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%e discuss the concept of an order parameter q for the a-P transition of quartz following Landau's

theory. Some physical properties, among them the second-harmonic-generation coeAicient are found to
vary as q, while others vary as g'. A measurement of d» from room temperature to the transition is

described. Assuming that d» ——q one obtains the temperature variation of the order parameter; our

data are in good agreement with Landau's theory. They also agree with the temperature variation of
other properties, particularly birefringence, thermal dilatation, and some elastic constants. Our data can
also be fitted to a formula q = q~ + C{t—t*)~, with a critical exponent P = 1/3 from room

temperature to the transition, or with P = 1/6 and q* = 0 from 520 to 573.2'C the transition

temperature. W'e show that this is not fortuitous but that one can always find these exponents in

making a four- or three-parameter fit to Landau's formula. Thus, in general, there is considerable

ambiguity when one tries to fit critical exponents to a first-order transition.

I. INTRODUCTION

Silicon dioxide, SiO„possesses several different
equilibrium states Rs a function of temperature
and pxessure. ' The stable phase at room tempera-
ture under atmosphex ic pressure is crystalline
quartz, which is called lom quartz or n-quartz to
distinguish it from another closely related high-
temperature phase, called high quartz or P-quartz.
Since its discovery by Le Chatelier in 1889,' this
phase transition, mhich occurs at 573 'C, has
been the subject of many investigations. The
earlier ones were reviewed, in considerable de-
tails, by Sosman in his book on silica phases
(1927).' More recent but less extensive data are
found in a partial revised edition of Sosman's book
(1965).' The dynamical aspects of the transition
have recently been reviemed by Scott. '

A point which for some time had been the subject
of most discussions is the existence or not of a
discontinuity at the transition. Most of the earlier
data (among them the first ones by Le Chatelier)
show a discontinuity. Keith and Tuttle in an ex-
tensive study of small variations of the transition
temperature among many samples by differential
thermal analysis obtained a temperature hysteresis
of about 1 'C between heating and cooling' —which
is the mark of a first-order transition. But other
experiments showed singulax'ities characteristic
of a second-order transition, for example, the
increase of the specific heat in a measurement by
»nel'nikov, 'or the intense scattering of light close
to the transition temperature observed by Yakolev
gt gl, e'9 Indeed most experiments mere not sen-
sitive enough to show clearly a small discontinuity
mhieh can be masked by the sharp variation of

many properties of quartz in a temperature range
of a few tens of degrees below the transition tem-
perature T, and of a fern degrees above T&. Cohen
and Element used Pippard's relation, valid for a
second-order or A.-point trRnsition to correlate
the temperature variation of several physical prop-
erties neax T, ."'" Coe and Paterson, who also
made comparisons between several physical prop-
erties successively with the hypothesis of first-
and second-order transition, favored slightly the
first hypothesis. " The existence of a disconti-
nuity was observed unambiguously in 1968 by
Shapiro and Cummins in a study of light scattering
(Haman, Brillouin, and Hayleigh scattering) near
the transition. "'~ The same conclusion was also
reached by Hoehlj. "m a measurement of the elas-
tic constant C,~.

In this paper w8 present a, measurement of a
phenomenon which is very sensitive to symmetry
change produced by the n-P transition, the sec-
ond-harmonic generation (SHG) of light. " In Sec.
IImediscuss the concept of an order parameter
in quartz and its relation to SHG, and other phys-
ical properties. In Sec. III the experiment is de-
scribed and me deduce the variation of the non-
linear susceptibility from room temperature to
the transition temperature. This r esult is com-
pared in See. IV with measurements of other prop-
erties of quartz (birefringence, thermal expansion,
elastic constants) and is interpreted following
Landau's theory of phase transitions. In Sec. V
me discuss the relation betw'een the result of Lan-
dau's theoxy with other formulas with critical
exponents mhich have been proposed for first-
order transition Rnd me show that ln the case of
n-quartz, experiments to differentiate them would
be difficult.
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II. ORDER PARAMETER OF a-QUARTZ AND ITS
RELATION TO THE NONLINEAR

SUSCEPTIBILITY

Since there are three molecules of SIO, in th&e
l,

unit cell of quartz there are 2V degrees of libe'rty.
Atomic displacements, as a function of tempera-
ture are known from the x-ray work of Young. "
Phonon dispersion curves have been measured and
a soft mode found by neutron measurements. " A
simple model with rotation of rigid tetrahedra has
been used recently by Grimm and Dorner to de-
scribe the transition, but to take into account at
the same time atomic displacements and macro-
scopic expansion they have to also introduce a
deformation of the tetrahedra. ' In this paper we
give only a phenomenological discussion of the
transition, following symmetry arguments.

In the two phases considered, quartz has the
same number of atoms per unit cell. The point
group of a-phase is (32). The Z axis is along the
rotation axis of order 3, X along one of the axes of
order 2. The point group of the P-phase is (622).
So in going from the P to the n phase the crystal
loses a twofold axis (Y,} along I'. The free energy
E can be written as a function of the polarization
P; (i =1 to 3) and of the strain u, (j = 1 to 6 with
Voigt's convention):

E= n; P(+C~, u~u)+a;;P; uj,2

where o.; is the inverse susceptibility (tensor of
rank 2) C» the compliance tensor (rank 4), a, z the
piezoelectric tensor (rank 3}. In o, phase, p' js
invariant under all symmetry operations of (32).
If, furthermore, we apply (Y;) the tensor coef-
ficients in (1) remain invariant except C„, C„
and a„, which change their sign. In P-phase these
coefficients are zero and cooling from P phase,
two equivalent orientations are available for X
which may lead to Dauphine twinning. ' These
transformation properties of C,4 and a» under
the symmetry elements of (622) belong to the B,
representation. '~ Following Landau" we introduce
an order parameter q which describes all the
changes produced by the transition, and so belongs
to the 8, representation of (622). The lowest rank
for a tensor belonging to B, is rank 3, so q is
similar to the piezoelectric constant a» (this re-
sult has been previously obtained by Aizu"; a
similar analysis is valid for NH, C1). a» and C„
belong to the same representation as q and can be
expressed as an odd function of g. The other co-
efficients invariant under (I;) belong to the totally
symmetric representation A„as does q', and they
can be expressed as even functions of g. In a sec-
ond-order transition according to Cochran" there
is generally a soft mode which has the same sym-
metry properties as the order parameter, and

which produces the transition. But in a first-order
transition complications can occur. As there is a
discontinuity, the soft mode does not need to have
atomic displacements similar to those produced
by the transition. However from the neutron ex-
periment of Axe and Shirane, " it seems that the
soft mode in P-phase is a B, mode closely related
to atomic displacements in the e-phase. But the
anomalous variation of some elastic constants in
the P-phase shows that at least there is strong
anharmonic coupling of fluctuations to deforma-
tion. "' Attempts have even been made to explain
the transition by an acoustic instability. ""To
describe the transition, we begin with the full ex-
pression of F(q, u, P) and then we solve

BF BE BE
B, ' B. "BP~ (2)

where o and E are the external stress and electric
field. Taking the last two equations for a free
crystal (o = P. = 0) and eliminating u and P we obtain
a function of g, with only even powers of q, which
can be expanded as

F=2ag +& h'g +6 cg + ~ ~ ~
l 2 1 4 1 6 (3)

This is the usual Landau free energy which has
been used previously for quartz by Ginzburg" to
explain the critical opalescence observed by
Yakolev et a/."We assume that a=t- tp If b&0
one has a second-order transition; if 5 & 0, a first-
order one; if b =0, one obtains what is now called
a tricritical point. Solving for q one obtains the
temperature variation of q.

We now describe the phenomena of SHG and its
relation to q. If the electric field E of a light
beam of frequency ~ is intense enough, it creates
in a noncentrosymetric crystal a polarization P'
at a frequency 2' given by

where d;» is a third-rank tensor such as the piezo-
electric tensor. As quartz is nonabsorbing in

visible light, the Kleinman rules apply' and hence
d„=0. Thus there is only one coefficient for SHG,

which belong to the B, repre sentation, and so
changes its sign with Dauphin's twinning. We have
already used this property to make direct optical
observations of Dauphins twins. " (As photoelastic
constants p,4 and p4, change their sign with

Dauphine twinning, one can observe twins by photo-
elastic experiments. " This also can be done with

the electro-optic effect produced" by e». )
So dye belonging to B, representation, is an odd

function of q. Furthermore we assume that d»
is a linear function of g. With this approximation,

by measuring the SHG coefficient we get a direct
measurement of the order parameter. The use of
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SHG to study structural phase transitions, mainly
ferroelectric ones, has been recently reviewed by
Vogt. 29

To summarize this part the n- p transition of
quartz can be described by an order parameter g
which is a third-order tensor transforming under
the symmetry operation of (622) as B, representa-
tion. The properties which are sensitive to
Dauphine twinning are expressed as odd functions
of g. Among them there is the SHG coefficient d».
The properties not changed by Dauphine twinning
are even functions of g. Landau's theory for first-
order transition gives the temperature variation
of 'g.

III. EXPERIMENTAL RESULTS

In a-quartz the nonlinear polarization P'; pro-
duced by an electric field E; is given by

P„—d» E~ —d» E

P2QP 0

This work was carried out using only monodo-
main samples, so d» is the same everywhere,
and we take it to be positive. The second-har-
monic (SH) intensity I, produced in aplaneparallel
slab of thickness l is given by

where M =k, —2 R„with k, and k, the wave vectors
of the fundamental and harmonic light waves. In
a crystal such as quartz, without phase-matching
directions (i.e., directions where M=0), the
usual method to measure d» is to rotate the crystal
around some axis, which by changing the magnitude
of

~
dk~ produces intensity variations, called

Maker's fringes, "from which one can calculate
dy 1 If the temperature changes, M and l are also
temperature dependent and produce Maker's fringes.
To make an accurate measurement we built a fur-
nace with a rotating core, so that at each tempera-
ture we can obtain Maker's fringes. We use a
Quantronix A 112 Nd"- YAG laser with an acousto-
optic Q switch, which produces pulses of 1.06- p, m
light of 5-kW peak power at 1 kHz. The laser
beam is divided in two equal parts. One is used to
generate SH in a fixed quartz sample which is used
to check the laser intensity while the other one is
slightly focussed by a lens of 300-mm focal length.
After a laser warm up of half an hour, short-term
fluctuations in SH signal intensity are of about
~3 x10 '. The sample is a slab of 10x lpx2 mm
with optically polished plane parallel surfaces.
It is a BQ cut and the crystal normal is rotated
from Zby -31'around X." The Xaxis is vertical

and is the rotation axis, so the FZ plane is the
incidence plane. Laser light is polarized hori-
zontally, and as quarts is uniaxial it has an ex-
traordinary polarization. In the crystal it pro-
duces an ordinary SH beam according to

P»=

When we change the incidence angle around nor-
mal incidence by rotating the sample around X,
the extremity of k, describes an ellipse the axes
of which are Z and P; the extremity of k, describes
a circle, so that the modules of M varies nearly
linearly with the rotation angle, producing nearly
equally spaced Maker's fringes. The fringes mea-
sured at room temperature for an incidence angle
8 going from —20' (on Z side) to +20' (on Y side)
are plotted in Fig. 1(a). Fringes obtained at a
temperatrue of 0.2 'C below T, on heating are
plotted in Fig. 1(b). At room temperature the
width of the fringes varies from 3.3' at about
8=+15' to 3.0' at about 8= —15'. Our measure-
ments were made mainly around 8=+15', where
the maximum intensity of fringes depends little
on 8. Furthermore close to normal incidence
there are interferences with reflected fundamental
and SH beams which produce small erratic vari-
ations. Two fringes are produced on heating from
room temperature to T, . The width of the fringes
changes from 3.1' at room temperature to 3.4'
near T, . With heating the SH intensity decreases
by nearly one orderof magnitude from 20'C to
the transition temperature (Fig. 2). (We have
found only a short report" in the literature on
the temperature variation of SH intensity up to
the transition point. ) In our experiment there is
a sharp discontinuity at about 573.2 C on heating
(we have made no attempt to make absolute tem-
perature measurements; only temperature dif-
ferences are accurately known). On cooling there
is a hysteresis of about 1.5 'C after which the
intensity regains the same value as during heating.
We check by observation of SH that the crystal
remains monodomain in the a-phase. " Intensity
variations are smooth and reproducible except
in a temperature interval of about 0.1 'C below
transition temperature (on heating and on cooling).
Sometimes just at the transition temperature we
observe a spike the intensity of which can reach
the value of the SH intensity variation at the tran-
sition. This effect may be produced by twinning
appearing just at the transition, which is one
explanation given by Shapiro et al. for the anom-
alous light scattering observed at the transition. ""
Alternatively, it may be produced by a tempera-
ture gradient in the sample causing the passage
of a phase front, which we have observed between
crossed polarizers. A rough estimation of the
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sin 8 = n, sin 8', = n, sin 9,',
fl2 —Pl 1

='Pl2 cos B2 —'fI,
1 cos Bg

2 I

=(n, cos8,'- n, cos8,') (n, cos8,'+n, cos8,'),

transition is clearly first order. In Sec. IV our
results are compared with Landau's theory and
with other expex imental results.

IV. DISCUSSION QF EXPERIMENTAL RESULTS

j M~ =(n, cos8,' —n, cos8,') (n/A, ).
(14)

TABLE I. Values of the order parameter q, normal-
ized to 1 at 23 C as a function of temperature, obtained
from our SHG measurement of d&& assuming that q =d&&.

23
51

144
177
202
227
252
277
302
327
352
377
402
432

1.000
0.987
0.939
0.930
0.911
0,900
0.877
0.867
0.845
0.829
0.816
0.797
0.768
0.748

452
477
502
505
510
520
528
530
539
550
552
553
562
564.6

0.726
0.698
0.656
0.649
0.642
0.617
0.611
0.602
0.574
0.548
0.542
0.531
0.488
0.480

566,55
567.23
570.25
571.15

0.45
0.67
0.90

572.05
0.10
0.42
0.67
0.92

573.18

0.463
0.460
0 434
0.423
0,419
0.415
0.409
0.408
0.406
0.399
0.395
0.389
0.384

where A. , is the SH wavelength in vacuum.
Using the known value of thermal expansion of

quartz we found from the temperature variation of
Maker's fringes that An~ varies between 115.4 x10 '
at 23 'C and 120.4 &&10 ~ at T, with an absolute
error of about 10 '. These results are in better
agreement with the values calculated from the
data of Beed than from that of Binne and Kolb.
The remaining factors in Eq. (8) depend only on
the values of refractive indexes and not on their
differences. So here we can take the values of
Binne and Kolb, which go up to T, . With these
data the temperature variation of the product of
all these factors is 10 ' froxn 23 to 573'C, We
have not tried to calculate the ~» of Millex', "which
seems to be a more basic quantity than d» because
here also one needs accurate values for the tem-
perature dependence of the refractive indexes.
Thus from our SH measurement we have obtained
'the values of d~~ and hence of ri (assuming a 11Ilear
relation) as a function of temperature shown in
Table I, with a relative accuracy of about +3 x10 '.
We have normalized to the value 1 at 23 'C [the
value of d» of quartz relative to the nonlinear sus-
ceptibility of potassium dihydrogen phosphate
{KDP) and ammonium dihydrogen phosphate {ADP)
is given by Jerphagnon and Kurtz"]. At the tran-
sition @=0.384 which is not small, and hence the

Much work has been done recently on phase
transitions, ""most of this on second-order
transitions. It has been shown both theoretically
and experimentally that the classical mean field
theory is inaccurate near the critical tempera-
ture, and that several critical exponents are
necessary to describe these transitions. Less
attention has been paid to first-order transitions.
However there is a revival of interest mainly
produced by the discussion of tricritical points"
on the borderline between first- and second-order
transitions.

q' = j b+ [5' —-4(t —t, )c]'""I/2c,

the inverse function of which is

(15)

Equation (15) can be also written

1/2

q =q, 1+ 1—
t~ —to

with f, =t, +5'/4e and rP, = b/2c. t, is t-he lower
existence temperature of the P phase, t, is the
upper existence temperature of the n-phase, g,
is the minimum value of the order parameter in
the a-phase, obtained at tempexature t, . The
temperature of thermodynamic equilibrium be-
tween the two phases is t, =t, +-, (f, —t,).

We seek a least-squares fit of our experimental
value for g according to Eq. (15) taking several
ranges of temperature. The results of these fits
ax'e given in Table II. The fit is good in all tem-
perature ranges giving a mean square deviation
o of 3&&10 ' which is better than the experimental
accuracy. ln Figs. 3(a) and 3(b) the curve of the
fit obtained on the whole temperature range is
plotted with the experimental g values. The de-
viation between experixnental and theoretical
values is also plotted. There are nearly no sys-
tematic deviations.

There is, however, an inconsistency in the fit
with Landau's formula. The calculated tempera-
ture of coexistence t, is 571.54 C. But experi-
mentally a hysteresis region is found between
571.7 and 573.2 'C and so the calculated t, is out-
side the experimental hysteresis temperature

A. Application of Landau"s theory

First we compare our results for q(t) to the
Landau theory. Taking terms up to the sixth power
1n F we obtain for 'g ln the cx-phase from Eq. (3),



range. We think that as the fit is made only with
values of q measured in the n-phase it gives a
good representation of this phase, and only a
poor representation of the P-phase, so it is not
adequate for determining I', and the hysteresis re-
gion. The value of t, —t, of about 9.5 'C we ob-
tain is in agreement with that of Axe and Shirane"
deduced from their neutron measurements.
Grimm and 13orner have recently used I andau's
formula to interpret structural and thermal ex-
pansion data which however are not sufficiently
accurate to give an unambiguous fit."

In Figs. 3(a) and 3(b) is plotted [bn'(t)]'", which
should vary as q, normalized to 1 at 23 'C. The
agreement with the variation of g is surprisingly
good. The greatest relative diffrence is less than
1.5x10 ' at about 300'C. Near T, the difference

B. Comparison of SHG with other physical properties

In the following comparisons we have made
translations of temperature scales to get the same
transition temperature, and normalized the value
of the experimental result to 1 at 23 'C or 0 C
(except for C„). Previously Mayer4' had also
obtained an empirical temperature-dependent
order parameter from his elastic constant mea-
surement without using Landau's theory.

2. Optical properties

Some optical properties such as the SHG coef-
ficient a», the electro-optic coefficient e», and
elasto-optic effects from p,4 and p~, vary as q.
The others vary as q'. Refractive indexes are not
well-known in particular near T, . There exist,
however, better measurements of the birefrin-
gence 4n. %e use the data of %'right and Larsen '
measured with Na light on heating. But only one

part 4n' of the bir efringence is connected with the
order parameter. For the birefringence we tried
the simplest appr oximation. We subtract from
bn(t) a constant, the value of An in P phase just
above T, :

200 400 60(L
Temperature M

23
573.18
564.37
573.94
166.8
726.6

0,3388
3.0

520
573.18
563.36
573,78
176.5
747.7

0.3436
2.7

550
573.18
564.31
573,90
166.2
720.1

0.3397
2.4

TABLE II. Parameter values obtained for three fits of
experimental q values to the formula t =to-b q -cg,2 4

t; and tf are the lower and upper temperatures used for
the fit, to is the lowest calculated existence temperature
of P phase, t& is the highest calculated existence temper-
ature of e phase, q~ is the value of q for temperature t~

and 0 the mean-square deviation between experimental
and theoretical values.

-10
550 570

Temper a Pure C

FIG. 3. (a) Plot of the order parameter q obtained
from our second-harmonic measurement as a function of
temperature (q is normalized to 1 at 23 C). The curve
is the beat fit to Landau theory in the (23-573.18)'C
temperature range. Also plotted is the square root of
the anomalous component of the birefringence &n' and
the. measurements of C&4 (1) by Hochli and C~4 (2) by
Hatanasoff and Hart. The deviation 6 g (magnified 10
times) between our experimental points and the curve of
the fit is plotted in the lower part. (b) Same as (a) for
the (500-573.18)'C temperature range. The full curve
is the best Landau fit for the (23-573.18)'C temperature
rar@e.
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is less than the relative uncertainty (5 X10 ') in

4n. This agreement between the two sets of mea-
surements over such a large temperature range
must be a little furtuitous. The temperature de-
pendence of the rotatory power is also known and
varies roughly as v)2(t) in the o. -phase. But the
experimental data' are not as accurate as the
birefringence measurements and comparison is
not very meaningful.

2. Thermal expansion

The expansions parallel and perpendicular to
the optical axis, which are nearly proportional, "
may vary with temperature as q'. In addition there
can be a normal expansion linear with tempera-
ture. There also we have tried the approximation
of a temperature-independent baseline equal to the
expansion value in the P phase just above T, . The
values for L„(T;)—L„(t) from the results of
Mayer, ' Sosman, ' Jay, "and Berger et al. ~ are
plotted in Fig. 4 with the r)'(t) curve obtained from
the fit of our experimental points to Landau's
theory. The agreement is not as good as for bi-
refringence. But the deviation from vl'(t) curve
is of the same order as the differences among the
various dilatometric data themselves. The results
for L, are the same as for L„and are not plotted.
One would need very accurate expansivity mea-
surements to improve these results. As the total
expansion between 20 'C and T, is about 10 ', and
the discontinuity at the transition about 10 ', one
needs expansivity measurements with a resolution
of 10 ' at 570'C to make a meaningful comparison
with other measurements.

3. Piezoelectric and elastic constant

The temperature variation of the piezoelectric
constant &» has been measured by Cook and
Weissler. 44 They found that a»(573 'C)/a»(20 C)
=0.54, i.e., greater than the same ratio for d».
The measurement of a piezoelectric constant is
quite difficult, depending on the values of the
elastic constants which also are anomalous near
T, . New measurements of a» would be interesting
[such mea, surements have been made recently on
NH, Cl (Ref. 45) where the piezoelectric constant
is also linearly related to the order parameter].

In comparing elastic constants with thermody-
namic data one must use the isothermal values,
but experimental measurements generally use dy-
namic methods which give adiabatic values. In
general the difference is small but in quartz near
the transition, this difference can increase up to
(10-20)/g. " As the difference depends on the
specific heat, which is known rather inaccurately,
it is difficult to make corrections. In the following
we will deal only with adiabatic values, and so

+ Mayer

0.5-

0--
0 200

Temper a t ur e
400 600

FEG. 4. Comparison of P(t) (full curve) obtained from
our data with other physical properties; expansion per-
pendicular to optical axis measured by various authors
and elastic constant C&6 (dashed curve).

there may be systematic differences.
Among the elastic constants one can separate

three groups. Those such as C,4 which vary as
g; C«, C«which vary as p'; and C», C», C3 C,s)
which have anomalies in the a and P phase. In
this last case, there is a great anharmonic cou-
pling with fluctuations. In addition we have no
indication of the value of the normal part of these
elastic constants: therefore we have not tried to
use them for comparisons. In Fig. 4 is plotted
C,', (t) = C«(t) —C«(T;) obtained from the measure-
ments of Hatanasoff and Hart. 4' This differs
slightly from our result for 7)'(f), but it is within
the experimental accuracy. Other measurements
of C«(f) by Zubov and Firsova~' are in agreement
except close to 7.', where the discontinuity is four
times smaller. For C,4 the two sets of data are
not in good agreement.

Hdchli has recently made a new measurement of
temperature variation of C„,"also shown in Figs.
3(a) and 3(b). The magnitude of C„has been ad-
justed at 550 C. His data are in good agreement
with our results, except for his highest tempera-
ture point, which is in the hysteresis region, and
for the two lowest temperature points near 500'C.
The measurement of C„by Hatanasoff and Hart"
is also shown in Fig. 3(a), which indicates that
C,4 saturates and has a smooth maximum around
200'C. Since a normal order parameter increases
as the temperature tends to 0 'K with an horizontal
tangent there, C,4 cannot be linearly related to
the order parameter on all the temperature range.
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Near 500 C Hochli's results are not in agreement
with those of Hatanasoff and Hart, but they agree
with those of Zubov and Firsova. ~'

Hochli and Scott~' have interpreted the C„mea-
surements, as well as the soft-mode frequency
and structural data, by introducing a. formula with
a critical exponent of 3. Qfe discuss this inter-
pretation in Sec. V.

V. CRITICAL EXPONENT FOR A FIRST-ORDER
TRANSITION

For a second-order transition the order param-
eter q has a temperature dependence, close to
the transition temperature t ~, given by"

(18)

In many substances J3= —;. To take into account the
discontinuity in a first-order transition, Hochli
and Scott" have proposed the formula

(19)

and they have found P = 3 in fitting the C,4 data.
They give no real justification for (19) except by

analogy with Landau's result for a first-order
transition (where P =-,) close to the stability limit.
As shown in Sec. IV their C,4 data also agree quite
well with the Landau formula obtained from our
experiment and so we investigate this question of
fitting in greater detail. Firstly, we tried to fit
our data for q (from our SHG measurement) to
Eq. (19). The results for this four-parameter fit
are given in Table III. The best fit, with the four
parameters free gives a value of P very near 3,
and if we take P = 3 with the three other parameters
free we get a fit which represents our data as well
as Landau's formula. The deviations between the
two fits [the one with I andau's theory and the other
with Eq. (19) taking P = 3 ] are plotted in Fig. 5.

These deviations are less than 5&& 10 ' (so better
than our experimental uncertainty) over the whole
temperature range from 23 to 573.2 C. If we vary
P, the values of other parameters obtained in the
fit vary as a function of P, the mean square devi-
ation increasing smoothly. However for I/P & 4.88
the discontinuity q~ at the transition becomes
negative, which has little physical sense.

If we decrease the temperature range used for
fitting, the results for a four-parameter fitbecome
ambiguous. For t = 520 to 573.18 'C, I/P can vary
from nearly 2 to 6 without changing significantly
the mean square deviation o (Table III). On a
small temperature range, as Burns and Scott '
have already shown, a four-parameter least-
squares fit is very insensitive to the value of the
exponent. Thus one can fix the exponent with some
latitude, and obtain a good fit. As the temperature
range increases the exponent is more well defined;
however it is not expected that a critical formula
such as Eq. (18) or (19) is valid over a great tem-
perature range ht (the ht/t* found for the critical
region in a structural second-order phase tran-
sition is typically" 5&& 10 '). We have also tried
a three-parameter fit, putting q*=0. There is no

good fit from 20 to 573.18'C. But between 520
and 573.18 'C we find P = —,'. (Such an exponent is
in agreement with the results of Banda et al."
as reported by Scott. ')

To summarize, in a temperature range of 20 to
573.j.a C, our data fit equally well I andau's theory

6.45
32.1

"

TABLE III. Least-square fit obtained for our mea-
surements of g with a four-parameter formula, g =g*
+C(t —t*)8, cr is the mean-square deviation. (f) follow-
ing a number indicates that this value was kept fixed for
the fitting procedure,

3 (f)

Fitted t —-23 to 573.18'C

3O6 4 (f) 4.88 6 (f)

)

C
10' fr

572.11
0.299
0.0852
3.3

572.28
0.291
0.0896
3.3

575.10
o.147
0,1734
5,1

0 (f)
0.270
6, 5

579.6
—0.182

0„405
7.6

I I t l l I

Q Temper a t tJr e C

t* ( C) 571.24
0.371

C 0 0351
10 0 4.1

572,11 572.24
0.306 O. 296
0.079 0.086
2.7 2. 7

574.29
0.0125
0.310
3.1

Fitted from t =520 to 573.18 C

2.89 3 (f) 6 (f)

574.38
0 (f)
0.320
3.1

6 (f)

574.56
o (f)
0.316
3.2

FIG. 5. Deviation 6q between the least, -square fits
using, respectively, the Landau theory and a formula
with a critical exponent P. Full line = P =3; the other
parameters are determined by fitting the experimental
points on the (23 —573.18)'C temperature range. . Dashed
line = P = —( q~ = 0) with a fit on the (520 -573.18) C tem-
perature range. Temperatures are plotted on a logari-
thmic scale for clarity.
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and Eq. (19), with P = &. In the reduced range of
520 to 573.18 C a four-parameter fit is ambiguous
but we can also find P = ~ . A three-parameter fit
with q*= 0 is also possible, and then we find P = —, .
One can ask if the similarities between Landau's
theory and formulas with critical exponents such
as (19) are fortuitous or if there is a fixed rela-
tion between them. By changing q and t units so
that q, = 1 and t,-t, =l in Landau's formula [Eq.
(17)] and choosing the origin of temperature scale
at t„(17)takes the reduced form

n' = I +(I-t)"' (20)

or

t =+2g -q (21)

Equation (19) can also be written

t=t*+k(q n*)'~-8, w th k= —(I/c)'~8. (22)

n* = 4n' j(1+3n')

k = P(4n 4n')/(-n n*) '"-"
t + = 2n'-n'-k(q-n +)'~'.

(23)

The variation of these parameters as a function
of q are given in Table IV. One sees that for q
= (1+2/&3)'~' and f = =,' one gets P = ~ . We can also

As there are four parameters, there exists a point
on the abscissa q where t and its first three
derivatives are equal in the two curves. Solving
these four equations we obtain

p = (1+3n')/(2-6n'+12n'),

initially fix g *= 0; three parameter s remain, and
so we can equate t and its first two derivatives.
On solving these three equations we obtain

2 j 4

k = p(4n 4n-s)/n-~" ~~'

The variation of these parameters as a function of
n are also given in Table IV. For q =W2 and t= 0
we have P =~6. The curves corresponding to these
fits for P=3 and P=—,

' are given in Fig. 6 with
their differences from Landau's curve [Eq.
(20)]. The values of the reduced parameters for
which the relative difference &n/n between
Landau's curve and the curves with P =

& and P =—,
'

is equal to 10 ' and 10 ' are given in Table V.
For quartz the value of t given here must be mul-
tiplied by 9.5 C to obtain the real temperature
scale. Vhth a multiparameter fit the different
curves lie even closer. One sees on Fig. 5 that
the curve for a four parameter fit with P =

&

crosses the Landau curve at four points as ex-
pected and that the curve for a three-parameters
fit (P =—,', q~ = 0) crosses at three points. One can
even fit with a two-parameter curve, imposing for
example J3=3 and q*=0, which will be valid only
in a smaller temperature range. However, if the
data are not very accurate, one can find that this
fit is acceptable, even in a larger temperature
range.

Conversely, a Landau curve can be found very
close to a critical one. But as long as there is

TABLE IV. Values found for the parameters of the
formula t =k*+0 (q —q*)' 8 taking the best contact vrith
Landau formula t =2q —q4 at a point of coordinates
{g, q).

Four parameters

3
2

(1 + WY)'~'
1.2
1

-63
-8
-0.33

0.81
1

4
3.77
3.47
3
2.53
2

-1.88
-3,32
-5.87
-7.26

Three parameters

2.11
1.32
1.07
1.01
1

0
0 44
0.653
0.847
0.96
1 -20

hw x20
3

J

-10 i 010
/

y'~/S

I ~

~/5I

t,

-63
-8

0
0.81
1

4
4.25
4.67
6
8.54

-1
-0.64
-0.41
-0.167
-0.06

0

2.29
1.33
1,10
1

FlG. 6. Plot of the reduced Landau formula g =1
+{1—t) /2 and of curves with critical exponent P=3 and
P = ~ (g*=0). The differences between these curves and
that of Landau magnified 20 times are also plotted. The
temperature scale has been changed in the figure on the
right.
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no model or theory to support a formula such as
(19) it seems better to accept Landau's formula,
which can be obtained from very simple hypothe-
ses. It is also possible that the range of validity
of the LRndRU theory ls gx'eRter for R first-order
transition than for a second-order transition,
where fluctuations diverge. Thus for a first-order
transition one must be careful in introducing a
formula with critical exponents. A multiparameter
fit has often enough freedom to fit experimental
data, which always have some dispersion. The
more accurate the dRta, the more unambiguous
the fit is. In the case of quartz, vary accurate
data are required to show deviation from Landau's
theory of the order parameter. However Landau's
theory cannot explain all the phenomena at the
transition, such as the anomalous increase of the
specific heat or the variation of elastic constant
in the P phase, which are in some way related to
fluctuations.

VI. CONCLUSION

In this paper we have introduced an order pa-
rameter q, following Landau's theory which de-
scribes the o. -I3 transition of quartz. We show

that assuming a linear relation between g and the
SHG coefficient dyyp one can obtain the temperature
variation of q by a measurement of the SH i.nten-
sity. Vfe show that with an accuracy better than
the experimental error the anomalous part of the
birefringence is proportional to q' from room
temperature to the transition temperature. This
relation also holds, but less accurately, for
thermal expansion and for the elastic constant
C«. There is also a linear relation between q Rnd

C„but only from 520'C to the transition temper-
ature of 573.2 'C. We find that for quartz q(t) is
well represented by a formula deduced from
Landau's theory. Our experimental data can also
be fitted to a critical curve with a power 3 on all

TABLE V. Values of t and g in reduced coordinates
for which the relative difference Dg/q between Landau's
formula and a critical exponent formula with four param-
eters (p = &) and with three parameters {p =

& and q* =0)
is 0, +10, and +10 . (To apply these results to quartz
multiply t by 9.5'C. )

10 3 10"

2.53
-28.3

1.91
—6.0

1,468
—0.33

1.23 1.12
0.73 0.94

1,81
-4.15

1.56
-1.1

1,414 1.3 1.20
0 0.52 0.81

the temperature range, or with a power —,
' near

the transition temperature. These values of criti. -
cal exponents can be obtained in a straightforward
way by fitting curves with power law to Landau's
curve. So the fact that one can represent experi-
nlental data for a first-order transition, with
critical exponent formula is not evidence of criti-
cal behavior. Deviation from Landau's (or mean-
field theory) can be obtained only with accurate
data, showing systematic difference from classical
theory greater than the experimental uncertainty.
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