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A theory of high-temperature nuclear acoustic resonance (NAR) in a dense paramagnetic insulator is
presented. First, by the use of a previously described diagrammatic technique, an equation of motion is
derived and solved for the nuclear quadrupolar spin-correlation function in a dense paramagnet. From
this function, the T = « NAR line shape is calculated' and found to be Lorentzian. The NAR
linewidths resulting from this calculation are found to be within observable range in many cases.
Expressions for the acoustic attenuation due to both the dynamic nuclear quadrupolar interaction and
the phonon modulation of the hyperfine interaction are then derived in the high-temperature limit by a
calculation of the phonon self-energy due to these processes. By the use of the calculated nuclear
quadrupolar correlation function and previously determined electron and nuclear functions for the
correlation functions which occur in the expressions for the attenuation, it is shown that the
attenuation due to the second process has no resonant part, while the resonant part of the first process
is of such a magnitude that the observation of room-temperature NAR in Rb% and Rb®’ in RbMnF,

and isomorphic compounds might be possible.

I. INTRODUCTION

The observation of nuclear acoustic resonance
(NAR) in dense magnetic insulators has thus far
been limited to temperatures well below the mag-
netic transition temperature.~!® Measurement of
NAR in the nuclei of both partially magnetic and
magnetic ions in the paramagnetic phase of such
substances ought to be possible if the nuclei have
sufficiently narrow acoustic resonance line shapes.
If one assumes that the major nuclear-spin-pho-
non interaction is the dynamic nuclear quadrupolar
interaction, 112 the possibility of such an observa-
tion is limited to nuclei with spin I greater than 3
and to nuclei whose quadrupole moments are large
enough to enable the resonant acoustic attenuation
to be within the range of detection by present ultra-
sonic techniques. Since there exist nuclei in para-
magnetic insulators which meet these criteria, it
would be useful to have some knowledge of the line-
widths and acoustic attenuation one would expect
for such systems.

The purpose of the present paper is to theoreti-
cally examine the question of high-temperature
NAR in dense magnetic insulators. In particular,
the acoustic attenuation due to the dynamic quadru-
polar nuclear-spin—phonon coupling mechanism?!!s?
and due to phonon modulation of the hyperfine inter-
action!® will be calculated for such a system. The
latter mechanism will be included for complete-
ness but will be shown to contribute no resonant
attenuation at these temperatures. This paper
contains two separate calculations; that of the
NAR line shape and that of the magnitude of the
acoustic attenuation, These calculations have been
separated for clarity and for logical presentation.

The acoustic attenuation line shapes due to the
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dynamic quadrupolar spin-phonon coupling mecha-
nism!***% are proportional to nuclear quadrupole
spin correlation functions and observation of NAR
is a direct measurement of these functions. In or-
der to obtain quantitative predictions for the NAR
line shapes and linewidths in various nuclei due to
this mechanism, these functions will be calculated
from first principles to lowest order in A/J, where
A is a hyperfine energy and J is an exchange con-
stant. Integral equations for these functions will
be generated by a generalization of the 7=« dia-
grammatic technique used in a previous paper'
(henceforth referred to as I) to obtain NMR line
shapes and linewidths in magnetic insulators. So-
lutions to order A/J will then be obtained by the
use of the microscopic self-consistent results of
Ref. 15 for the electron-spin correlation function
which occurs in the nuclear-function equations.
From the solutions for the quadrupolar functions,
NAR linewidths will be calculated for various nu-
clei in various magnetic insulators and some of
them will be shown to be within observable range.
The method used to obtain the acoustic attenua-
tion is based upon a calculation of the phonon self-
energy and is discussed in several places. !6-%
From the theoretical expression for the acoustic
attenuation, the maximum resonant attenuation for
NAR will be calculated at room temperature for
the Mn®, Rb®, and Rb® nuclei in RoMnF,. The
infinite-temperature NAR line shapes and line-
widths which were calculated from the results for
the nuclear quadrupole-quadrupole spin correlation
function will be used in order to obtain numerical
values for the resonant attenuation. It is hoped
that these predictions of NAR line shapes, line-
widths, and acoustic-attenuation magnitude might
stimulate some experimental interest in searching
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11 INTERACTION OF NUCLEAR SPINS WITH PHONONS IN A...

for NAR in magnetic insulators at high tempera-
tures.

For the purposes of this paper, high tempera-
ture will be taken to mean temperatures much
greater usan the magnetic transition temperature
of the electronic spins in the system, or equivalent-
ly, temperatures where the infinite-temperature
approximation for the dynamical spin-spin corre-
lation functions is valid. In the context of this pa-
per, the term “resonant” attenuation will be taken
to mean that contribution to the acoustic attenua-
tion which depends upon an externally applied mag-
netic field.

Section II is devoted to a discussion of the var-
ious interactions which occur in the physical model
to be used and to a discussion of the notation that
will be used throughout the paper. Section III con-
tains a brief derivation and solution of the integral
equations for the nuclear quadrupolar functions by
the method of I, Predictions for the NAR line-
widths of various nuclei in various paramagnets
are also included in Sec. III, In Sec. IV the for-
malism for calculating the attenuation is briefly
outlined and the approximations used in the calcu-
lation are discussed. Section V contains the re-
sults of the calculation and a discussion of the im-
plications that these results have upon the possibil-
ity of the observation of NAR in a dense paramag-
net at room temperature. The implications that
they have for NAR in RbMnF; are particularly em-
phasized. Some defects of the theory and sugges-
tions for overcoming them are also discussed in
Sec. V.

The new results of this paper are the diagram-
matic derivation of equations of motion for the nu-
clear quadrupolar spin correlation functions and
the first-principles solution of these equations, the
prediction of NAR linewidths for nuclei in several
paramagnets, the derivation for paramagnetic in-
sulators of the high-temperature acoustic attenua-
tion due to both the dynamic quadrupolar interac-
tion!!*'2 and to the phonon modulation of the hyper-
fine interaction, '® the use of microscopically de-
termined correlation functions for the line shapes,
the proof that the phonon modulation of the hyper-
fine interaction does not contribute to the resonant
attenuation at T'=w, and estimates of the maximum
attenuation due to the dynamic quadrupolar interac-.
tion for the Mn®, Rb%, and Rb® nuclei in RbMnF;
which indicate that NAR might be observable in the
latter two nuclei.

II. PHYSICAL MODEL

It is assumed that the Hamiltonian for the dense
magnetic insulator can be written as a sum of elec-
tron-spin, phonon, nuclear-spin, electron-spin-
phonon, and nuclear-spin-phonon parts:

H=Hg+Hp+Hi+Hgp+Hp . (1)
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The electron-spin part Hg is assumed to be de-
scribable by an isotropic Heisenberg paramagnet
and therefore has the form shown in Eq. (1) of I
and in Eq. (18) of Ref. 15. Since the dynamics of
the nuclear spins are of primary interest in the
present paper, the explicit form of this interaction
will not be shown here. Also, since the dynamics
of the electron spins affect the nuclear spins only
through the presence of the electron-spin-spin
correlation functions in the equations of motion for
the nuclear-spin—spin correlation function, ** and
since the effects of an external magnetic field and
the electron-spin dipole-dipole interactions are
only small perturbations on the Heisenberg inter-
actions, 41522 these two effects will be neglected
in the following discussion.

Following Ref. 20, it is assumed that since the
effect of interest is the change in the phonon spec-
trum due to spin-phonon interactions, it is suffi-
cient to use the harmonic approximation for the
phonons. In terms of phonon normal coordinates,
this has the form!®:20

Hp= %Z [Q(ﬁs A, t)Q( - a; A, ?)
in

+ wz@, A)Q(a’ A} t)Q( —a, A, t)] ’ (23,)

where § is a wave vector in the first Brillouin
zone, ) specifies the phonon branch, and w(d, ) is
the harmonic frequency of the (4, ) phonon mode.
The normal coordinate Q(g, A, #) and its canonical
momentum Q(ﬁ, A, t) satisfy the usual commutation
relations:

[Q@, 1, 1), Q@, N, D] =-imd(\,M)6@F+F'), (2b)

[Q@, 2, 1), Q@', X, H] =[Q(, A, 1), &', V', H]=0.
(2¢)
For a crystal with cubic symmetry, the Hamiltu-
nian describing the nuclear-spin system is as-
sumed to have the form

Hy=- tivH, 2o L(1, 1)
1

-2 {lad-T-ad-105d, 08, 0
1,1,

+A(0-Ti{, 0. 8T, 0}, (3)

where S(1, #) and T(J, #) are the electron- and nu-
clear-spin operators at site Tin the Heisenberg
representation, Hj is the external magnetic field
which has been taken to be in the z direction, the
subscript z on the spin operators means the z
Cartesian component, 7 is the nuclear gyromag-
netic ratio, and 4,(1- 1) and 4,(1-1’) are the in-
teraction energies, parallel and perpendicular to
the magnetic field direction, between a nuclear
spin at site 1 and an electron spin at site T. Fol-
lowing I, it is assumed that the Hamiltonian of Eq.
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(3) has a negligible effect on the dynamics of the
electron spins so that the electron-spin-spin cor-
relation function which was calculated in Ref. 15
can be used for the electron function which will oc-
cur in the equations for the nuclear quadrupolar
functions discussed below. In-addition, the effect
of the nuclear dipole~dipole interaction is assumed
to be small enough to be neglected.

The spin-phonon interactions to be considered in
this paper are taken to be linear in the strains or
displacements and quadratic in the spin operators.
The electron-spin~phonon interactions Hgp are
discussed in several places!’ % and are also as-
sumed to have negligible effect on the dynamics of
the nuclear spins. The nuclear-spin-phonon in-
teractions will be taken to consist of two parts:

}IIP:H%’"'H?P ’ 4)

where HYp is the contribution due to the dynamic
nuclear quadrupolar interaction'™*!? and Hf is the
contribution due to phonon modulation of the hyper-
fine interaction,® The dynamic nuclear quadru-
polar interaction may be written!*»*2

,P_Z ad:

where Q(l) is the nuclear electric-quadrupole-mo-
ment tensor at site T and VE(T) is the crystalline
electric-field-gradient tensor at the same site. In
the static case, all of the field-gradient compo-
nents in Eq. (5a) vanish for a crystal with cubic
symmetry. However, in the presence of an exter-
nal acoustic wave, the cubic symmetry is destroyed
and one may expand the field-gradient tensor in
powers of the induced-strain tensor. If one keeps
only terms linear in the strains, such an expansion
takes the form

(VE)i; =Siini€u » (5b)

vE(), (52)

where €,; is the induced-strain tensor, S;;,; is the
gradient elastic tensor which has been discussed
elsewhere!!1?:23-%5 and repeated Cartesian indices
are summed over. For a crystal with cubic sym-
metry, there are two nonvanishing components of
the gradient elastic tensor which are denoted in the
Voigt notation as S;;~S;, and S,,.2%%

If one expands the strain tensor in phonon nor-
mal coordinates in the usual manner, *6:20-% ex-
presses the quadrupole moment tensor in terms of
its equivalent nuclear-spin operators, ' and sub-
stitutes the result into Egs. (5a) and (5b), it is
shown in detail in Appendix A that the nuclear-
spin—phonon Hamiltonian H{p can be written

e@r | 3ol -
Hfp= WZ&AIQI e Azu(L, 1)

W@, M@, 2, 1), (6)
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where e is the electronic charge, @ is the nuclear
quadrupole moment, m is summed from -2 to 2,
the Ayn(1, #) are the irreducible-tensor nuclear-
spin operators defined in Eq. (3) of I, M is the
mass of the displaced ion, N is the number of lat-
tice sites,

nr=[(I+1)(21+ 3)/301(21-1)]*% |

and the W_,(d, M) are functions that depend upon the
directions of polarization and propagation of the
phonons and upon the components of the gradient
elastic tensor. These functions are shown explic~
itly in Appendix A.

In order to obtain the form of the nuclear-spin-
phonon interaction Hfp that has its origin in the
phonon modulation of the hyperfine interaction, one
begins with the hyperfine part of the interaction
given by Eq. (3) and expands the hyperfine eneg-
gies Au(l 1) and Al(l T)ina power series in the
displacements from equilibrium. !®* If one keeps
only terms which are linear in the displacements
and expands those displacements in phonon normal
coordinates, '® it is shown in Appendix B that Hfp
may be written

HIP _(_]vl\}_)_m llz" X (ezqol’ - e:q-l)

XQ(q; >t’ t)F (q, ’ i’ 1,’ t) ’ (7)

where F(J, 2, 1 T, #) is a linear function of the nu-
clear spin at 31te 1 the electronic spin at site 1
the spatial derlvatlves of the hyperfine energies of
Eq. (3), and the phonon polarization direction of
the (§, ») phonon mode. The explicit form of F(q,
AT, T, #) is shown in Appendix B.

III. NUCLEAR QUADRUPOLAR CORRELATION FUNCTION

A. Derivation of the equations of motion

The notation that will be used here for the spin
correlation functions is exactly the same as that
used in Ref. 15 and in I and is discussed at length
in those references. In particular, at T=«, these
functions are defined as

Ggﬂ(-i’ -il’ t- t,) =(Ait(.]: t)Agt(P, t’»e(t - t’) 3 (8)

where the A7 are the irreducible-tensor spin oper-
ators defined in Eq. (3) of I and J can be either I
for the nuclear spin or S for the electron spin. The
translational invariance of the system in time and
the invariance of the crystal lattice under transla-
tions through a lattice vector enable one to Fourier
transform Eq. (8) by the prescription given in Eq.
(5) of I to obtain GZ4(q, w). This Fourier-trans-
formed function with J=7and « =8=(2, m) will be
calculated in this section and will be shown in Sec.
1V to be proportional to the acoustic attenuation due
to the dynamic quadrupolar interaction, !!+!2

The method which will be used here to derive the
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equations of motion for the quadrupolar correlation
functions is a generalization of that used in I for
the dipolar functions and is thoroughly discussed
there. The detailed arguments of the derivation
will therefore not be discussed here; the reader

is instead referred to Sec. II of I, where the dis-
cussion is sufficiently general as to be applicable,
with appropriate modifications, to the quadrupolar
as well as the dipolar functions.

The first step is to specialize the correlation
function G, to the case of interest, J=7and a =8
=(2, m), i.e., the nuclear quadrupolar function.

In what follows, this function will, where possible,
be denoted simply as G&, while the electron dipolar
spin correlation function will be denoted as G3.
Following I, the nuclear quadrupolar function is
now expressed in terms of a mass operator or
self-energy function >%,, This representation takes
the form

. a - i L i - T -
i 2 6L@ - [ dT L@ - DALE D=0, ()

In order to derive an equation for the self-ener-
gy functional T4, it is convenient to consider the
nuclear-spin system described by Eq. (3) with H,
=0. Itis shown in Appendix A of I that the pres-
ence of a magnetic field does not affect the NAR
line shapes and linewidths., This result will follow
directly if one goes through the arguments of Ap-
pendix A of I with the replacement 1m—~2m. Itis
shown in Sec. V of this paper, however, that the
presence of a magnetic field affects the position in
frequency at which the NAR line will occur as well
as the angular dependence of the acoustic attenua-
tion, So for the purpose of obtaining the line

‘shapes themselves, magnetic field effects will be

neglected. For the evaluation of the magnitude of
the attenuation discussed in the following sections,
however, these effects will be included.

For the nuclear-spin system described by the
H,=0 version of Eq. (3), the criteria for the exis-
tence of a nuclear-spin self-energy >%, which can
be written as a functional of both G, and G£ are
discussed in detail in Sec. II of I and carry over
directly to the quadrupolar-function case. Integral
equations for the quadrupolar correlation functions
will therefore be obtained by forming the Reiter-
type®” moment diagrams and by resumming or re-
normalizing these diagrams by the method of Ref.
15. The moment diagrams must, of course, be
generalized here to include the nuclear quadrupolar
operators A’a,m given in Eq. (3) of I. The graphical
representation of these operators is shown in
Fig. 1.

J

24@,0= 22 ¢5@, 01l @PCiE-T, +1e.@FEE-T, 0},

d
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FIG. 1. Diagrammatic representation of the nuclear
quadrupolar tensor spin operators at a given lattice site
and a given time.

The basic vertices at 7=« for the quadrupolar
functions are obtained from matrix elements of the
Liouville operator exactly as in I. Following I, the
discussion will be limited to only these basic ver-
tices since they give all moments exactly to order
A/d. The only basic vertices which contribute for
the Hamiltonian of Eq. (3) are shown in Fig. 2
along with the Fourier transforms of their analytic
expressions. The reduced hyperfine energies
@,(q) and @,(qd) which occur in that figure are de-
fined in Eq. (7) of I. The smooth lines in these
vertices are the lines for the electron spins, de-
fined in Fig. 1 of I, and will be assumed to be
known functions.

An expression for the spin self-energy =%, can
now be obtained by putting together the vertices of
Fig. 2 and by following the rules and procedures
described in Ref. 15 and in I. The rest of this
section shall be concerned only with the lowest-or-
der or “bubble” approximation to the self-energy.
The “bubble” diagrams are the diagrams which can
be formed from just two of the vertices of Fig. 2.
In the absence of an external magnetic field there
are three independent quadrupolar correlation
functions with labels a=(2, £2), a=(2, +1), and
a=(2;0), and for isotropic exchange all electron
dipolar correlation functions o =(1, m) are equal.
Thus the abbreviations

G3=Gh, s, Gi=Gh,u, Gi=Gh,q, and G5=GS

shall be made in what follows with a similar nota-
tion for the spin self-energy functions. The “bub-
ble” approximation to the nuclear quadrupolar spin
self-energies is therefore

(10a)
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2@ =52 ¢S@, H2e.@PCE-T, 1 +le@PIGIE-T, 0+ 36Ka-T, A1}, (101)
243, 0= 2 2 (0. @NFCS@, N6LE-T, 1) . (100)

W
These equations reproduce the frequency moments of G. (4, #) exactly to lowest order in A/J. Equations (9)
and (10) form a set of nonlinear integral equations for the nuclear quadrupolar correlation functions. These
sets of equations are closed if it is assumed that the electron dipole-dipole correlation function is known.

In Sec. IIB, the solutions to Egs. (10) will be obtained and their implications for NAR experiments in dense
paramagnets will be discussed.

B. Results for the quadrupolar functions=NAR line shapes

In order to solve the integral equations for the nuclear quadrupole-quadrupole correlation functions which
were derived in subsection A and thus obtain NAR line shapes and linewidths, one must proceed in exactly
the same manner as was outlined in Sec. I of I for the dipolar functions. In particular, these nuclear
spin correlation functions and their corresponding self-energy functions are first expressed in terms of
spectral representations, as given in Eqs. (9)-(11) of I, where « in those equations can now mean 2, 1 or
0. When Eqgs. (10) are Fourier transformed and the imaginary parts are taken, the following equations are

obtained for the quadrupolar functions I'}({, w):

Fé(a, w) = % Z do’

M

@, o) {de@PA-T, 0 - @)+ [, @) PelE- T, 0 - o)),

(11a)

ri@ o=2 2 | 2 e5@, o). @F gi@-7, « - o) [0 @)F

Na: 1r

Equation (11) of I with «=2,1,0, and Egs. (11)
above are the nonlinear integral equations that will
be discussed here.

Again following the treatment of the dipolar func-
tions in I, only the nuclear autocorrelation function
will be kept and thus the wave-vector dependence of

the quadrupole-quadrupole function will be neglected.

This wave-vector independence can again be con-
firmed for low frequencies by computing moments.
Furthermore, only the case of isotropic hyperfine
coupling will be considered for this function. The
reason for this is that the anisotropic case does
not appear to be relevant for discussing NAR line
shapes in any of the common nuclei in dense para-
magnetic insulators. In particular, the study of
the quadrupolar functions is limited to nuclei with
spin I >3, and the observation of NAR requires nu-
clei with large quadrupole moments Q.!*!? As far
as can be determined, in the common paramagnetic
insulators with cubic structure, the only nuclei
with I>% and with large @ have isotropic rather
than anisotropic hyperfine coupling.

The specialization to isotropic hyperfine coupling
means that the hyperfine energy is described by
Eq. (14) of I and that the three quadrupolar corre-
lation functions are equal. Equations (11) there-
fore reduce to one independent equation. In what
follows the nuclear quadrupolar spectral function

X[g{(.q-aly w-w')+3g{)(.q_q,s w—w')]} ’

N e (° 4 s -
ri@, o) = 2 Sla @ | 2@, o) gl@-T, 0= o) .

c) d)

3 \1'\

/3 a (Ns(1+2-3)/N

a, (N8(1+2-3)//N

f) o
:.-_-»‘:c,;‘-::l,::{fflz\

/Ia (N8(1+2-3)/N

h)

/2 a (N8 (1+2-3)/N

W,

i ) e
287

/B, (Ds(1+2-3)MN

-2a,(N8(1+2-3) N /2 a (Ns(1+2-3)/N

FIG. 2. Basic vertices which contribute to the nuclear
quadrupolar self-energy for the electron-spin—nuclear-
spin interaction of Eq. (3). The operators are at wave
vectors E and the vertex is at time {. The reduced hyper-
fine energies defined in Eq. (7) of I act at the vertices.
The abbreviations 3=q, 1 =§1, 2'=q, have been used.
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will be denoted as g, with a similar notation being
assumed for the linewidth function. In terms of
the dimensionless variables defined in Sec. III of
I, the wave-vector-independent equation for the
quadrupolar correlation functions is therefore

- 2 (o ’
o= | a1 zor-), 12)

where B(y) is defined and has been calculated in
Sec. II of I with typical B(y) shown in Fig. 4 of that
reference. Of course, Z, can be related to I'y by
Egs. (16b) and (16c) of I, where now a =@ in those
equations. The true solutions for I'y and g, are
given by Eqs. (18a) and (18b) of I and from those
equations and Eq. (16a) of that reference, it can
easily be seen that the frequency-dependent quadru-
polar linewidths take an exchange-narrowed hyper-
fine-broadened form, which is a result similar to
that found in I for the linewidths of the dipolar func-
tions.

The same reasoning that led to the solution for
the dipolar functions in Sec. II of I applies here as
well. In particular, perturbation theory in 4/J is
valid here so as a first approximation for gy (y) one
can use Eq. (24) of I with @ =Q. Further, over the
range of y for which gqo(y) is of appreciable magni-
tude, T'y(y) is independent of y. Equation (12)
therefore gives

To(y) = Tg(0)~ (6@2/ V%) 8(0) . (13)

When substituted into Eqs. (16b) and (16¢) of I, Eq.
(13) clearly shows that to lowest order in A/J the
NAR line-shape function g, (y) (nuclear spectral
function) is Lorentzian. As in the case of NMR
line shapes in I, this Lorentzian behavior has been
shown to follow directly from the equations of mo-
tion and the fact that 4/J<«< 1,

Predictions for the high-temperature NAR line-
widths of various nuclei in various paramagnetic
insulators can be obtained from Eq. (13) by the use
of the experimental hyperfine and exchange ener-
gies and the results obtained in I for the function
B(y). These linewidths have been computed for
several nuclei in several substances and the re-

~ sults are shown in Table I. The quadrupole mo-
ments @ of the various nuclei are also listed in

2
(7 + 4@ 0 )o@, 2, - 1) - o= 1)
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that table.

From the numbers in Table I, one can conclude
that there are several nuclei in paramagnetic in-
sulators which have linewidths small enough and
quadrupole moments large enough to possibly make
room-temperature NAR observable. Among these
are Rb% and Rb®" in RbMnF; and in RbCoF;. Of
course, the only definitive method of determining
whether NAR would really be observable in these
nuclei would be to perform the linewidth calcula-
tion described above plus a calculation of the reso-
nant acoustic attenuation for them due to the dy-
namic nuclear quadrupolar interaction.****> The
latter calculation will be discussed in the following
sections. It is hoped, however, that the linewidth
calculations presented here will stimulate some
experimental interest in looking for high-tempera-
ture NAR in paramagnetic insulators.

IV. CALCULATION OF THE ACOUSTIC ATTENUATION

The method that will be used to calculate the
acoustic attenuation due to the spin-phonon pro-
cesses described by HP, and H#, of Sec. II is the
same as that used in Refs. 18-22, so it will only
be briefly discussed here. One can conveniently
discuss the acoustical properties of the system by
the use of the phonon Green’s function!®

D(q, A’ t- tl) = (l/ﬁ)«Q(a’ A’ t)Q( - fi, )‘s t'))+> ’ (14)

where the angular brackets (... ) denote an aver-
age in the canonical ensemble and the circular
brackets (... ), denote the Wick time-ordering op-
eration. D(?) is Fourier transformed according to
the usual prescription!®

-ihg
D(w,) = f dte*“v* (1), (15)

)
where w, =mv/i%B, B=1/kT, and v is an even inte-

ger. By the use of Egs. (2), (6), (7), (14), and the
Heisenberg equation of motion

in 250 =[X(0), Ho+ Hiel , (16)

one can obtain an exact equation of motion for the
phonon Green’s function. This equation is

— oy 2 W (=, 0 (Aan(L, D=, £1),)
1

1 ., -
* W %’:' (e-lq l—e-'q ' )<(F(q’ )\’ 1’ 1” t)Q(_q’ }‘, t’))a-) ’ (17)

Following Refs. 18-22, the terms on the right-hand side of Eq. (17) can be expanded in powers of Hp
=Hfp+ Hfp. Since H;p is linear in the normal coordinate Q(d, 2, t) and since the thermal average of an odd
number of such coordinates vanishes, only odd powers of H;p will contribute to the expansion. When such



3244 CHARLES W. MYLES 11

an expansion is made, Eq. (17) can be rewritten

2 -ing  _ _ -
(B—waz(ﬁ, K))D(&, h,t—t'):é(t-t')+f0 dETIE, A, t=E)D@, N\ E—1t'). (18a)
. I
Upon Fourier transforming and rearranging, Eq. orr 1@ 5.
(18a) becomes @, A\, w)= 7=, |4
D@, %, @) =[ - wf+A(@ N - 10E, 2w,  (18b) X(= 1" Won( =&, M Wa(d, NG2n(d, w,)

where II(, A, w,) is the phonon self-energy. If only
the lowest~order terms in the expansion are kept,
the self-energy can be written

H(fl, A, (.U‘,) = HQ(&, A, wv)+HA(a; 2, w,) ) (19)

where II° is the contribution from HY and corre-
sponds to the lowest-order expansion of the first
term on the right-hand side of Eq. (17), and I1* is
the contribution from H{, and corresponds to the
lowest-order expansion of the second term on the
right-hand side of Eq. (17). In general, there will
also be contributions from Hf, in the first term on
the right-hand side of that equation and from Hf,
in the second term. However, since such contribu-
tions will depend on correlation functions with odd
numbers of nuclear or electronic spins, these con-
tributions vanish in the high-temperature limit.

Explicitly, the two contributions to the phonon
self-energy take the form

and (20a)

- 1 1 me e -
4@, A, w,) = E; N EZ'(_I) L,@,q,2)

Xg{m(a', Wy )Qf,-m(ﬁ - (Tl', Wy, = wu') ’

(20b)
where m is summed from -2 to 2 in Eq. (20a) and
from -1 to 1 in Eq. (20b) and L, (@, d, ») is a func-
tion that depends upon the phonon propagation and
polarization directions and upon the spatial Fouri-
er transform of products of spatial derivatives of
the hyperfine energies of Eq. (3). The form of this
function is shown in Appendix C. The functions
Gem(@ @), Qi@ w,), and ¢5,(§, w,) are, respec-
tively, the Fourier transforms of the nuclear quad-
rupole-quadrupole spin correlation function, the
nuclear dipole-dipole spin correlation function, and
the electronic dipole-dipole spin correlation func-

TABLE I. NAR linewidths at T'=w,

Hyperfine constant

Theoretical line-

Quadrupole moment?

Substance: Nucleus A(10* cm™) width (Gauss) (10724 cm?)
RbMnF;: Mn® -90. 8 1323.0 0.5
Rb% —0.0366 0, 0025° 1.03 0.31
Rb¥ —0.1210+ 0. 0073P 5,53 0.15
KMnF;: Mn% -91.0° 1189.5 0.5
K3® —0.00844 0.167 oo
MnO: Mn% —-81.5+2,2° 944.3 0.5
ol’ 2.46+ 0, 05% 24,9 —-4X10°
aMnS: Mn?® -71.0+5,3° 760. 8 0.5
§% 1.65+ 0, 04F 25.8 - 6.4 102
aMnSe: Mn% —67.0+4,5° 782.2 0.5
KCoF;: Co? —98. 08 305.1 0.5
CoO: Co*° —98.08 326.8 0.5
o’ 3.1k 12.9 —-4x10°°
RbCoFy: Co®® - 98,08 339.7 0.5
Rb¥ —-6.81 37.2 0.15
Rb® -2.06! 6.93 0.31
TIMnFz: Mn* -90. 82 1249.8 0.5

3Reference 28.
bReference 29.

°Reference 28, measured in KMgF;.

9Reference 30.
®Reference 31.

fReference 32.
8Reference 33.
hReference 34.
iReference 35.
JReference 36.
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FIG. 3. (a) Diagrammatic representation of the phonon
self-energy due to the dynamic nuclear quadrupolar inter-
action and described by Eq. (20a). (b) The diagrammatic
representation of the phonon self-energy due to the phonon
modulation of the hyperfine interaction and described by
Eq. (20b). The spin lines have the meaning shown in
Fig. 1 of I and Fig. 1 of the present paper, and the zig-
zag lines are phonon lines.

tion. These functions are related to the correla-
tion functions discussed in I and in Sec. III of this
paper by the fluctuation-dissipation theorem.3” In
order to obtain Eq. (20b) it was necessary to as-
sume that mixed electron-spin-nuclear-spin cor-
relation functions like

((Iz(_i; t)sz(—Ia’ t)lz(’lm t’)sz(-ifis t’ ))+>

could be factored into the product of a nuclear-spin
correlation function and an electronic-spin corre-
lation function. Such a factorization ought to be
valid in the high-temperature limit being consid-
ered here. Also, in both Egs. (20a) and (20b) only
spin-conserving spin correlation functions have
been kept [i.e., keep only ((ZL),), {(LL).), ((I312).),
((8.5.),), ete.].

Equations (20a) and (20b) can be interpreted dia-
grammatically in a manner similar to the diagram-
matic interpretation of the phonon self-energy dis-
cussed in Refs. 21 and 22. The diagrams corre-
sponding to Eq. (20a) are shown in Fig. 3(a) and
those corresponding to Eq. (20b) are shown in Fig.
3(b). In those figures, the diagrammatic notation
which was introduced in I and in Sec. III above is
used for the electronic- and nuclear-spin lines and
the zig-zag lines are phonon lines.

In order to obtain the acoustic attenuation from
Egs. (20a) and (20b) one uses the prescription!®:?

(@, 2, w) =Im{II@, A, w+2€)/2Vaw(@, N}, (21)

where € is a positive infinitesimal, w is a real fre-
quency, and V, is the velocity of sound for the (3,
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1) phonon mode.

In the present paper, only cubic crystal struc-
tures will be considered. It is then convenient,
following Refs. 20-22 to define two coordinate sys-
tems; one which coincides with the crystal axes
and one which has its z direction coinciding with
the direction of the external magnetic field ﬁo. In
general, the direction of the external field is spec-
ified with respect to the crystalline axes by the
spherical angles (9, ¢). The transformation which
takes spin operators from one coordinate system
to the other is discussed in detail in Refs. 20 and
22 so it will not be shown explicitly here. After
making such a coordinate transformation on Egs.
(20a) and (20b), using the fluctuation dissipation
theorem®” to relate the correlation functions in
those equations to those calculated in I, in Sec. III
above, and in Refs. 15 and 22, and using the pre-
scription shown in Eq. (21); the contributions of
19 and II* to the acoustic attenuation take the form

o/ _ Bwl§l2ePnZQ? . - I
a (q, A, w)= 8MV)~(.O(-(L ) Un(—14, 7\)U-m(q’ ) me(w)

and (22a)

Bw 1 oy
ZMVACL’(E, )\) N% Kmm’ (q,q ’ )\)

aA(q, A, w)=
’
Xj-dﬂig{m(w’)gfm’(a_q,, w=-w) ’
(22b)
where B=1/kT, U,(Q,\), and K,,,..(§,§’, ») are re-
lated to W, (§, A) and L,(d, §', ) by the coordinate
transformation discussed above, g%.(w), g]n.(w),
and g%,.(d, w) are spectral functions!**1%%2 corre-
sponding to the correlation functions of Eq. (20),
in Eq. (22a) m is summed from -2 to 2, in Eq.
(22b), m, m' are summed from —1 to 1, and the
fact, shown in I, that gi,(w) and g1, (w) are inde-
pendent of § has been taken into account, The func-
tion g1,.(w) has been discussed in I, the function
g3m(w) has been discussed in Sec. III, and the func-
tion g7,(d, w) has been discussed in Refs. 15 and
22 and has been shown in these references to be in-
dependent of m (i.e., independent of the external
magnetic field).

V. RESULTS AND CONCLUSIONS

As was stated earlier, the term “resonant”
acoustic attenuation is taken to mean that portion
of the attenuation which depends upon the external
magnetic field Hy. In the following discussion,
only the resonant contributions to Egs. (22a) and
(22b) are of interest. By taking into account the
fact that g7,(d, w) in Eq. (22b) is independent of ,
by explicitly looking at the form for K, (4, J’, 1)
in that equation, and by doing the sum on » and
m' in a*(§, A, w), it can be shown that each term in
this sum is proportional to the linewidth function
I, (d, w) which is defined in Eq. (Ala) of Appendix
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TABLE II. Attenuation angular dependences for some typical phonon modes (cubic crystal).

-

The z-axis is taken along a cubic crystalline axis, and § =3(S11—S12).

Mode 1U,@ N1° 10,@, NI?

glélfoo1] 332 sints 652 sin?# cos?s

qllén o] 05,4 sin2¢ (1 +costs) +25 sin®P 3sin?29[Ssin2¢ +3S]2
+83, cos22¢ cos%s +8%, sin%g cos’2¢

ghelnii] $%;lcosdcos2¢ +sind (cosp +sing) P 483, [cos2¢ sin2d +2(cosd +sing)
+28%,[(1 +cos®9) sin2¢ +%83,[2(sing — cos¢)cos2s
+8in24 (sing — cos¢) I —sin2¢ sin24]®

allfoo1], %524[sinz(¢> — ) +cos®Icos? (¢ — P ‘%3324[00521:t sin®(¢p — ¥)

éll [cos¥, sin®, 0]

+cos?2dcos? (¢ — ) 1?

A of I. It is shown in that appendix that this line-
width function is independent of the external mag-
netic field. Therefore, a*(d, X, w) is independent
of field and does not contribute to the resonant
acoustic attenuation. In other words, the acoustic
attenuation resulting from phonon modulation of the
hyperfine interaction has no resonant part, at least
in the high-temperature limit. Physically, this
statement implies that phonon modulation of the
hyperfine interaction will not induce transitions be-
tween the energy levels of the nuclear-spin sys-
tem. The function a#({, A, w) therefore only con-
tributes to the background attenuation and will be
dropped in the following discussion.

The field dependence of the function a?({, 2, ),
defined by Eq. (22a) can be explicitly seen if the
form of the spectral function g, (w) which occurs
in that equation is examined, From Eq. (A2) of
Appendix A of I with 1m— 2m, this function has the
form

Zam(w) =To(w)Alw = mwy = Mg ()2 +[Tg(w)]?, (23a)

where wg=vH,. The fact that the functions I'y(w)
and II,(w) are independent of the external field and
thus of m has been assumed and can be proven by
arguments exactly like those for the dipolar case in
Appendix A of I. If, in that appendix, one lets 1m
—2m, all of the arguments there can be shown to
apply in the quadrupolar case as well. The func-
tions Iy(w) and I'g(w) have been calculated in Sec.
III for the case of isotropic hyperfine coupling.
Also, from the field-independent properties of
these functions and from the comparison of Eq.
(23a) with Eqs. (16¢) and (18b) of I, it can be seen
that

(23Db)

The function gqy(w) is the nuclear quadrupole-quad-
rupole spin spectral function for isotropic hyper-

gim(w) =gq(w — mwy) .

fine coupling and has been calculated in Sec. III to
lowest order in 4/J. This calculation showed that
this function is Lorentzian in shape and that this
fact can be obtained without any ad koc shape as-
sumptions. Further, Eq. (23b) shows that the
shape of g},(w) is again Lorentzian, but with the
center of the line shifted by mw,. Thus, the effect
of an external magnetic field is merely to shift the
center of the line without changing the line shape.
Since only acoustic phonons are of interest here,
the approximation w(d, A)= V|| may be made in
Eq. (22a). Also, since only resonant terms are of
interest, w=w(d, ). When these facts are taken
into account and only the resonant terms in the sum
over m are kept in that equation, the result is

wietgint
8MV3kRT

+| 0@, 0| gk (w) +gha(@].  (24)

The functions | Up(q, A)I2 and | U;(§, A)|? are depen~
dent upon the angles (9, ¢) as well as on the phonon
mode. They are tabulated in Table II for several
typical phonon modes. Similar functions have been
calculated by Fedders!® for APR in cubic crystals
and the expressions in Table II can be obtained by
the replacement Gy, Gy~ 3(Sy; — Si2), S in his re-
sults. In the table the shorthand notation 5= 3(S;,
- S;) has been used.

In order to obtain an order of magnitude estimate
of the maximum resonant acoustic attenuation given
by Eq. (24), only the longitudinal mode § Il € 1 [001]
will be considered and the angles (9, ¢) will be tak-
en as (37m,0). Also, only the resonance at w =2y
will be explicitly considered. Other phonon modes
and resonances will have a maximum attenuation
which differs from this number by a constant of the
order unity and perhaps by a replacement of 3(S;;

- S2) by S;. The maximum attenuation in this

a®(d, x, w)= {l ta(@, M)A gha(w) + g%, 2(w)]
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TABLE Ill. Estimates of maximum resonant attenua-
tion for Mn®, Rb®, Rb%" in RbMnF;.

Resonant
Nucleus attenuation (cm™1)
Mn®® 7.23%x10-8
Rb® 6.26%x 10"
Rb¥ 5.21% 10-°
case is
a®(2w,) = 3whe?@P(Sy; — Spa)® (I+1)(21+ 3)g 55 (2wy,)
0 40MV3ETI(2I-1) :
(252)

It should be noted in passing that the attenuation in
Eq. (25a) displays all of the basic properties that
are expected for a resonant acoustic attenuation at
high temperature: it is proportional to w3, 7%,
and (MV3)?L,

From Eq. (23b) combined with Eq. (16¢) of I, it
can be seen that

g52(2wg) =1/T4(0) . (25b)

T'4(0) is the NAR linewidth and has been tabulated
for various nuclei in various substances in Table
I. Once a particular substance and nucleus have
been specified, all other quantities that occur in
Eq. (25a) are known numerically from other
sources except the gradient-elastic-tensor compo-
nent S;; — S;;. Since this quantity has not been
measured experimentally, at least for the nuclei
listed in Table I, in order to obtain a numerical
estimate of the maximum attenuation, it is neces-
sary to postulate a model which will enable this
constant to be calculated.

Taylor and Bloembergen® have proposed a point-
charge model for approximately calculating the
gradient-elastic-tensor components. Within this
model, the component S;; - S;, for a cubic lattice
takes the form

Si—S2=11.8 e*(1 - 7.)/a®, (26)

where e* is the effective ionic charge, « is the lat-
tice spacing, and 7. is the Sternheimer antishield-
ing factor.3%* Sundfors?® has improved upon a
purely ionic point-charge model for the gradient-
elastic-tensor components by including covalent
effects but such an improvement will not be con-
sidered here and the component S;; — S, will be
taken as given by Eq. (26). The model described
by that equation is at least useful to enable one to
make an order-of-magnitude estimate for the reso-
nant attenuation.

The calculation will now be specialized even fur-
ther, to the evaluation of the maximum acoustic
attenuation for NAR in the Mn®®, Rb%®, and Rb®’
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nuclei in RbMnF;. The reasons for considering
only RbMnF; are that there will be less than an or-
der of magnitude difference between the maximum
attenuation for the Mn®® nucleus in the other man-
ganese compounds listed in Table I and that for
RbMnF,, the quadrupole moments of the nonmag-
netic nuclei in those compounds are smaller by two
orders of magnitude than those of the Rb%, Rb®,
and Mn® nuclei, and the Sternheimer antishielding
factor for the cobalt ion does not appear to be
available in the literature.

The values for the maximum acoustic attenua-
tion for Mn*°, Rb%, and Rb®" in RbMnF, have been
calculated for a frequency of 10 MHz and a tem-
perature of 300 K using the linewidths and quadru-
pole moments which are listed in Table I. The re-
sults are listed in Table III. In order to calculate
these numbers, the velocity of sound has been tak-
en to be V=5.22x10° cm/sec*” and in order to cal-
culate the gradient-elastic-tensor components by
Eq. (26) the parameters e* =e, a =4.235 4,%7 y_ (Mn?*)
=11.37,% and v.(Rb*) = - 70. 7*® have been used.

From the values of the attenuation listed in Ta-
ble III, one can immediately conclude that the ob-
servation of room-temperature NAR in the Mn®®
nucleus in RbMnF; is probably impossible by pres-
ent ultrasonic techniques.*®*® On the other hand,
the possibility of the observation of this phenome-
non in the rubidium nuclei in that substance looks
promising. *#%° Unfortunately, however, since the
NAR linewidths for these nuclei are so narrow,
there is a possibility that this maximum absorption
might be decreased due to the static field gradients
which always occur in a real (as opposed to an
ideal) crystal.®® In addition, if one were to include
covalent as well as ionic effects in the calculation
of the gradient-elastic-tensor components, the
numbers in Table III could change by several per
cent.? The ideal situation with regard to the gra-
dient-elastic-tensor components would be if one
could obtain experimental values for S;; — S;, which
were obtained by a non-NAR technique. #'5=5¢ The
proper conclusion from these facts is that, under
ideal experimental conditions, room-temperature
NAR in Rb® and Rb®" might be observable by pres-
ent ultrasonic techniques in RbMnF; or perhaps in
an isomorphic rubidium compound.

Of course, as the temperature is lowered, while
still remaining above the magnetic transition tem-
perature, the attenuation is enhanced due to the
T-! dependence. At the same time, however, the
high-temperature limit for the attenuation and the
infinite-temperature limit for the spin correlation
functions become less accurate and a more gener-
al temperature dependence for these functions must
be taken into account.

To summarize, two different kinds of calcula-
tions were carried out in this paper. The first
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was the first-principles calculation of the NAR line
shape by the derivation and solution of the equation
of motion for the quadrupole-quadrupole nuclear-
spin correlation function. The derivation of the
equation was carried out by an extension of the di-
agrammatic technique of I and the solution for the
NAR line shape, g,(w), was found to be Lorentzian,
Numerical values for NAR linewidths for various
nuclei in various paramagnetic insulators were ob-
tained from the line-shape results by the use of the
electron-spin correlation function which was mi-
croscopically determined in Ref. 15 and these line-
widths, shown in Table I, are within observable
range in many cases.

In the second calculation, expressions for the
acoustic attenuation due to both the dynamic qua-
drupolar interaction***? and the phonon modulation
of the hyperfine interaction were derived in the
high-temperature limit by a calculation of the pho-
non self-energy'’™ % due to these processes. The
resulting attenuation depends upon the nuclear-
spin and electron-spin correlation functions which
have been calculated previously. By use of the re-
sults for these functions, obtained in I, Ref. 15,
and in Sec. III of the present paper, it was shown
that the attenuation due to the phonon modulation
of the hyperfine interaction has no resonant part
and that the NAR line shape due to the dynamic
quadrupolar interaction is given by the Lorentzian
function g,(w) of Sec. III with the center of the line
displaced by a multiple of w,. In the case of the
dynamic quadrupolar nuclear-spin-phonon interac-
tion, the angular dependences for the resonances
at w=+w; and w=+2w; have been calculated for
various modes and are shown in Table II. Also,
for this case, the maximum resonant attenuation
due to NAR in the Mn®*, Rb%*, and Rb®" nuclei in
RbMnF; has been estimated by assuming a point-
charge model to calculate the gradient-elastic-
tensor components. The results of this estimate
are shown in Table III and indicate that the Rb®
and Rb® nuclei in RbMnF;, or perhaps in an iso-
morphic compound, are, under ideal experimental
conditions, good possibilities for the observation
of NAR at room temperature.

In conclusion, two possible complimentary ex-
periments are suggested by the above results. The
first of these is a non-NAR type of experiment for
the determination of the gradient-elastic-tensor
components of the Rb® and Rb?" nuclei in RbMnF;,
which might improve the estimate of the resonant
attenuation by giving better values for these quan-
tities. The second of these is a room-temperature
NAR experiment on these nuclei in that substance.

APPENDIX A: FORM OF THE DYNAMIC NUCLEAR
QUADRUPOLAR INTERATION
Beginning with Eq. (5a), one expands the field
gradient tensor in terms of the strain as is shown

in Eq. (5b). Then the Hamiltonian Hf, takes the
form

85 =22 Siyam@is(Dean(D) (1)
1

where @;;(1) is the #j Cartesian component of the
quadrupole moment tensor at site T, Sijem is the
gradient elastic tensor, and ekm(T) is the strain
tensor at site 1. For a lattice with cubic symme-
try, the only nonzero components of S;;, are Sy;
- S, and S,, (in Voigt notation),2%?% The strain
tensor can be expressed in terms of _Eierivatives of
the components of the displacement U as®

_L(al 2l
€; = 2<axj + axi) . (AZ)

and the displacement may be expanded in phonon
normal coordinates as!®

6= e 2 @V a@ N, (3

where ¢;(d, ») is the ith component of the phonon
polarization vector and Q(d, 1) is the phonon nor-
mal coordinate. The quadrupole moment tensor
is most conveniently discussed in terms of its
spherical tensor components and these are easily
expressed in terms of their equivalent spherical
tensor nuclear spin operators as!!+26

Qn (D) =e@ndzn(1) . (A4)

Here, e is the electronic charge, @ is the nuclear
quadrupole moment,

np=[(I+1)(21+3)/301(2I = 1)]/2 |

and Ay,(1) with — 2<m =2 is the irreducible-ten-
sor nuclear-spin operator defined in Eq. (3) of I.
Combining Eqs. (Al)-(A4) after some lengthy
algebra, one obtains
ie > jaT - - -
Hfp = 520 3 15| e, (1, OW.n@ NQE, 2, 1),
2(MN)VE 2%

12 (A 5)

where the W_,(d, }) have the form

Wie(@, 2) =[S(e,qx - e,qy) £ 4iSy(e.qy+ eyq,)]/4 l Fll ’
Wer(@ \) = Syle,(ax+ igy) + (e, x dey)g )/ |G|, (A6)
Wo(@, 1) = V3 3(2e.q, - .4, - €,0,1/27] .

Here e; is a shorthand notation for e;(§, A), and S
=3(S11 = Sia)-

APPENDIX B: FORM OF THE PHONON MODULATION
OF THE HYPERFINE INTERATION

Beginning with Eq. (‘3),‘ the hyperfine energies
are ex;_:_anded in a power series in the displace-
ments U from equilibrium!® and only the lowest-
order terms are kept
AQ-T)=A(0-1)]e+[TD) -TA)] - v;a(1-T) .

(B1)
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Here A means either A, or A, and |,, means evalu-
ation at equilibrium. By ¢ droppmg the first term,
expanding the quantities (1) in Eq. (B1) in phonon
normal coordinates as in Eq. (A2), and substitut-
ing that result into Eq. (3), the spin-phonon inter-
action can be seen to take the form

HIP (MNI . Z ( iq"l' iq'l)
1, 1’,q,)..
X Q(ﬁ, K: f)F(ﬁ, k,i’ -ils t) ’ (BZ)

where
F@ENTLT,0=2@ 0 {v;4(1-T)5Ds,T)
v AT-T2(Ds,(T)

+,(Ds,(1)]}. (B3)

APPENDIX C: FORM OF THE FUNCTION L, (4.q4',\)

Beginning with Egs. (17) and (19) and the results
of Appendix B, some straightforward algebraic
manipulation shows that the function L,(d, ', A) in
Eq. (20b) has the form

Lo(d, §, ) =4 1(1+1)S(S+1)
x{8@, 1) - [B.@-3)+B.@) 7,
La(@, &, ) =41(1+1)S(S+1)
x{e@, M- [B.@-8)+B.@)NE (1)
Here, &(q, ) is the phonon polarization vector and
B@-2 v 4()-24@ . c2)

In Eq. (C2) B and A have the subscript Il or L,
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