurity nucleus

The EPR linewidth Tq, reflects the exchange pa-
rameters of Eq. (6) in the single-impurity: ("un-
bottlenecked") limit. Direct measurements of Ti,
are not available in the case of CuMn. However,
Tq, has been measured indirectly for CuMn through
the high-temperature spin-lattice relaxation of the
"Mn nuclei. '4' For noninteracting electrons this
quantity is related to the s-d exchange parameters
through the Korringa expression

1/Tq, = v p(EI, ) (J'„...)„ks T/h, (22)

where the average is taken over k, k' values on the
Fermi surface. To include band exchange effects
in Eq. (22) we modify Moriya's RPA-model theory
by using Eq. (16) for the dynamic susceptibility.
Thus the quantity (J„)~,in Eq. (22) is replaced,

9

using Eq. (6), by

(J„„;)- 2 Q (2 l + 1)(2l'+ 1)J g Jg,
l9li

i P, (1 —2xa)P„(1—2x )xdx
[1-nI (x)O(x)]'

where

x = q/2k~

C(x) = -'Il+ (1-")»[l(1+x)/(1-x) i]/2x]

X.,..(n) =- 2(2 l + 1)(2l'+ 1)(1—n)2

' P, (1 —2x') P, ,(1 —2x~)x dx

0 [1—o.I (x)G(x)]' ' (25)

as a function of o. For this purpose it is neces-
sary to choose a form for I (x). As noted by Shaw
and Warren, the quantity Xo,o(o.) is relatively in-
sensitive to the variation of I (x) at large x (x-1).
Thus, using somewhat different functions I (x),
both these authors and Bhattacharyya et al.
found good agreement with NMR Tq data on the al-
kali metals. The results are therefore not criti-
cally dependent on this choice.

For mathematical convenience, then, we choose
the potential function given by Shaw and Warren,
taking y= 0. 25 (exchange only):

I (x)= (1/4»') [1—(P/x)D(x/P)], (26)

with P~= 1/6y and where D(y) is the Dawson inte-
gral. Combining Eqs. (25) and (26), we have
carried out numerical evaluations of the X, ,.(n)
as a function of a. These are shown in Fig. 1.
For l = l' [Fig. 1(a)] the 21+ 1 scale factor is sup-
pressed to facilitate comparison of different
X, , ,(c.')'s. The X~ 0(o.) values coincide with results
given in Ref. 18.

Finally, for convenient reference, we rewrite
Eq. (22) as

= —p(Er) ks T( —u) 'Q J', J",.X, , (n) .
(2V)

J,'= J,+ a„J~1e

For the dynamic exchange parameter due to mixing
J~~, we take the Kondo, Schrieffer-Wolff expres-
sloIl,

J;„= S'(~'„-,-).,[(E, E.) '+ -(E,-E') '] . (24)

From Eq. (23) we see that not only are the J,
terms enhanced, but also there now appear cross
terms oc J', J', , / 4L', with nonvanishing coefficients.
In order to interpret Tj, data one must calculate
the components of the enhancement tensor,
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It is to be noted that the dilute linewidth is indepen-
dent of the net SDO phase y.

aH(r) in Eq. (29) is related to the spin density
[Eq. (10)]by

0.6
aH(r) = an(r)flH'„, y(2k')', (30)

0.4

0.2

where H'„, is the host-band hyperfine coupling field
(in gauss per p,s of polarization per atom), and

y(2k~) is taken from Eq. (18). H'„, can be expressed
in terms of the s-contact NMR shift K, and spin-
susceptibility-enhancement factor (1 —n) as

HM =&.(I —~)/2pe p(E~), (31)
00

1.0

0.8-

06

0.4

g 02

0.0
0

0.2

0.2

0.4

06

0.8 I.O

I.O

where K, and n are taken from experiment. Com-
bining Eqs. (29)-(31) one has

A = —(S,) Qy(2k+) K,J»o(1 —n)/8 vp, s, (32)

with the over-all SDO exchange constant Js~ de-
fined by

Js~cos(2kzr+ y) = g (-1)'(2l+ 1)J",

&icos(5,'-5, ) cos(2k~r+&, +&,)

(b)

FIG. 1. (a) Diagonal and (b) off-diagonal terms of the

T~~ enhancement tensor && &. (n) as a function of n, cal-
culated using the Shaw potential Eq. (26) in Eq. (25).

V. INTERPRETATION OF HOST NMR
LINEVfIDTHS AND OTHER EXCHANGE-RELATED

DATA FOR CuMn AND AgMn

(aH) = 16 vAc/3a (28)

where c is the atomic fraction of impurities present
and a is the fcc lattice constant. A is'the RKKY
amplitude coefficient defined by writing the induced
hyperfine field shift at distance x from the impurity

aH(r)= icos(2kzr+ p)/r~- (29)

In this section we discuss the interpretation of
experimental data for dilute CuMn and AgMn in
terms of s-d exchange parameters. In a prelimi-
nary subsection (VA) detailed formulas are de-
veloped for the interpretation of host NMR line-
widths using the results of Secs. II and III and of
Ref. 9. With these and the results of Sec. IV we
then proceed to discuss measures of s-d exchange
for CuMn (V 8) and AgMn (V C).

A. Host NMR linewidth formulation

It was established very early ~ that experimental
magnetic-impurity-induced NMR line shapes are
very nearly Lorentzian in shape. This has been
affirmed by the theory of Ref. 9, where the half-
width at half-height in the case of .RKKY broadening
in an fcc lattice was calculated to be

In discussing experimental linewidth data we de-
fine the broadening coefficient

W= (aH)/c (8,) (34)

In terms of W, J»o may be written via Eqs. (28)
and (32) as

Gp~ W"' E, y(2k, P(1- n)

where 00=a /4 has been inserted for the fcc lattice.
Equations (33)-(35) are used to tabulate and inter-
pret NMR linewidth data in Secs. VB and VC.

B. Measures of sM exchange in CuMn

For CuMn we employ data on host NMR line-
widths, high-temperature Mn spin-lattice relaxa-
tion, and impurity susceptibility to assess the s-d
exchange properties of the impurity state. At the
outset we specify the values of p(Ez) and n to be
used for Cu metal For p(.Ez) we adopt the band-
structure density of states (m*/m = 1.2V) recently
calculated by 0'Sullivan et al. ,

44 giving p(E~) = 0. 135
states/(eV atom) for one direction of spin. a is
obtained from recent measurements of the de Haas-
van Alphen g factor as a function of position on the
Fermi surface. These results lead to the esti-
mated spin susceptibility X,= 1.45 X~„,,& for Cu
metal. Combining this with p(E~) above gives o.'

= 0. 12. It is noted that this value for a is consider-
ably smaller than thai deduced from the experi-
mental Korringa product K Tj T xe, 4e A resolution
of this discrepe, ncy has recently been suggested in
terms of residual Van Vleck susceptibility and NMR
shift in Cu metal. We shall adopt the viewpoint
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TABLE I. Broadening coefficients 8' fEq. (34)j for
dilute CgMn, derived from various sources of NMR line-
midth data as described in the text.

Behringera
Chapman and Seymour"
Suga%'a ra
Heeger, Klein, and Tud

Alloul and Bernier
Karnezos and Gardner

83
100
89

140
104

Reference 22.
"Reference 23.
Reference 24.

Reference 25.
'Reference 26.
fReference 27.

51~x
I

1.13(ge+ 3Zg+ 5J2)= 2. 55 eV (36)

Next, we tabulate 63Cu NMR linewidth data for
CuMn, i.e. , the quantity W from Eq. {34), in Table
I. TV values were obtained from various sources
as dex'ived from the slope of a plot of linewidth
against (S,) and corrected for dipolar broadening
effects. " (S,) was calculated from Eq. (20) using
the correction factor discussed in the previous
paragraph. . Values of 8' obtained in this way are
seen to vary quite widely, rather surprisingly so
for such an ayparently straightforward experi-
mental quantity. This may reQect internal oxida-
tion effects as suggested by Howling. ' For the
present discussion we extract from Table I a mean

value W = 9. 8x 10 G + 15%.

of Ref. 15 in this paper, in which the experimental
shift of Cu metal K= 0. 24% is presumed to be par-
titioned into an s-contact part K, = 0. 18% and an
orbital part K„"= 0.06%.

Turning to the question of s-d exchange param-
eters, we analyze first the susceptibility data since
the numbers obtained will be required for the othex'

analyses to follow. Early measurements of the
Mn-impurity susceptibility XM„ in CuMn have been
reviewed by van den Berg. He arrives at a con-
sensus value for P,«I =—g [S(S+1)] }-4.9. Subse-
quent measurements give P„f= 4. 92 and at high
temperatures, p, «= 5. 16. %hether the indicated
temperature dependence of p,« is real is a matter
of conjecture. It is also noted that the temperature
dependences of p(Ez) and n argued by El Hanany
and Zamir are open to question in view of the anal-
ysis of Ref. 15. In the present work we shall adopt

P,«= 4. 9 and ignore any temperature variation of
the p(E~) and u values cited in the previous para-
graph.

Attributing the deviation of P« from the 8= 3
free-spin value (P,«= 5. 92) to the correction factor
( j in Eq. (20), one is led to conclude that the nega-
tive Jx term is predominant. Substitution of the
appropriate parameters yields

=2. 00 6V, (3V)

where we take 52+ 5~=- m.

The thixd source of 8-d exchange dRtR ls hlgh-
temperature Mn nuclear relaxation measux e-
ments, which we interpret using the Moriya en-
hancement model for EPR spin-lattice relaxation
as discussed in Sec. IV. From Ref. 10 the nuclear
relaxation rate is written

1/Tl —3 ( Yn +d 4B+OP ef f) Tie

where y„ is the nuclear gyromagnetic rabo, a~
= —ll. 8(emu/mole) is the d- spin hyperfine coef-
ficient, N0 is Avogadro's number, p,«= 4. 9 from
above, and T~, is the local-moment spin-lattice
relaxation time. From T~ = 2. 3x10 sec, we
find Tq, = 1.32&10 sec at 1200 K. Tq, is then
related to the exchange by Eq. (27). Using the val-
ues of o.'and p(Ez) from above and the appropriate
values of X, „(n) from Fig. I., Eq. {2'1)yields

5 lZr l
—0.02J0- 0. 19Zg —543-—2. 46 eV, (39)

where again only first-order terms in J& and Jq are
retained.

l. Discussion

Equations (36), (37), and (39) are now examined
to compare s-d exchange parameters reflected by
these three experimental measurements. Two im-
portant features are noted immediately. First, the
direct-exchange constants J, are known to be «0. 1

TABLE II. Configurations of mixing exchange param-
eters from Eqs. (36), (37), and (39) for three possible
sets of J& parameters. The second set of J&'s corre-
sponds closely to the values deduced for AgMn in Ref. 2.
All values are in eV.

Estimated direct exchange
Jf

0.10 0. 05 0
0.09 0.06 0.03
0.05 0.05 P. 05

Corresponding mixing exchange
(sg I z,D, l /s l 4$„1 l ~„ l

0.36 0.49 0.57
0.38 0.52 0.60
0.40 0.54 0.60

The SDQ exchange parameter is obtained by sub-
stltutlng RppxopxlRte pRx Rmeter values into Eq.
(35). From Eq. (26) we have I(1)=0. 59, which,
combined with o'=0. 12 in Eq. (18) gives y(2k+)
=1. 04. With K,=0.18% and W from above, Eq.
(35) gives J»o= 2. 00 eV.

To express Jsoo in terms of the J,'s we assume
(J»o( [Eq. (15)] is large and develop Eq. (33) to

fi.rst order in the J,'s. Second-order corrections
- (4, /Jeno) are of the order of a few percent and

therefore negligible compared with the error limits
of available data. To first order, then, Eq. (33)
gives

~»o = 5 l~sno I &ocos(25o)+ 3Jx cos{25i)—5z2
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y(1+x') '"[(y -x)'+ ll '"=j, (42)

with x= (E„E„)/a, y = -(E„E,')/b. , and -j =»»P(Er)
x IZ»oI(S, ) . With IJg»1-0. 4 eV and p(E~)
= 0. 135 eV atom we find j = 0. 35. The total num-
ber of d electrons n„at the Mn site is then written
[Eq. (14)1

n~= 5+ (5/»»){tan '(x ) —tan [(y —x) ]] . (43)

Noting that only the case x, y &0 need be considered,
we make the following observations on Eqs. (42)
and (43). First, the minimum value of y, ym„
=11.1, occurs for y=2x, giving n~= 5. Thus, for
E„-E'„-5eV, one has 4-0. 45 eV, in good agree-
ment with estimates based on spin-flip scattering
cross sections of 3d impurities in Cu" as well as
with band-structure calculations for pure 3d met-
als' as interpreted by Heine. '

However, the latter remarks presume n~= 5,
which may be incorrect. Five d electrons requires
two band electrons per Mn site for charge neutral-
ity. One may argue that this costs too much energy
and therefore n„& 5, with correspondingly fewer
band electrons. Equation (42) offers an interesting
insight on this point. Considering x to be the inde-
pendent variable, the only applicable solution of this
equation is

y=(x +1)/[x —(1 —j ) /j] (44)

Equation (44) givesthe conditionx & (1-j )' /j = 2. 66,

eV, as borne outby recent work onAgMn. ~ Thus,
it is clear that the mixing terms predominate
strongly in these equations.

Secondly, we note that the Anderson-model theory
gives

~g =~7„=(S,)-m~»o/S (40)

as embodied in Eqs. (15), (21), and (24). Equation
(40) holds asymptotically as 6-0. However, it is
clear from Eqs. (36)—(39) that there are discrepan-
cies between these quantities which cannot be ac-
counted for with reasonable values of the J,'s. In
particular one appears to have the ordering

(S,),„Z", /S Z", Z"„, (41)

with a range of roughly + 20%. This relationship
is further illustrated in Table It, where J 's are
listed for three hypothetical sets of Jq parameters.
Although it is diffi. cult to establish error limits on
these determinations, there is the possibility here
of a real discrepancy, for example, between J„
and (S,),ZS~ /S. This point can only be resolved
by more accurate data.

Ignoring these discrepancies for the moment, it
is interesting to consider the implications of these
results for the Anderson-model parameters of
CuMn. We take, for example, the equation for JsDp
[Eq. (15)] and rewrite it as

which with Eq. (43) leads to the condition n~ & 5. 6.
Since 4- 0 at the singularity, one has more realis-
tically 4& 0. 3 eV, ' placing the limit at n~ & 5. 46.
The measured J»o therefore places a rather strin-
gent upper limit on the number of impurity-site d
electrons which are consistent with the Hartree-
Fock theory.

C. AgMn

We proceed now to comment on measurements
of impurity susceptibility47 and host NMR line-
widths inAgMn, using the formulas of Secs. II
and IV. It is of special interest to compare our
interpretation of these data with the s-d exchange
parameters recently obtained from ESR data by
Davidov et al. The interpretation given in Ref. 2

is based on the assumption of negligible exchange
enhancement in Ag metal. We shall proceed on the
same basis.

Impurity- susceptibility data give P,fg 5 8 cor-
responding to only a slight reduction of the free-
spin moment (P,«= 5. 92). Reference 2 gives the
parameters Jo=0. 13 eV, J~=0.09 eV, and Ja
= —0, 13 eV [notation of Eq. (23)]. Expressing the
mixing parameter in Eq. (20) as J,' —Jawe find

P,»»= 5. 92 1+ pP(Er) 1
' + 5Jp . (45)

I

With p(Er) = 0. 131 eV, Eq. (45) gives p»» -5.82.
This is in good agreement with experiment.

The host NMR linewidth data present a more dif-
ficult situation to interpret. These data are plotted
in Fig. 2 against measured (S,)=N'g» (S,»), just
as in Mizuno's original paper. ' The linewidth is
seen to exhibit a curious feature, namely, a large
decrease of slope with increasing (S,), which
causes us to suggest that there is more than one
line-broadening agent in the AgMn alloy used. This
conjecture is based on the following argument. In
Ref. 9 it was shown that the host NMR line width
for a single species of impurity is proportional to
jV Z» I(S,» ) I, i. e. , to the average magnitude of
(S,) for impurity spins. At high temperatures
(small (S,)) we have N g» l(S,» ) I

=- (S,), since the
spins are polarized primarily by the external field.
As T is lowered, however, one obviously has
g» l(S,» ) I

~ g» (S,»). Thus as 7-0 the linewidth
must increase with (S,) at least as fast as deter-
mined by the high-temperature slope, contrary to
what is observed in Fig. 2.

We therefore interpret the behavior in Fig. 2 as
stemming from two types of magnetic impurities,
as follows. At high temperatures the linewidth is
dominated by a broadening agent which is very
strong, but which "freezes out" just above helium
temperatures. Below this point in temperature
(S,) is dominated by a much weaker broadening
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FIG. 2. ~Ag NMR linemidth data for 25- and 42-ppm
Mn in Ag plotted as a function of impurity-spin expec-
tion values (Sg obtained from measured susceptibilites.
Stated exchange parameters are derived from Kq. (35)
as discussed in text. Data taken from Mizuno (Ref. 28).

VI. CONCLUSIONS AND DISCUSSION

The theoretical machinery for extracting s-d ex-
change parameters from data on host NMR line-
widths, impurity-state susceptibilities, and single-
impurity EPR linewidths has been assembled and

summarized in Secs. II, III, IV and VA. The
formulation given is restricted to S-state ions rea-
sonably near to a free-spin configuration, since (a)

agent, very likely isolated Mn impurities. Whether
either of these slopes represents a useful value of
Wfrom which to evaluate Js» with Eq. (35) is a
debatable question.

For completeness, let us examine the range of
possibilities here. Again taking n =0, we also
adopt Ks = 0. 37% as determined from the nuclea. r
spin-lattice relaxation rate using the Korringa re-
lation. ' These parameters yield I J»&l- 1.5 eV
from Eq. (35) using the high-temperature data of
Fig. 2 and about an order of magnitude smaller
than that at low temperatures. By comparison,
the exchange parameters of Ref. 2 give via Eq. (33)
a range of values 0. 2& JSDo&0. 7 eV, depending on
the choice of phase angles. Here we assume five
d electrons, with two more bound in the s and p
waves. The lower end of this range is in fair
agreement with the low-temperature data of Fig. 2.
In any case, agreement at high temperatures leaves
the puzzling question of the low-temperature slope.
Further study with alloys having a variety of metal-
lurgical treatments will probably be needed to re-
solve this question.

the Anderson-model formulas are limited to such
a case and (b), for non-S ionic states other inter-
action terms between the localized and band elec-
trons become important. Within the above re-
striction the generalization of this formulation to
rare-earth ions is obvious and will not be discussed
in detail.

The application of these analyses to the case of
dilute CuMn yields results of only moderate con-
sistency for the mixing-exchange parameter, . pre-
senting thereby an apparent inconsistency with the
Hartree-Fock solution of the Anderson model. The
most serious disparity seems to concern the rather
low value found for J»o [Eq. (37)] as compared
with J'x and Jr (see Table II). Unfortunately, the
large scatter in host NMR linewidth data (Table I)
for CuMn generates some doubt as to whether this
disparity is real. This scatter suggests the pos-
sibility that internal oxidation effects noted by How-
ling~ as well as other metallurgical problems may
affect CuMn alloy samples in a relatively uncon-
trolled way without special precautions. In con-
trast, CuMn impurity susceptibilities reported in
the literature show an excellent consistency.
These observations drive home the fundamental
point that, while susceptibility is a bulk property
and would be expected to correlate with chemical
analyses of impurity concentration, the host NMR
linewidth is a truly microscopic quantity sensitive
only to those impurities which are randomly dis-
tributed throughout the host metal. The number of
such impurities is clearly more difficult to mea-
sure and control.

It must be pointed out that the negative magneto-
resistance studies of CuMn by Monod lead also to
a somewhat smaller value of mixing exchange (]J»)
-0. 36 ep) when interpreted with second-order
perturbation theory assuming potential scattering
to be large compared with the exchange effect. As
emphasized in Ref. 14, however, this interpreta-
tion is not fully quantitative. There is uncertainty
about the importance of the higher-order terms
(which lead to smaller

~ J „„I values) as well as the
approximation of large potential scattering, which,
if invalid, makes I JMRI appear smaller than its true
value. We therefore do not attempt to draw a
quantitative conclusion about this measure of s-d
exchange at the present time.

The single-electron localized state width 4 ob-
tained for CuMn (4 „-0.45 eV) was seen to corre-
spond well with the spin-orbit scattering value given
by Yafet" as well as the s-d band gaps in Sd tran-
sition-metal band structures using a picture de-
veloped by Heine. In the latter work it was shown
that the energy scale of a given 3d band is deter-
mined essentially by a single parameter closely
related to V~ . The semiquantitative correspon-
dence found for CuMn may be fortuitous, however,
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since one would also expect such a correspondence
to hold for the AgMn case where V~ appears to be
smaller by a factor - 2. Thus V~& for the Mn ion
appears to show a strong dependence on the metal-
lic-host environment. One might speculate that
more d character occurs in the local conduction-
band states of CuMn because of the proximity of
the filled 3d band to the Fermi surface in Cu as
compared with Ag metal.

For the AgMn case the host NMR linewidth data
again highlight the occurrence of metallurgical
problems, where the line-broadening theory of Ref.
10 enables one to conclude that something other
than isolated Mn impurities is playing an important
role. Without the benefit of further experimental
work (which is clearly needed) one can only guess
that pairs or clusters of Mn ions are occurring in
numbers far beyond their statistical probabilities.
Again, in contrast to the linewidth data, the bulk
susceptibility appears well behaved.

Finally, we note that a correction is in order re-
garding the interpretation of the discontinuity in
CuMn impurity susceptibility between the liquid and
sol.id phases as developed in Ref. 10. There a
model of isotropic (l = 0) exchange was used, and
the observed change in Tj from liquid to solid was
interpreted with Eq. (38) and Eq. (27) (for l = 0,
u= 0) to indicate a corresponding change in "J."
The latter quantity was then inserted into Eq. (19),
yielding a jump in X, , in reasonable agreement
with experiment. The foregoing picture changes
when one attributes this effect to the 1= 2 term as
we do here. Now, the derived increase (-50%%up) in

J~ on going from liquid to solid is about twice as
large as needed to explain the change in X,~ with
Eq. (19). Working the argument backward, the
discontinuity in Jr, is evidently smaller than 50%,
so that J~, may actually be smaller than the value
given in Table II.

APPENDIX A

G p(r, r') =P G, (r, r ')4', ( r )k,„(r')
l pffft

(Al)

where G, (r, r') satisfies the radial equation

The object here is to derive Eq. (10) using the
first-order Green's-function expansion of Eq. (8),
where G0 is the Green's function for an impurity
with a spherically symmetric potential V(r) em-
bedded in a free-electron gas [Eq. (9)]. Our dis-
cussion closely parallels that of Anderson, to
which the reader is referred for further details on
the derivation of Gp(r, r').

Because of the sphe. "ical symmetry of V, Gp(r, r')
may be expanded as

8 p, I l(l+1)
2~ r lv', G, (r,v')+, +v(r)-E)G, (rr'),

2m f'

= 5(r —r')/r (A2)

G, (r, r')= —(2mk/8 ) [at, (r&)+ ig, (r&)]g, (r&),
(A3)

where g, (r) is the solution of the homogeneous
equation which is finite at the origin, and at, (r) is
the other linearly independent solution. V(r) is
considered to be localized, i. e. , to vanish outside
a certain radius ~ . For x &~,„we have

g,,(r) = cos5,j,(kr) —sin5, n, (kr)

at, (r) = sin5, j,(kr)+ cos5, n, (kr)
(A4)

where j, and n& are the Bessel functions of half-in-
tegral order and the 6&'s are the phase shifts caused
by V(r).

Exchange is properly a two-body potential; how-

ever, we consider the impurity here to remain in
the manifold of total spin 8 and therefore take the
exchange operator in the r representation from Eqs.
(4) and (5) to be

~ q„„(r')q„,( ) S, —,'S
g

(A5)

Combining Eqs. (7), (8), (A3), and (A5) and keeping
only the leading term in the expansion of j, (kr) and

n, (kr) for kr»1, we obtain

&n(r)= „p&,p g (-1)'(2l+1)mAp(S, )

Ag
dkk J)(k, k) sin(2kr+ 25,),

0

where 8, is replaced by its thermal average to ob-
tain the (p= 0 component of hn(r), and where

(A6)

64mJ,(k, k)= drr J, (r)f~(r),
0 0

c(2I l; 000)«'r"&i(r')fa(r')Z r~(I, , 1) 2I,', 1 ~

(A7)

In (A7) f~(r) is the radial part of (Ip~„(r), and c (2I,l;
000) is a Clebsch-Gordan coefficient. The identi-
fication of J;(k, k) is made by expanding Eq. (5) in
the form of Eq. (6), whereupon Eq. (A7) is obtained
with J', -j, . Note, however, that Eq. (A7) gives
the exchange integral in terms of the actual eigen-
function of K= 7.'+ V.

In the following we take E = I k /2m. The correctly
normalized solution to (A2) is then~
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By partial integration Eq. (A6) may be developed
in a series of increasing inverse powers of t', the
leading (r ~) term of which is the desired result.
A straightforward generalization to the case of
different phase shifts for up- and down-spin elec-
trons leads to Eq. (10) in the text. We may re-
cover Yosida's result by letting 6, 0 and identi-
fying J(0)=$,(-1)'(2l+I)J, (k» k~).

APPENDIX B

We derive the enhancement of the long-range (r )
term of the SDO using Eq. (16) for y((I) and as-
suming, for simplicity, that the SDO range function
is given by

where y = k~x/v.
The Fourier transform in (84) can be calculated

by a simple extension of Lighthill's Theorem 19."
This theorem, as applied to the present problem,
is stated as.follows. If the function to be trans-
formed is expanded in a series about the singular
points at x=+1 as

E ~(x) =g g":-(x+ I)"(ln lx* 1 l)"
e=i)n =0

(85)

then the Fourier transform in (84) is simply the
Fourier transform E of E q4(x)+E &(x). Transforms
of the functions in (85) can be obtained from the
result

f(2)-J 42x"'X(4) . (81)
n

5 1

Equation (81) corresponds to a 5-function scattering
potential and yields the RKKY range functlon11 3v

when y((I) is taken to be the unenhanced free-electron
susceptibility

= 2 cos [~ m(o'+ I)]o' t (2 v ly l
)

' " (86)

e. g. , with

v(ln lx l)"= lim„„(&lx l.)
d"

1 2 1+x
X(o4)= XX(Z -*)1 (x1

—x ) 1x
1 xx) (82) and the relation

with x =q/2k+. It is assumed that the enhancement
factor of the x term obtained from Eq. (16) and

(81) will also hold for the r 3 term of the more gen-
eral range function derived in Sec. II and Appendix
A.

To evaluate Eq. (Bl) we expand the denominator
of y((I) [Eq. (16)] in a power series about the (sin-
gular) point (I = 2k+ as follows:

'& (lnlxl)"=
d „[w(lnlxl)"] (88)

The algebraic operations in (87) and (88) can be
justified by the methods of Lighthill. One sees
from (86) that the full expression for f(r) consists
of a series of ascending inverse powers of y (i. e. ,
of x). The leading terms of (85),

(1 —1(*)Xo(x))'= (1 —2) 'Q (x/2)"

2 '(x)+1 (x)(1—x') lx
1 x)
1+x I

(1 —P)"
(88)

[E„(x)+Eq(x)] =„,=A~~(x+ 1)ln lx+ I
l

+alii(x- I)» Ix- 1 l,

give rise to the r term of f(r) which we seek:

(89)

where I(x) is assumed to be well behaved in the
vicinity of Ix ( = 1, and where o.'=I(0) y0(0), P
= —,o(I (1), I (x) = I(x)/I(0), and I '(x) =I (x) —I (1).
Performing the angular integration in (81) and com-
bining with (83), one finds

F22 00

f( )
&P22k„P(E~) dx, P,(„„

zr(1- p)

00 n

I+ (I —x') ln I 2x1-x

X I'x+I x. l-x ln
1

ga p(Ez) cos(2k+
(I

That no other term of (85) yields an & term in f(x)
can be seen as follows. First, the v=1, m &1
terms in (85) cannot contribute by (88) and sec-
ond, examination of (84) reveals I & n for n &1
as well. It follows from this and from (86) and

(88) that there are no further y terms in f "„dx
of (84), and thus the full result for the leading
term is given by (810).

The principal result (810) shows that band ex-
change enhances long-range SDO by the factor (1
—P), where we note that (1 —P) is the static sus-
ceptibility enhancement [Eq. (18)] for q = 2k+.
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