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Theory of the vibrational spectra of some network and molecular glasses
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A theory of the vibrational spectra of glasses is presented, and equations are derived specifically for
the Raman intensities. The theory is applicable to glasses of the oxide type )such as glasses in the

system M,O-LO-SiO, -A1,0,-8,03 (where M is an alkali and L is an alkaline earth)t, as well as to
molecular glasses. It is shown when the vibrational spectrum of a glass will resemble that of a crystal
of similar composition and that such a resemblance may be consistent with considerable disorder of the
glass. It is found that some optically active modes are localized about a few atoms while others are
extended, i.e., involve the cooperative vibrations of a large number of atoms of the glass. The widths of
the peaks of the vibrational spectra are shown to increase with increasing glassy disorder. It is
calculated that Raman spectroscopy is sensitive to heterogeneities on a scale of tens of angstroms in

oxide glasses, making it a potentially valuable analytic tool for glass research. The theory is applied

specifically to calculate the Raman spectra of Na, O-SiO, and K,O-Si0, glasses and crystals and

agreement with experiment is good. The existence of several moderately strong peaks in the glass

spectra which are very weak in the crystal spectrum is successfully predicted. It is shown that the

presence of extra peaks is expected to be a general feature of the vibrational spectra of glass,

INTRODUCTION

Oxide glasses are of considerable technological
importance as well as of purely scientific interest,
and many of their properties have been investi-
gated. ' But while much use is made of oxide
glasses, their behavior is scarcely understood on
the atomic level. For example, nearly all the low-
temperature properties of vitreous silica are not
understood even qualitatively. ' In silicate, alu-
minosilicate, and borosilicate glasses there are
important physical phenomena not found in crystals
such as the mixed alkali effect' and the boron
anomaly' for which no acceptable explanation has
yet been offered.

The primary reason for this lack of understand-
ing is that the structure of glass is not known. But
while the elucidation of glass structure is an im-
portant problem there are few experimental tech-
niques which permit a direct investigation of this
structure. The usual methods of structural analy-
sis of crystals depend on the presence of order over
hundreds of interatomic spacings and are not readi-
ly applicable to glasses where no such order ex-
ists. X-ray diffraction patterns of glass can be
analyzed to yield correlation functions for atomic
positions which are probably accurate up to dis-
tances of about 10 A over which atomic correlations
seem to extend. From such correlation functions
information about short-range order and possible
molecular structures existing in the glass can be
obtained. Some cases for which this has been ap-
plied with varying degrees of success include sili-
ca7 6' silicates7 ' amorphous tetrahedrally bonded
semiconductors, '0 'vitreous Se, "the amorphous
As-Te, "and As-Se (Bet. 13) systems as well as
disordered metallic alloys. '

Other j,nformation about the structure of amor-
phous systems can be gleaned from physical and
thermodynamic properties such as ac and dc con-
ductivity, " sound absorption, ~'" magnetic relaxa-
tion, ' viscosity, ' thermal conductivity, ' and
so forth.

Another experimental technique which has pro-
vided some information about glass structure is vi-
brational spectroscopy. There have been a num-
ber of studies of the vibrational spectra of silicate
glasses, notably those by Simon, ' Haas, ~ Sweet
and Vfhite, 3 Etchpare, a Tobin and Baak7 3 Stolen, 26

and the large amount of data from Soviet workers.
In general it has been concluded from these studies
that Si04 units are the building blocks of silicate
glasses and that the short-range order of the
glasses is much like that in. various crystalline
silicates. This is in agreement with x-ray data.
Similar conclusions have been reached for phos-
phate glasses, "BeF» ' alkali germanates, ' gly™
cerol, 3' and many other systems. The infrared
spectra of lunar glasses33 have provided clues to
their thermal histories. %'ork has also been done
in amorphous Te, A sgS3, A s~Se3, where in
some cases Baman spectra clearly indi. cate the ex-
istence of some well-defined structural units. In.

amorphous tetrahedrally bonded semiconductors37
the similarity of crystalline and amorphous short-
range order has been observed, as well as some
V-V bonding i.n III-V compounds. 3'

Much more i.nformation probably could be ob-
tained from the vibrational spectra if there existed
a theory of the relationship between the lattice vi-
brations and the vibrational spectra of disordered
solids. Several people have taken. steps in. this di-
rection. Shuker and Gammons have related the vi-
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brational spectrum to the density of states of the
solid but it is difficult to apply their results directly
to glass structure. Gaskell trj.ed to relate the
widths of the peaks in the vibrational spectra to a
distribution of bond angles, an approach that di-
rectly connects structure and spectrum. Gaskell
assumed that one could calculate the vibrational
spectrum from small molecular units using periodic
boundary conditions. Assuming that the width of
the peaks in the glass vibratj. onal spectrum is due
to a distribution. of units with fluctuating bond an. —

gles, he determined a distribution of bond angles
by fj.ttj.ng a, calculated spectrum to an observed one.
Gaskell's idea is similar in spirit to the approach
of this article. Similar (but by no means identical)
assumptions underlie the molecular model of Lu-
covsky and Martin4~ for ehalcogenide glasses.

The most dramatic demonstration of structural
units in a glass by Raman spectroscopy ma, s made
by Krogh-Moe, ~ mho showed that the existence of

B,Q, groups in B,O, glass is consistent mith the ex-
tremely narrow (width less than 10 cm ') line at 808
cm ' in the Raman spectrum of B2Q3 glass. He cal-
culated that the particular frequency of the B3Q6
group is j.ndependent of coupling between such
groups. His calculation can be justified on the ba-
sis of the theory developed. here.

Mention must also be made of the work of Bell et
a/. , who have computed the frequency spectrum
of a model of vitreous silica. They have presented
some very interesting results about the nature of
the lattice vibrations of a three-dimensional ran-
dom network, especially as regards mode local-
j.zation, , but they did not report the infrared or Ra-
man spectra of their model.

In this artj. ele a theory of the high-frequency lat-
tice vibrations of glasses of the oxide type is de-
veloped and applied to a realistic case. The devel-
opment of the theory was motivated by the refer-
ences given above as well as by the measurements
desex j.bed below mhj. ch show that the vibrational
spectra of glasses, and in particular the Rarnan
spectra, contain sufficient detail to provide infor-
mation about glass structure. An important pre-
diction of the theory is that Raman spectroscopy is
sensitive to small-scale heterogeneities in glasses,
an, idea that has some experimental support.

Recently the Raman spectra. of a number of bina. ry
alkali silicate glasses and crystals have been mea-
sured in this laboratory by the author and White.
The details of these mea. surements and t'he conclu-
sions will be presented separately. However, it
wj.ll be useful to outline some of the results as they
provided much of the stimulus for the theoretical
developments reported in the body of this article.

Glasses of composition M~Q-xS&Q~, M= Li, Na,
K and 1 ~ g ~4, mere made from high-purity SiQ~
(Supersil, obtained from the Pennsylvania Glass

Sand Corp. ) and reagent-grade alkali carbonates.
The pomders mere mell mixed in the desired pro-
portions and melted in Pt crucibles in a SiC resis-
tance furnace at temperatures between 1200 and
1300 'C. The melts were stirred several times
during melting and rods 1-3 mm in dj.ameter mere
drawn after 1-72-h melting. Spectra of the rods
mere measured on a Spex model 1401 double-grating
spectrometer at a scattering angle of 90'. The ex-
citation source was an RCA ionized argon laser.
All spectra were run on the blue (488. 0 nm, 300
mW) and green (514. 5 nm, 260 mW) lines and spec-
tra mere identical for both excitation frequencies.
At least tmo spectra from each of three rods mere
run for each composition. No detectable change in
Raman spectra occurred for different melting times
(so long as the melts were clear) or for glasses of
the same composition but djfferent batches. It did
not even matter mhether or not the melts mere
completely bubble free. These glasses have high
transition temperatures and spectra were not in-
fluenced by heating due to the laser beam. Highly
soluble metasilieates were run immediately after
draming rods, but no attempt mas made to deter-
mine the effect of absorbed mater on the spectra.

Disilicate and metasilicate glasses were crys-
tallized by heating at a temperature about 50'C be-
lom the melting point for several days.

It has been found that the spectra of the glasses
are similar to those of crystalline silicates, as
shown in Figs. 1 and 2. The general features of
the glass spectra a.re (a) the strong peaks in the
crystal spectrum appear in the spectra of glasses
of similar composition. , where the frequencies may
be shifted somewhat. In spite of considerable
broadening the peaks are still well defined. (b)
Some peaks and shoulders appear in the glass spec-
trum ale.bogside the strong peaks but are not seen or
are very weak in, the corresponding crystal spec-
trum. (c) The low-frequency peaks of the crystal
spectrum become a, nearly featureless contj. nuum in
the glass spectrum.

The 1100-cm peak appears in the spectra of all
glasses except the pure metasilicate (x= 1). Figure

shows the midth of the 1100-em ' peak as a func-
tion of composition. . All curves have minima at ap-
proximately the disilicate composition. This com-
position is expected to be most ordered, while com-
positions on either side of the disilicate should shorn

more disorder due to random crosslinking of vari-
ous moleeula. r units. Thus the peak midths increase
as x becomes greater than or less than 2. These
curves of Fig. 3 strongly suggest. that the peak midth
of the Raman spectra increases with increasing dis-
order of the Si-Q framework of the glass.

Further, for given. alkali concentration, the fact
that the peak width increases a,s the radius of the
alkali decreases, as seen in Figs. 1—3, is inter-
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FIG. &. (a) Raman spectra of Na20-Si02 crystal and glass; (b) Raman spectra of K20-Si02 crystal. and g&ass.

preted to mean that the silica network becomes
more disordered as the size of the modifier is de-
creased. The tentative explanation for this is that
the smaller alkalis can shield the nonbridging oxy-
gens and so lower the free energy even with con-
siderable disorder. The important point is that the
alkali ions affect the peak width, for the high-fre-
quency peaks at any rate, only insofar as they af-
fect the order of the silica network. The alkali ions
are weakly coupled to the oxygen ions and their vi-
brations appear to have little direct effect on the
Raman spectrum at the higher frequencies.

The combination of the Raman spectra and crys-
tallization behavior of binary-alkali- silicate glasses
is not consistent with a polycrystallite model.
Quite simply, the rate of crystallization in binary
alkali silicates decreases markedly in the direction
Li-Na- K. As seen in Figs. 2 and 3 the order of
the glass increases in the direction Li -Na -K,
while just the opposite is expected to be true for a
polycrystallite. Changes in the spectra as a func-
tion of composition can be explained qualitatively by
a random-network-type structural model applied to
the sj.lica framework. In this model the silicons
are approximately tetrahedrally coordinated by

oxygens and these tetrahedra are linked at the ver-
tices to form a network. The amount of disorder
increases as the correlation in position and rela-
tive orientation of the tetrahedra increases, and
this appears to be related to the sj.ze of the alkalj. .
Consequently, the short-range order j.n the glass is
some greater or lesser distortion of crystalline
short-range order, depending on the composition.
These conclusions are consistent with present ideas
of glass structure. '~'45

There is another aspect of Raman spectroscopy
which makes it a very attractive tool for glass re-
search. It appears that the Raman spectra are
sensitive to heterogeneities in glass whose charac-
teristic dimensions are of the order of tens of ang-
stroms. Theoretical support for this idea is pre-
sented in Sec. V. Some experimental results whj. ch
support the idea are (a) ln amorphous zirconia,
Keramidas and White detected crystallites whose
characteristic dimensions were about 35 A by Ra-
man spectroscopy. (b) Brawer and White detected
phase separation in the system K&O-SiO3 by Raman
spectroscopy. Unsuccessful attempts by Charles47
to detect such phase separation by electron micros-
copy have placed an upper limit on the size of the
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FIG. 2. (a) Balan spectra of alkali disilicate glasses; (b) Raman spectra of alkali disilicate crystals.

separated regions as less than 100 A.
There has been a large amount of work on the

Raman and infrared spectra of very small crystal-
lites in a polycrystallite material. 48 ~' In these ap-
proaches, changes of spectra due to surface effects
are detected. End effects also allowed Tuinstra
and Koenig ~ to detect very small partj. cle size in.

glassy carbon. The detection of small glassy het-
erogeneous regions by Raman spectroscopy is based
on a principle different from detecting end effects,

as discussed in Sec. V.
The above discussion shows that it is possible to

obtain structural information about glasses from the
Raman spectra. Therefore it would be useful to
have a general theoretical treatment of the vibra-
tional spectra of glasses of the network type, such
as the silicates, germanates, borates, and others,
and such a theory is developed in this article.

In order for a theory to be applicable one must
have a useful model of the atomic interactions in the
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system under consideration. For the vibrational
spectra and dispersion relations of some silicates,
a model with atoms interacti. ng via nearest-neighbor
harmonic forces gives reasonable agreement with
experiment. '3 '5 This model is adopted here. The
extension of the theory to include long-range Cou-
lomb forces can be accomplished within the frame-
work of the theory.

In general terms„ then, this article presents a
method of calculating the Baman spectra of certain
disordered structures, in which the atoms interact
with nearest-neighbor harmonic forces. The treat-
ment is general enough to be applicable to network
glasses of the oxide type as well as to molecular
glasses such a.s nitrates, ' but will not apply to
glasses like amorphous Si or Ge.

The following points are dealt with by the theory.
(a) It is shown under what conditions the glass

spectrum will resemble the spectrum of a related
crystal. In. some disordered solids such as amor-
phous Ge (Refs. 3V and 41) or Ca-stabilized ZrO~, ~7

the Raman spectrum bears little relation to crystal
spectra, while for many oxide glasses, glass and
crystal spectra are similar (Figs. 1 and 2).

(b) Some qualitative principles are formulated
which can be applied to the Raman spectra of glass-
es. At present, the state of the art appears to be
that the Raman spectrum of one single glass is in-
formatj. ve only as it is compared to the spectra of
otheI related glasses and crystals. It is important
to develop a framework in which such comparisons

can be made.
(c) In order to determine some information on

glass structure, one mould assume a model of the
structure and then calculate its vibrational spec-
trum according to the prescription given here. If
the calculated spectrum matches the observed one,
then the structural model has some degree of valid-
ity. In general, different structures are expected
to lead to similar results, so the theory cannot be
used to deterroine a unique structure.

This paper is composed of seven sections. In
Secs. I—IV the equations of motion of the glass lat-
tice are approximated and formulas for the Raman
spectrum are derived. In Sec. V the results of this
treatment are summarized together with some qual-
Itative conclusIons Rbout the Ra.IQRn spectl R of
glasses including the size of the heterogeneities to
which it is sensiti. ve. In Sec. VI the theory is ap-
plied to the Raman spectra of crystalline and glassy
alkali metasilicates. The interatomic-force con-
stants and polarizabilities are chosen by matching
the ca,lculated and observed crysta, l spectra. Then
the silica network is disordered and the Raman
spectrum again calculated. The only parameters in
the glass ca,lculation are structural. The frequen-
cies and polarizabilities are computed directly with
no ad Aoc adjustments. In Sec. VD the results of
the calculations of Sec. VI are summarized and the
conclusions drawn.

I. EQUATIONS OF MOTION OF GLASS

According to present concepts ~'5'7' 3'4~ glasses
such as the inorganic oxides consi. st of networks in
which glass formers such as the metals Si, 8, Ge,
and Al are bonded with strong partially covalent and
partially ionic bonds to electronegative atoms such
as oxygen. Analysis of x-ray patterns shows that
structures such as BQS triangles and SiQ4 tetrahedra
are found. These structures are not exactly tetra-
hedral or triangular, and small deviations are
coIQIQon.

In this article we will be concerned with the
structure of this network. Modifier ions such as
the alkalis and alkaline earths may also be present,
clustering somehow about the nonbridging oxygens.
The vibration frequencies of the modifiers are usu-
ally two to four times smaller than the frequencies
of the strong optically active vibrations of the oxide
network. Thus the presence of the modifiers in a
variety of different equiljbrium positions58 eo is
taken into account in a phenomenological way by as-
suming fluctuating force constants between some of
the network atoms and stationary modifiers. Only
the motion of the oxide framework is studied here.

The structure of many glasses can be represented
as i.n Fig. 4, where the large circles represent a
collection of atoms and will be called a stmctuxal
unit, or unit for short. The solid lines represent
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bonds between atoms in different units. These
bonds can be of any magnitude relative to the bonds
between atoms within the same unit. If these inter-
unit bonds are very weak compared to the intraunit
bonds, one has a molecular solid. Thj.s is general-
ly not the case for inorganic oxide glasses, where
the intraunit a,nd j.nterunit bonds are the sa, me met-
al-oxide bonds. In spite of this, as will be shown,
it is a good approach to use as a starting point a
molecular solid.

The individual units may be joined in one, two,
or three dimensions a,nd ejther regularly or irregu-
la.rly. A possible two-dimensional disilieate glass
is shown in Fig. 5, where the nonbridgj. ng oxygens
are not shown and where some structural units are
surrounded by dotted circles. In alkali metasilicate
M2Q-SlQ2 and dlslllcate Af2Q-2SlQ2 the units I1ave
the composition Si2Q6 and Si20» respectively. In
82Q3 glass the natural structural unit appears to be

BO t.
The structural unit j.s a generalization of the idea

of the unit cell of a. crystal. It is important that one
can physica//y construct the glass from these units
The reason is that the atomic displacements are ex-
panded in terms of the normal modes of the indi-
vidual units. Thus in silicates an Si04 tetrahedron
cannot be used as a structural unit since the gla, ss
cannot be constructed from such units. Similarly,
BQ3 units cannot be used in borates and AsSG a,nd

AsQ3 units are unsatisfactory in arsenic glasses.
The structural units need not have the same com-

position or the same average properties. For sili-
cates of composition. Na20-xSi02, where 1 &x & 2,

FIG. 4. Schematic model of network glass. Open cir-
cles are structural units and signify a collection of atoms.
I.ines represent bonds between atoms in neighboring
structural units.

SILICON

c OxYGEN

FIG. 5. Two-dimensional schematic model of a disil-
icate glass. Open circles are ozygens, shaded circles
are Si. Nonbridging oxygens are not shown. Several
structural units are surrounded by dotted lines.

there are on the average 2/x nonbridging oxygens
per silicon. Thus, at the very least, the glass
must be made up of Si2Q5 and Si206 structural units.
In the case where all structural units are the same
(on the average) our equations reduce to those ot a
crystal in the limit of vanishing dj.sorder when all
structural units become identical. When the unj. ts
are the same on the average, one can defj.ne a
crystal corresponding to the glass as one which has
a unit cell mhose structure j.s an average over a,ll
the structural units of the glass. Such a crystal
wj.ll be referred to as the corresponding n'ystal.
Actua. lly, the corresponding crystal may be a ficti-
tious creation which may not exist in nature and
mhose existence may in fact be impossible. For
such eases the heuristic definition of the corre-
sponding crystal is given a mathematically precise
definition following Eq. (4).

I,et n label the units. n is a scalar integer for
one dimension, or a vector in tmo or three dimen-
sions. I et l label the atoms withi. n the units.
There are M+ 3 atoms in each unit and X units in
the glass.

The equations of motion of the atoms in the har-
monic approximation are

where
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(x „x„x,) = {x,y, z) .
V ~ is the force-constant matrix and m(/) is the

mass of the /th atom. It is assumed that central
and noncentral harmonic forces act between near-
est neighbors. It is possible to extend this theory
to more general cases, as will be discussed later.

It is useful in some cases to define a zeroth-or-
der force-constant matrix e' ' as

(o) '

v g=Vg —&V~.

Fox' example, consider the case of Fig. 6, where a
unit is shown coupled to three other units. The
atoms 1, 2, 3, all lj.e within the nth unit and the
angles Q, , Q2, $3 are in general all different and
fluctuate from unit to unit. It may be desirable to
have v+' describe the case where all the angles Q,
are equal or where some natural symmetry condi-
tion is met, while fluctuations in Q,. are absorbed in
4V. e' ' is not the same for all units but only has
some sort of uniformity in the angles Q, . In the
above example, v'o' is useful when the P, are the
angles between two bonds, one an interunit and the
other an intraunit bond. Other cases may occur
when the intex'unit force constants vary.

For network glasses this viewpoint of a glass as
separate units bonded together is feasible only when
there are more interatomic bonds within a unit
than bonds between a unit and all its neighbors.
This immediately eliminates amorphous Si and Ge
from consideration. The silicates and borates fall
nicely within this approximation.

Since each unit is considered a molecular entity,
lt ls reasonable to use Rs R zeroth-order solid the
individual units. This means the displacements
X„(n, /, /) of the (n, /)th atom will be expanded in
terms of orthonormal basis states for the nth unit.
There are different ways of determining these basis
states.

In. the case of a small amount of disorder one
would use the basis states u satisfying

—E(n, u)'m(/)u (n, /; u)

= P v,",' (n, /1n', /')u, (n, /'; /J, ) .
n', l', 8

Note the presence of n and not n' in the gz on the
right-hand side of (3). The basis states are calcu-
lated with periodic boundary conditions, so there
is a dynamical link with adjacent units. This ap-
proximation is useful only when there are correla-
tl, ons ln the conf lguratlons RDd positions of neigh-
boring units.

In the case of a lot of disorder, when there is lit-
tle correlation in the relative positions of neighbor-
ing units, one would use basis states calculated
fx'om the equations

SILICON

OXYGEN

FIG. 6. Structural unit for vitreous silica. Variations
of Q~ should be incorporated into DV as explained follow-
ing Eq (2).

—Z(n, p, )'u, (n, /; p, )m(/)

= Q v,",'(n, /1n, /')u, (n, /'; /L) . (4)

Qm(/)u {n, /; u)u (n, /'; p, )=6. .. ,

Note that in (4) the v' ' has no n' in its argument.
These equations put in no dynamical link to neigh-
boring units. The basis states of one unit are cal-
culRted assuming Rll its D81ghbors are CODstrRlned
to be at rest. Long-range Coulomb forces can be
absorbed into F. .

The manner in which the spectrum of the corre-
sponding crystal is determined depends on the cj.r-
cumstances. If there is an obvious crystal struc-
ture to use (meaning that the glass is clearly a dis-
tortion of this pa, rticular crystal), then one calcu-
lates its optically active modes from Eq. (3) in the
usual manner for any crystal. Otherwise the op-
tically active modes of the corresponding crystal
are calculated from Eq. (3) using (v,'8') instead of
v,'OB', where (. . .) denotes an ensemble average over
the random variables in the fox ce-constant matrix.
This can be done only if all the units are, on the
average, the same.

The u's obey the orthonormality conditions
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Q m(/)u (n, l; p, )u, (n, l; u') =O, „. . (6
0/p l

Since the u's form a complete set, the X may be
expanded:

X (n, l, f) =P q(n, u, /)u„(n, l; p) .

Putting (7) into (1), the equations of motion are

—„,,q(n, u„&) = —&(n, /, )'q(n, u„&)+ Z 4(n, uo, u')e(n, u', &)+ Z p(n, uol n', u')[v(n', u', &) —e(n, u', &)],
@'(&// O) n', //'

(8)

P(n, u, ln', u') =g u (n, /; po)V„(n, /In', /')u~(n', /'; u') .

The value of g depends on whether one uses Eq. (3) or (4) for the basis states. For the case of more dis-
order [Eq. (4)], we have

P(n, po, u') = Q u (n, /; po)[V,~(n, /In, /) —v"~'(n, /ln, /)]u, (n, /; /I')+ Q P(n, p, ln', p'),
0/, g, l n'&~n&

whereas for the case of more order [Eq. (3)], we have

t/I(n, go, p') = P u (n, /; uo)[V z(n, lln', /')u~(n', /'; p')- v,'0&'(n, /In', /')uz(n, l'; p, ')],
e,g, n', $'

while in both cases

&(n uo) =&(n uo) —0(n VQ po) ~

(10a)

(10b)

We note that g(n, p, p, ') as given by Eqs. (10) is
not symmetric, i.e. ,

4(n I p)&0( nu u) ~

For our purposes this form is satisfactory but for
some cases it may be necessary to rewrite Eqs.
(8)-(11)so that g is symmetric.

It is now desired to approximate Eq. (8) and thus
to determine the nature of those solutions which are
relevant to the vibrational spectra.

In general, for all n and the modes p.o of interest,
the relations

I p(n, /. I", /
')

I
«&(n, /. )',

IP(n, uo, v')l«&(n, uo)'

will hold.
Equations (12}are crucial to the ensuing discus-

sion and must be true for the theory developed here
to be applicable. They will not be true for all
modes p, . They wiQ obviously hold for the high-
frequency modes of molecular solids such as alkali
nitrates and carbonates. In Sec. VI Eqs. (12) are
shown to hold very well for the high-frequency
modes of a model of metasili. cate glass. Equations
(12) also imply that Raman spectroscopy can be

used as an analytic tool for glass research, as dis-
cussed in Sec. V.

If (12) holds, then Eq. (8) describes a lattice of

harmonic oscillators coupled weakly to each other.
If all P(n, p [n', p') =0, Eq. (8) reduces to N uncou-

pled sets of equations. In each set there are the

coupled equations

Z,&q(n, uo) = —&(n, Vo)'q(n, /Jo)

I &(; /, }'—fl(n, v')'l»l p(, koln', /
') I,

l&(n, uo)'- fl(n, u')'l»IA(n &o u'}I .
(14}

+ P P(n, u&, u')q(n, u'),
g ' (8//O)

which describe the variations of the gth unit uncou-
pled from its neighbors. ($ becomes symmetric ln
the limit of vanishing P. ) The secular equation for
(13) must then be solved to get the modes for each
unit (this may not be necessary in practice). Equa-
tion (13) is the molecular solid approximation dis-
cussed above.

In general p&0, so all the modes are coupled and

scatter into each other. Because of the'weak-cou-
pling (12) the individual units will execut many vi-
brations at their resonant frequencies bef re being
damped by motions of their neighbors. Th widen-
ing of the peaks in the gla. ss spectrum is of rder g
and Eqs. (12) imply the peaks will be fairly harp.
This means that if the solutions to (4) are si ilar
to the solutions of (3) for the corresponding c stal
the Haman intensities and frequencies of the n rmal
modes of the glass will resemble those of the c r-
responding crystal.

Consider now any two modes for which, for m6st
nandn~
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(fi(n, uo)') = flo(uo)',

([&(n, q,)'- n, (u, )']') = o(i,)' .
(is)

(18)

Equations (12) means that o «5Po (henceforth, for
the sake of brevity, the explicit p, o dependence will
be dropped where no confusion can result).

Let p(n, f) be the time-dependent polarizability of
the nth unit (we discuss the Raman spectrum in this
article. One can carry through the discussion with
very little changes for the case of the infrared ab-
sorption). A classical bond-stretching model is

These modes po and p,
' will, to a good approxi-

mation, be uncoupled. For the first part of this
discussion the inequalities (14) are presumed to
hold for all the modes of the solid. Later on the
case of two modes close together is considered.

We note that nothing we have done so far requires
that all the units be the same. If they are not all
the same, however, Eqs. (14) will hold only for
some special modes.

Thus as a first step in approximating Eq. (8) the
quantities P(n, pin', p ) and g(n, p, p, ') are ignored
for

CHILI

p'.
The quantity P fluctuates about a nonzero mean,

in general. Define the average

P(uo) = (P(n vo l

n' vo))

where (. ~ ~ ) is the ensemble average over all units.
It will be shown that only this average P need be
considered and that fluctuations in P are of second-
ary importance.

Then Eq. (8) can be approximated by the M equa-
tions (for the M optically active modes):

d2

dfo g(n, Po) = —fl(n, Po)'q(n, Po)

(nn)

+ P(po) g [q(n', po) —q(n, po)], (16)
n'

where (nn) means the sum is over nearest neighbors
only. The validity of the approximations leading to
(16) will be discussed as the behavior of (16) is
analyzed.

Equation (16) describes individual oscillators,
each with a different resonance frequency, and all
coupled uniformly by P(p, o). In this approximation
the disorder is taken into account only in the vari-
ation of 02 with n. Implicit in Q2 is the fluctuating
coupling between units, as seen from the defining
equation (11), as well as fluctuating force constants
due to modifiers.

Equation (16) is identical (apart from the second-
order time derivative) to the tight-binding Hamilto-
nian used for electronic properties. An equation
similar to (16) has been analyzed by Andersono'
who gives considerable insight into its behavior.

In Eq. (16), Q(n, uo) fluctuates about a mean
Ao(po) with variance o(po). That is,

employed in which the polarizability of a bond is
proportional to its change in length from the equi-
librium value:

P(n, f) = g q, (n, I, I')[Xo(n, I, f) —X,(n, I', f)]

+
2

g Ro(n, l
~

n', l')[Xo(n, /, f)
f3, l, l', n'

o, (n, po) = g Qo(n, /, l')[uo(n, l; go) —uo(n, l'; po)]

+ g Ro(n, l~ n', l')uo(n, I; p,o)
g, l, l', n'

(2o)

as a polarizability of p, 0th mode due strictly to the
nth unit and without reference to neighboring units.
This is the quantity which will appear in all the fi-
nal expressions derived here.

The vibrational spectrum is determined from the
approximate equations of motion (16). The relative
values of the parameters where a reasonably accu-
rate calculation can be made are

(i) P «a/4d,

(ii) P~&

where d is the number of dimensions of the network.
It is well known that Eq. (16) has a quite different

behavior depending on whether (i) or (ii) holds. o'oo

In general, the two types of behavior can occur for
the same glass but different modes po, regardless
of which set of basis states, Eq. (3) or Eq. (4), is
used.

It is useful to note here that Eq. (16) has in it the
seeds of various observed phenomena. Consider
the case of enough disorder so that Eq. (4) is used
to calculate the basis states. Suppose that the po-
larizabilities n(n, po) from Eq. (20) are different
for these basis states than they are for those of the
corresponding crystal which are calculated using
periodic boundary conditions, Eq. (3). Modes which
are inactive, or very weak, for the corresponding

—Xo(n', l', f)],

where the Q term gives the polarizability within
each unit while the R term gives that due to inter-
unit bonds. The —,

' is used so that when the polariza-
bility is summed over n, ea-eh interunit bond i.s
counted only once.

Here Q can be written explicitly as

yo(n, /) —r, (n, /')

Ir(, l) —r(n, l')
I

'

where r(n, l) is the equilibrium position of the
(n, l)th atom. There is a similar expression for

The proportionality constant has been set equal
to unity for convenience.

It is useful to define
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d= f(&u)
d 1

so dpi' so
(22)

The lifetime v is now estimated for very small P.
Suppose that at time t = 0 all the atoms of the lat-

tice are at rest at their equilibrium positions ex-
cept the noth, which is displaced one unit and re-
leased from rest. Because of the weak coupling
(12) the noth oscillator will initially vibrate in ha, r-
monic motion at its resonant frequency Q(no). A

periodic force of frequency Q(no) then acts on the
neighbors of the noth oscillator. Because of this
force the neighbors begin to oscillate at frequency
Q(no). Since p«a, the chances are that the reso-

crystal may become stronger in the glass so that
peaks may appear in the glass spectrum which do
not appear in the crystal spectrum. This is shown
to occur for the particular example. The peaks in
the glass spectrum may be widened by the disorder
(fluctuating Q) and several peaks close together may
blend into one. Peak heights i.n glass and corre-
sponding crystal may be quite different due to dif-
fering polarizabilities and peak widths. Modes
which are very strong (very weak) Raman scatterers
in the corresponding crystal will probably be very
strong (weak) scatterers in the glass and this is
what is most striking when one compares the glass
and crystal spectra of Figs. 1 and 2.

II. CASE OF p(& 0/4d

In this case the oscillators are simply taken to be
independent of each other. The Raman intensity at
angular frequency & is

std) Qa(~- =c(, uo))c(» uo)')
n

where ot is given by (20). The use of (20) for the
polarizability follows from the fact that the motion
of neighboring units is uncorrelated, as discussed
below. A classical model is assumed in which the
radiation-matter interaction is described by one
scalar parameter —the polarizability —and the sam-
ple size is presumed negligible compared to the
wavelength of the incident radiation. Thus the fre-
quency of the excitation source appears only in the
constant of proportionality which has been set equal
to unity in Eq. (20).

Formula (21) holds for each mode po such that the
condition P(((&o) «o(Po)/4d is satisfied. If n is
small, the mode will be a weak scatterer and pos-
sibly not observable. The shape of the peak in the
spectrum is determined both by fluctuations in ~
and fluctuations i.n 0, so the peak shapes may not
directly give the distribution of frequencies.

The result (21) holds strictly for P=0. For non-
zero P each oscillator interacts with its neighbors
and thus will have a certain lifetime for vibrating
at the frequency &. Say the lifetime is v. Then

For small p the average value of )r —np~ such
that (22) holds is proportional to q ', where

"E & (no& 2+8] ~ ~~
p

q lI d&d P(o))+ — P(Q(no))
"r.n (nO) ~-i]' ~~ Q n()

and P(o)) is the probability that any oscillator ha. s
resonant frequency &. Thus the lifetime of the os-
cillator is proportional to

(p/o)&o(no) lop&0(no)) )nccnst

as P- 0. Consequently,

(24)

a'&)

dp ""'-.
i=0+.

=0 (25)

for all orders of derivative j.
Equations (24) and (25) indicate that even for fi-

nite but small P the result (21) will be satisfactory
approximation to the Raman spectrum when the
modes are localized. It is clear from the discus-
sion that the lifetime (24) will be small when near-
est neighbors have such different frequencies that
they vibrate independently of one another. If an
atom has n neighbors, the probability that no neigh-
bor has frequency within P of a given one is

(1 —P/a)" .

This must be close to unity for (21) to be valid, so
that

)tp/o «1 . (26)

This result can be given a physical interpreta-
tion. For many cases n=2d for d di.mensions, and

4I3d is the bandwidth, in frequency squared, of a

nant frequency 0 of any neighbor of the noth oscil-
lator will be far from Q(no) so that

i
Q' - Q(n, )'

i

» p .
Then the amplitude of a neighbor for vibrations at
the frequency Q(no) is a factor of the order P/o
smaller than the amplitude of the noth oscillator.
The argument may be continued so that at some
site n' the amplitude of the atomic vibrations at fre-
quency Q(no) will be about (P/o)'" ' '. Therefore the
vibrations of the noth oscillator are localized.

Eventually a distance )r —np~ away one will come
to the rth oscillator of frequency Q(r) such that

i
Q(r)' —Q(n, )'i & P,

and hence near the resonance frequency of the noth
oscillator. The rth oscillator can be driven at res-
onance by its neighbor, which is driven by its neigh-
bor and so on back to the original one, so that en-
ergy may then leak away from no. The lifetime for
this is on the order of

p
Ir-nol

P 0
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crystal with all A(n) the same. The condition (26)
is then

M(n, n') =1 n, n' nearest neighbors

= —C n = n', C = number of neighbors

=0 otherwise . (28)

let the eigenfunctions of this matrix be t)(k, n)„
where k labels the eigenvalues v-„. There is always
an eigenvalue voa= 0 for v(0, n) = 1 which we take as
corresponding to k =0. All other ei.genvectors are
orthogonal to this one.

which states that the frequencies of neighbors are
so different that no band is formed and waves can-
not propagate .Since, from (24) and (25), f((d) in-
creases in width only very slowly with P, E(l. (21)
will be accurate so long as (2V) is obeyed.

The discussion leading to (25) is a heuristic
treatment of E(l. (16) in the case P/ois 'very small.
A very elegant treatment of this equation has been
given in the paper by Anderson. 61 Anderson obtains
the result that there is no transport of energy for
values of P/o smaller than a certain critical value,
at least in three dimensions. On the other hand,
the above argument presumes -a small but finite
lifetime for nonzero P which is estimated in (24).
In any event both approaches indicate that E(l. (21)
is a satisfactory approximation to the Raman spec-
trum in the limit of small P.

III. CASENHENP & o

As p increases, the oscillators are coupled to-
gether by springs whj. ch become more and more j.n-
compressible. For optj. cally active modes jt be-
comes energetically favorable for the oscillators to
vibrate in phase at a single average frequency, in
order not to compress the connecting springs.
Thus, neglecting fluctuations in polarizability, I(+)
is expected to become narrower as P increases.

In terms of the discussion of Sec. II, when P ~e,
it is certain. that many neighboring oscillators will
have their squared resonant frequencies within P of
each other. Bands are formed and there will then
be a rapid transfer of energy from one oscillator to
its neighbors, then to their neighbors, and so on,
via nonlocalized lattice waves.

In the limit P & o, the fluctuations in A(n)~ are a
perturbation on a uniform system. The oscillators
will tend to vibrate cooperatively and the zeroth-
order eigenstates are the traveling waves e'"'" (in
the case of a regular arrangement of units) rather
than the opposite extreme of highly localized modes.

In general, the units will not be regularly ar-
ranged and the zeroth-order eigenstates of E(l. (16)
will be the eigenfunctions of the matrix

("'(")&=A'- '-2 I'A '
Qp —+ —2sZ Ao

(85)

For small v» the g are approximately plane waves
and k is an approximate wave vector. This is be-
cause the eigenfunctions of the matrix (28) for small
k describe long-wavelength sound waves propagating
ln a disordered continuum.

Expand

q(n, t) =
~

Q hf(t)n(k, n) .
k

Writing the polarizability (20) as

o.(n, t() = o.(u)+«(n, u),
o.(tL) = ((r(n, tL)&,

we have for the net polarizability

g P(n, t) = Xn h, (t)+ g ~n(n)t (k, n)h;(t) . (82)
fl n, k

Taking the Fourier transform, the Raman intensity
ls

f((o) - n21m(ho((u+ te)&

~ Z((& —E&a(K)u(k, n)) )mh-„(a+(a)). (M)

If o, » (b, n ), the first term will dominate and the
Baman peak will be sharp. If, on the other hand,
(tnn )» (). ~, then the second term will dominate and
one has, ignoring correlations between Pg-„and the
A~ term,

f((g) - &~ tt(n)'&g((g),

which is proportional to the density of states g((d).
This second case has been dealt with by Shuker and
Gammon. The magnitude of the density-of-states
term may be estimated as follows. The net band-
width in A for d dimensions is 2Pd/Ao, where Ao is
the center of the band, so the density of states can
be taken as approximately the square dj.strj.bution:

g(m) a(AO/2pd, —pd/Ao ~
&u ~ pd/Ao

= 0, otherwise .
Then the peak height due to the density of states

is approximately

C(Q n'&A, /2Pd),

where C is a constant of order unity.
The first term of (33) is expected to be more im-

portant than the second term for network glasses
because the well-defj. ned molecular units are likely
to have weQ-defined polarizabiliiies. Thus we de-
termine (ho) for E(I. (16).

The ensemble average (ho) is estimated by ex-
panding and resumming the 'resolvent using well-
known techniques. 6~ In the usual quasiphonon pic-
ture
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where C is the same constant as in (34).
The equations for the h„-(~) are

((g; —(g')h;((u) =Q o(p, n)*a(n)o(k, n)h-„((g), (3'?)
n, k

Q(n)' = Qoa+ a{n),
3

Q)k = 00+ V~g

(38)

(»)
In the usual way, one then defines the diagonal

Blat r lx

(40)

Then the first term Df (33) gives a contribution to
the Raman inten. sity

Q F
(Q — )' I'

The mode p,o contributes a sharp peak, of width l",
to the Raman spectrum. The height of the peak is
equal to

~k ~0 ~

R-O
k (48)

mation to Eqs. (45) with 5 functions for frequencies
is not valid. The first approximation j.s instead to
use (47) for Dg in the second term on the right-ha. nd

side of (45). Similar approximations have been
used to calculate sound absorption and the fre-
quency spectrum of disordered crystals. 8' (See
also the self-consistent equation of Abou-chacra
et af. ~)

The use of D; self-consistently removes the sin-
gularity at the band edge. Physically it puts into
the scattering the finjte lifetime of the final state.
Then we have

o' g 21'z(e)Qo I o(k, n) [ I o(p, n) ~

~

(Qo+ v~ —aPo —R~) + (2I'~Qo)

and a similar equatio~ for A~.
If I' is small enough [see Eq. (53)] then the most

important terms 'Ln (48) are for ~ kl && 1 t. e. for
small IkI. That is, the k =0 mode mixes only with
nearby modes so that it is lightly damped. For
small I X I it is sufficient for our purposes to let

Oky p ky &

V;-„=—Q o(p, n)*A(n)o(k, n) .
n

(41)

(42)

v„- Pk

Also for small IkI the continuum approximation
holds for the eigenvectors and eigenvalues of (28),
so k is a wave vector and I o(k, n) I- 1 to order h~.

Thus for

(50)

and, in the usual way, on.e finds

1
Dk 3

Q)w —Q) —Z~
k k

z-„=-(v--&,+g(v--D- v- -) + "
ky

(43)

(44)

(45)

we have

dk 21'OAO' o
„~ (2~)" P~h'+(2I, Q,)'

for d dimensions. The solution to (51) is

where (. ~ ~ };means that only irreducible diagrams
are used ln computing the ensemble average.

I et w be near Ao. Then in the quasiphonon ap-
proximation m'i, 4

Z-„=- ff-„((u) + 2il'-„((u) Qo,

where gk and I'k- are real and, as will be seen,

I'"„(Qo)«Qo .

(46) The results are valid only when. terms IkI «1 are
most important in (48). This is true when 2I'oQo is
much less than. the maximum value of v~, so that

2I'qQO«4pd
Then we ha, ve

3.

Qo+ v,' —(u' —ft-„((o) —2iI'.„((o)Qo
' (47)

From (43), (ho} has the form (35). It therefore
remains to calculate I'o. The k=0 modes are on. a
band edge and, in general, the frequency spectrum
is singular there. Thus the usual Born approxi-

for d dimensions.
Consider now what happens when P fluctuates. In

the region P «o/4d it was possible to ignore P en-
tirely in the result (21) for the Haman intensities,
so we may safely ignore its fluctuations. (The
RMS of the fluctuations of J8 are expected to be of
the order P itself. )

In the ca,se P & o, Eq. (37) has a.n extra term,
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y,'; -—Q ~p(n')e""'" "
l
l

f fp f
f „-(~),

n'

lkl, Ipl«1,

»()(o)- 2 ()(»»J, »', » ) - ()(»»),
lit

„(k n) 8'I n

(58)

0 (n) =&(n, 1, 2) —P P(n, 1fn', 2),

P (n)=P{n lln-»2)=P{n-1, 2ln, 1),

(56)

the two modes of the same unit and between modes
p=1 of the gth unit and mode p, =2 of the a+1st
unit. That is lt is valid to set

P(n, 1 fn+1, 2) =O. (55)

Defining

were used, which is valid for small Ik t. It is seen
that V„o vanishes, so (53) gives no contribution to
Zo [see (45)]. This is to be expected on physical
grounds. In the k =0 modes all the atoms vibrate
in. phase with approximately the same amplitude.
Thus q(n) —q(n ) is small for these modes.

In the case that Eqs. (14) are not well satisfied it
is necessary to take into account the interaction of
different modes. This is particularly true jf one of
the modes has a large polarizability and the other a
small one, since the mixing of states can alter the
polarizability of the weak mode a great deal. In
this section we deal with a special case which will
be useful for the metasjlicate glass, which is con-
sidered in Sec. V. In this case the si.lica network
is one dimensional, so n, is a scalar integer and
each unit has two neighbors.

Consider two modes p, =1, 2 so that

p(n, 2fn+1, 2) =0 . (54)

It is assumed that

A(n, 2) & A(n, I)
for all g. There is non-negligible coupling between

1

E(l. (8) for the two modes becomes

d'—,q(n, 1)= —A(n, 1)'q(n, 1)+ g, (n)q(n, 2) + P~(n)

hn)

xq(n-1, 2)+p(I)g [q(n', 1) q(, 1}],
(58)—„,,q(n, 2}= —A(n, 2)'q(n, 2) + y, (n)q(n, 1)

+ P,(n+1)q(n+1) .

In (58), P(n, 1 I n + 1, 1)= p(l).
In the system under consj.deration the following

inequalities. are satisf ied:

f
()', (n) f

& 5
f A(n, 1)' —A(n, 2)' f,

l p, (n}l & 8
f
A(n, 1)'- A(n, 2)'l,

fp(I)f le, l, lp, l.
Therefore the modes are weakly coupled. It is a
simple matter to transform E(ls. (58) to the form
(16) by using ordinary two-state perturbation theory
and using the approximations (59) to simplify the
results. It is not necessary to carry out this pro-
cess explicitly here. The results are given below.

The equations of motion are

(6o)—,a(n, 1)= —M, (n, n —I)'a(n, 1) + [P(l)+ (P, (n)ha(n —1, 1))] Q [a(n', 1) —a(n, 1)],
n'

(nn)—
p a(n, 2) = —M2(n+ 1, n)'a(n, 2) + (Pp(n)h, (n, 2)) Q [a(n', 2) —a(n, 2)], (6

n'

where the a s are the transformed normal coordinates which are linear combinations of the original q's.
Re have

~,(...—1)' =-.'[e,( )"e.(.—1)'] —.'(-)'[[e,(n)' —e,(.—1)']"4P.(.)'}'",
1f(n, n —l, p)=

( ),
p

f (n, n —1, p)=— p.(n)
S,{n, n —1) y, (n)' —~,(n, n —1)' '

p.(.)»,(, » —()=IX~
( ),

'
( ),

W, (n) = ,' [A(n, 1) + A—(n, 2) ] + —,'(-)' ([A(n, 1) —A(n 2) ] + 4P (n) }/

(62)
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0()
N, (n) Q(n, 1) —w, (n) }'

1
h2(n, 5) =

( ),

Xn=1+- 2 1/2

n(n, 1)'- W, (n)'

(t) 60(n) = %0(n) pm(n)hs(n) 60)ha(n —1, 50) —pm(n+ I)hq(n+ 1, 60)h~(n, |)o) .

(65)

The polarizabilities A(n, p) of the pth mode (p = 1,
2) for the nth unit are found from (20), using (60)
and (61). One must expand in terms of the eigen-
functions (63) and use Eqs. (59). It is straightfor-
ward to show that

A(n, p) &o.(n, p)+g o((n, p)f„(n, n —1, p)(1 —6„,)

+ Q a(n, g)h„(n, p)(1 —6, p), (6't)

P(2) $ [a(n', 2) —a(n, 2)] (68)

added to (61) while in all equations, n —1 (n+1) is
replaced by n+1 (n —1). All this does is to put

neighbors that were on the right-hand to the left-
hand side and vice versa. Equation (6V) can make
a significant difference in mode intensities.

V. DISCUSSION OF RESULTS

Here the results of Secs. I-IV are summarized.
Some of the implications of the theory for using
Raman spectroscopy as an analytic tool for glass
research are discussed.

Assume ihe structural units are the same on the

average. Then the vibrational spectra of a, network

glass will be qualitatively similar to the spectrum
of a corresponding crystal so long as (a) the basi. s
states given by Eq. (4) are similar to the basis
states of the corresponding crystal )which are solu-
tions to Eqs. (3)]. (b) The inequalities (12) are
very well satisfied, and the inequalities (14) are at
least a fair approximation.

The points of similarity in glass and crystal
spectra are (i) the peaks that are strong (weak) in

the crystal spectrum are expected to be strong

where fluctuations in o( and f from unit to unit have

been ignored.
In the case that

P(n, 2~ n —1, 1)+0,
P(n, 1~n-1, 2) =0,

P(n, 2~n, 2) ~O,

P(n, 1 ~n, 1)~O,

there is an additional term
(nn)

(weak) in the glass spectrum. (ii) The widths of
the peaks of the glass spectrum will be much
smaller than the central frequencies of the peaks,
so the peaks will be well defined.

This similarity &vill persist even though there
may be considerable structural disown'des iv the
glass. Thus the fact that the glass spectrum is
similar to that of a crystal in no way implies that
the glass is a polycrystal or even that it is highly
ordered. It means merely that the disorder is a
perturbation on the vibrations of some structural
unit. The similarity of the spectra is quite striking
for the binary alkali silicates as seen in Figs. 1 and
2. See also the results for chalcogenide glasses. 4'

If the inequalities (14) are satisfied, each mode
can be treated independently. The width and scat-
tering intensity of a particular mode depends on the
ratio of the RMS deviation of the squared frequency
Q~ to the average coupling constant P. If this ratio
is large the vibrations are localized and the Raman
intensity is calculated from Eq. (21). The limit of
validity of (21) is given by Eq. (26). If the ratio is
less than unity, the most important optically active
vibrations are cooperative and extend over many
atoms. The Raman intensities are calculated from
Eqs. (36) and (52). Equation (34) gives the contri. —

bution of fluctuating polarizabilities to the Raman
intensities.

It is of interest that varying degrees of localiza-
tion were observed by Bell et al. for the vibrations
of their model of vitreous silica.

There are two quantities of the vibrational spec-
tra which are subject to interpretation —the peak
widths and their intensities. It is quite clear from
the derived equations that the smaller the o(t() the
smaller the peak widths. Moreover, from Eqs.
(8)-(ll) it may be concluded that o will decrease
with decreasing disorder of the lattice. Therefore
it is concluded that the greater the disorder of the

lattice the greater the widths of the Peaks. This
agrees with what one would intuitively expect and,
as discussed in the Introduction, has been shown to
be the case, experimentally, for the binary alkali
silicates.

The above statement is not trivial in light of a
possible alternate viewpoint that glass is a disor-
dered crystal, so the peak widths result from a
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breakdown of selection rules making all modes of
the crystal optically active. (This point of view is
tempting when the glass structural unit and the
crystal unit cell are similar. ) This statement im-
plies that there is an upper bound to the peak widths
given by the appropriate bandwidths of the corre-
sponding crystal, so that the spectrum would re-
flect the density of states of the crystal. This is
not the case with some oxide glasses, either ex-
perj. mentally or theoretically. For example, there
is no a priori limit, apart from Eqs. (12), to the
width of a Raman peak given by Eq; (21). Expel 1-
mentally, Fig. 3 shows that the peak widths can be-
come very large. On the other hand, a density-of-
states treatment is likely to be valid for amorphous
IV-IV and III-V semiconductors. '

The polarizabilities of some modes of the glass
may be different fxom the polarj. zabilities of re-
spective modes of the corresponding crystal. This
can come about in two ways.

(a) For the case of much disorder, the polariz-
abilities of the modes calculated from Eq. (4) may
be different from those calculated by Eq. (3).

(b) The interaction of modes may change the po-
le.rizabilities as described by Eg. (67). In this case
modes whose frequencies lie near strongly scatter-
i.ng modes may appear in glass spectra.

In neither of these cases is it particularly useful
to think of the increase of polarizabilities as arising
from a breakdown of selecti. on rules because of the
disorder. Rather the function of the disorder is to
change the boundary conditions for the secular
equation used to calculate the basis states so that
(4) is used instead of (3). Physically, the nature
of the average dynamic coupling between adjacent
units is altered, so that the zeroth-order vibrations
are different in glass and crystal. As shown in the
calculation of Sec. VI, it is entirely possible that
the new peaks in the glass spectrum will be rela-
tively sharp, due to an extended nature.

One general conclusion that can be drawn is that
disorder may produce an increase of potarieabili-
ties of modes which, in the absence of disorder,
m"e ve~y scca& ox unobsexvgble. Therefore the ap-
pearance of peaks in the glass spectrum, where
none appears in the spectrum of the corresponding
crystal, indicates glasslike disorder.

This principle can be of use in interpreting Ra.-
man spectra in pxactice. Consider, for example,
some sample consisting mostly of crystal and a
small amount of glass, such as might be found j.n a
heat-treated aluminosilicate or in a moon rock.
Suppose the spectrum of the pure crystal is com-
posed of a few very large peaks and a number of
small peaks. In the gla, ss of the same composition
as the crystal, the polarizabilities of some weak
modes may be greater than for the crystal, while
for the larger peaks the change is not so drastic.

N, I;(&u)» —,'lV",[Iq(~) + Iq(~)], (69)

then the Itaman spectrum of the gtass in that inter-
pol witt be a suirer position of the spectra of the two
regions with a small contribution from the bound-
aries.

Suppose that at frequency w one has

so only region 1 contributes strongly. Then it j.s
sufficient that

so that Banal spectroscopy is expected to be sev-
sitiue to hetemgeneities on the scale of fice or
move structural muts. For silicates, this is about
20 A and larger.

It is to be noted that the contribution to the Ra-
man spectrum of the highly localized modes of even
very small regions is expected to be the same a,s
for large regions. Thus the sensitivity predicted
here is qualitatively different from the detection of
a distorted Raman spectrum of small paxticles due
to surface effects.

Thus in the spectrum of the mixed sample some
smaller peaks may appear to grow at the expense
of the larger peaks, and some smaller peaks may
even blur together, partj. cularly at lower frequen-
cies. This type of spectrum change indicates the
presence of small amounts of glass in some ap-
parently cxystallj. ne samples. This has been ob-
served in albite by Sweet, 66

Perhaps the most important deduction of the the-
ory is of the scale of disorder detectable by Raman
spectroscopy. The Raman spectrum of a glass with
sufficient disorder that P/4o «1 is a linear super-
position of the spectra of the various units [see Eq.
(21)]. For extended modes the surface is of con-
siderable importance and for these modes our con-
clusions are only qualitative. Suppose now that the
glass consists of two regi. ons of different struc-
tux'es, say, regions 1 and 2. The x'eglons can both
be amorphous (as would be the case for phase sep-
aration) or one region can be amorphous and one
crystalline, and so forth. Let there be X,. units to-
tally within the ith region. Then each of these ¹

units will contribute a Raman spectrum character-
istic of the ith region.

Let ~, be the number of units on the surface of
the region, i.e. , the number that are part in one
region. and part in another. These will presumably
have a spectrum intermediate between the spectra
of the two regions.

Now let I,(&u) and I2(e) be the scattering intensi-
ties at frequency & per unit, typical of the regions
1 and 2, respectively. If for a given frequency in-
terval
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VI. RAMAN SPECTRUM OF ALKALI METASILICATE

In this section we report a calculation of the Ha-
man spectra of alkali metasilicate M~O-Si03 crys-
tal and glass. Crystals are easily obtained for
M=Li, Na, and K, while glasses can be obtained
for M=Na, K.

The structures of Li and Na metasilicate crystals
have been reported in the literature. '" There are
one-dimensional silica chains, of composition
(SizOII)„parallel to the c axi.s. The silicone are ap-
proximately tetrahedrally coordinated by oxygens.
These "tetrahedra" are joined at the vertices to
form chains, so two oxygens of each tetrahedron
are bonded to two silicons and are called bridging
oxygens while the other two oxygens are bonded to
only one silicon and are called nonbridging oxygens
(NBO's). The angle between the two Si-NBO bonds
is found to be greater than the tetrahedral angle.

The chains are held together by ionic NBO-alkali-
NBO bonds, where in both Li and Na metasilieate
the alkalis are approximately fourfold coordinated.
Here we concern ourselves only with the silica.
chain. The NBO-alkali bonds are neglected. The
rationale for this is that the alkali-NBO bonds are
much weaker than the strong Si-O bonds. For ex-
ample, the activation energy for alkali diffusi. on in
silicate glasses of high alkali content is about 18
cal/mole, while that for migration of nonbridging
oxygens is some 80 kcal/mole and for viscous flow

in silica over 150 kcal/mole. ' So for the higher-
frequency vibrations (greater than 500 cm ) the
motion of the atoms of an isolated chain is of para. -
mount importance. This is discussed in more de-
tail later on. We also study a somewhat idealized
chain here in which all the silicons are tetrahedra. l-
ly coordinated.

The unit cell for the idealized metasilicate chain
is shown in Fig. 7. The angle y is taken to be 133',
the value found in the crystal. All bridging oxygens
lie i.n the Z =0 plane and the NBO's lie symmetrical-
ly on either side of this plane.

Frequencies are in units of

(I/»)(0/m, )'~' = 780 cm ',
where k = 5x10' dyn/cm is the central Si-0 st~etch-
ing force constant and m0 is the mass of the oxygen
atom. The noncentral Si-0 force constant is 0. 17k,
as estimated by Saskena. ' '~ The noncentral force
constant has a. small effect (less than 10%) on the
frequencies and polarizabilities of interest. The
force constant resisting deformation of the Si-0-Si
angle is 10 dyn/cm, 37 and is neglected.

The optically active modes of the crystal are cal-
culated for the unit cell of Fig. 7 from Eq. (8),
which is the usual secular equation. The eigen-
states are then used in Eq. (20) to calculate the po-
larizabilities of the modes.

Q = OXYGEN

~ = SILICON

PIG. 7. Unit cell of idealized metasilicate chain.
Shaded circles are Si, open circles are oxygen. Atoms
9 and 10 are in neighboring cells. Atoms 3-6 all lie
in the x-y plane. Atoms 8 and 2 are above this plane,
and atoms 2 and 7 are below it. Silicons are exactly
tetrahedrally coordinated. Si-0-Si angle y= 133'.

To calculate the polarizabilities, a distinction
was made between Si-bridging-oxygen bonds and

Si-NBO bonds. Let a(p) and b(p) be the contribu-
tions to the pola. rizability, Eq. (20), of all Si-bridg-
ing-0 and Si-NBO bonds, respectively. Then we

write

o'(p. ) = 5(p) + xa(iI, ), (72)

where, for the crystal, n does not depend on n.
The parameter x gives the relative importance of

Si-bridging-0 to Si-NBO bonds.
It is found, on solving the secular equation, that

b(0. 87) =0. 81, a(0. 87) =1.2,
a(1. 8) = 1.2 .

The calculated eigenfrequencies in reduced units
are given in Table I, and the polarizabilities are
given for x = 0.4, the value appropriate for Na~O-

Si02. Only the two modes with frequencies 0. 87
and l. 8 have reasonably large values of a(p. ) and

b(p), and these are consequently identified a.s the
two strongest peaks in the crystal spectrum at 587
and 973 cm ', respectively.

The va, lue of x=0. 4 was calculated for Na meta-
silicate as follows. Let I'(v) be the measured peak
width of the mode of frequency v. For Na~O-Si02

I'(0. 87) =20 cm ', I'(l. 8) =10 cm ' .

Then x is determined from the equation
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TABLE I. Computed optically active modes of crys-
talline metasilicate chain.

Mode

1
2
3

5
6
7
8
9

10
ll
12
13
14
15
16
17
18
19
20
21

Frequency
(reduced

units)

0.278
0.316
0.332
0.412
0.412
0.436
0.476
0.482
0.504
0.583
0.609
0.633
0.657
0.855
l.12
1.16
l.30
1.38
1.38
l. 54
1.60

Frequency
(cm ~)

202
231
246
305
305
322
346
352
368
425
444
462
480
620
810
848
950

1000
1001
1120
1170

Polariz ability
(arbitrary units)

0
0.54
0. 001
0
0
0
0
0.07
0. 09
0
0.35
0. 005
0
1.4
0. 0004
0.015
1,6
0
0
0. 006
0. 07

[&(o. a'7)+ xa(o. av)]'/I {o.av)
I b(I. 3)+ xa(l. 3)] /I (1.3)

where 1/3. 5 is the observed ratio of the heights of
the 587- and 973-cm ' peaks in the NR~O-SiQ3 spec-
trum. For K&Q-SiQ2 it is found that x=0. 35.

The calculated spectrum for x=0. 4 is shown in
Fig. 8 Rnd is to be compRred with Flg. 1. In Fig.
8 the two strong peaks are drawn as Lorentzians
with the measured widths, and calculated intensities.
(The value of x was of course determined, so the
calculated intensities equal the measured ones for
these two peaks. ) The calculated intensities of all
other modes except tmo are then found to be small-
er by a, factor of at least 400 than the intensity of
the 630-cm ' mode, and hence cannot be drawn on
the scale of the figure. Their positions are shomn
as short vertical lines. The two small peaks at low
frequencies mere arbitrarily assumed to have widths
of 15 cm . They cannot be identified mith any par-
ticular feature of the measured spectrum because
the motion of the alkalis is not negligible in the
lom-frequency region.

The calculated frequencies of the two strong
modes are 630 and 950 cm ', an error of about
3. 5% from the measured values for Na metasili-
cate.

Thus the model used here gives reasonable agree-
ment mith experiment for the crystalli. ne metasili-
cates and in particular is unambiguous as to mode
assi.gnments for the strong modes.

COMPUTED RAMAN SPECTRUM OF METASILICATE CHAIN

950
I

I-
Ch
Z
Lal

X
620

I

I I I I
I I I I I I I I I l

IGLOO IIOO IOOO 9OO SOO 700 600 5OO em MO aOO IOO

da, CLEAD

FIG. 8. Calculated Raman spectrum of crystalline
metasilicate chain.

It is interesting to consider the change of frequen-
cies of the optically active modes as a function of
the Si-0-Si angle y. Figure 9 shows the various
optical frequencies as a function of y for the higher-
frequency modes. There is a very large change in
the strong 600-cm ' mode and very little change in
the frequency of the strong 950-cm ' mode. This is
consistent mith the results of Gaskell. 3 Figure 9
also shoms that it is R fair approximation to calcu-
late the spectrum of alkali metasilicate from a unit
cell in mhich y= 180', as was done elsewhere.

Consider now the metasilicate glass. The simi-
larity of the crystal and glass spectra is a strong
indication that the glass and crystal have the same
basic structure. That is, the glass must be com-
posed of sill. ca chains l.n which the S1 atoms ale Rp"
proximately tetrahedrally coordinated by oxygens
and in mhich there are tmo NBO's per tetrahedron.
This model i.s assumed here, and the remainder of
this section gives the results of calculations of the
effect of different types of disorder on the Raman
spectrum. The only parameters entering into the
calculation are structural. The force constants
and polarizabilities are the ones determined from
the crystal spectrum, as described a.bove.

The structural units of the glass are the same
Si~OS units which comprised the unit cells of the
crystal. For all units let there now be completely
free rotation of tetrahedra about Si-bridging-Q
bonds. In terms of Fig. 7 the angles Q,
. . . are completely random. For nom, the Si-Q-Sj.
angles are taken to be constant at 133' throughout
the chain.

Since considerable di. sorder is introduced in the
chain, the basis states are calculated from Eq. (4).
The details are given in the Appendix. The polar-
ixabilities are calculated from the basis states us-
ing Eq. (20). The averages and RMS deviations of
the quantities in Eqs. (a)-(ll) are given in the Ap-
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or glass.
The Rama, n spectrum of the model then seems

qualitatively similar to the measured spectrum of
the glass, but, as will be seen, there are consid-
erable differences a.s well.

To take account of the coupling of the modes, Eqs.
(58) are solved for the pai. rs of modes (5, 8), (3, 4),
a.nd (4. 5). The approximations of Sec. IV are ap-
propriate for these modes. The RMS deviations of
Q(n, p) are altered by less than 0. 01 due to the in-
teraction of modes. The va, lues of the coupling
constants P and polari. zabilitjes n, as calculated
from (60), (61), and (67), are changed significantly
for some cases. The fina, l result of this calculation
is that the modes 4, 5, and 8 are described by Eq.
(16) using the values

FIG. 9. Variation of the high-frequency modes of the
crystalline metasilicate chain with Si-0-Si angle p. Fre-
quencies are in reduced units. Modes marked S give the
two strong peaks of the Raman spectrum.

pendix. Only the nine modes of highest frequency
are considered, and these are labeled 1-9.

As seen in the Appendix, the inequalities (12) are
very well satisfied for these modes, and Eqs. (14)
are approximately satisfied for modes 4-9 inclu-
sive. For all modes the RMS deviation of E(n, g)
is extremely small, so the variation of A(n, p, ) is
determined principally by the f(n, p, , p) term in
Eq. (11).

There is a clear correspondence between modes
4-9 and the six highest-frequency modes of the
crystal as given in Table I.

The mode of frequency 1.3 (mode 5) is still the
strongest, so it will dominate the glass spectrum
as it does the crystal spectrum.

The polarizabilities of modes 4 and 8 are more
than a factor of 10 greater for the glass than for
the crystal (see Table I). Their Raman intensities
are therefore increased by a factor of more than
100. As seen in Fig. 1, Na, Q-Sio, glass has a
shoulder at 1050 cm a.nd a, peak at 850 cm ', and
these features are consequently a.ssociated with
modes 8 and 4, respectively. The increase in po-
larizability is a significant prediction of the theory,
a,nd physically it may be attributed to a. change in
the nature of the zeroth-order ba,sis states because
of the disorder, as discussed in Sec. V.

Modes 1-3 are so strongly coupled as to change
their identities completely from those given by the
eigenstates of Eq. (4). These modes blend together
to form a strong broad feature in the glass spec-
trum around 600 cm '.

Modes 6, 7, and 9 have negligible polarizabili-
ties. Their interactions with nearby modes are
small, and so these modes make a negligible con-
tribution to the Raman spectrum of either crystal

(A

4J
I-z

i
I IOO 1000 900 SOO 700

Q'V, crn

I
I

I II
600 5OO 400

FIG. 10. Computed Raman spectrum of metasilicate
chain disordered so that the angles ft, fthm', p", . . . are
random but the Si04 tetrahedra are not distorted.

o(4) = 0. 065, P(4) = 0. 042, n(4) = 0. 28,
cr(5) =0.015, P(5) =0. 006, n(5) =1.5,
o(8) = 0. 1, P(8) = 0. 001, Tt. (8) = 0. 25 .

Equation (28) applies to modes 5 and 8, so the
Rama, n intensities are calculated from Eq. (20).
On the other hand, o(4)- P(4), so that the Rama, n in-
tensities of mode 4 are calculated from Eqs. (36)
and (52). The vibrations of modes 5 and 8 are lo-
calized, while the optically active vibrations of
mode 4 are extended.

The result of this calculation is shown in Fig. 10.
The Ra man spectrum of a metasilicate chain in the
harmonic approximation used here, disordered so
that y is constant but the angles Q,
are random, has the following characteristics: a
very weak and broad peak at 1100 cm ', two very
sharp peaks (widths less than 5 cm ') at 950 and 875
cm ', and a broad feature around 600 cm ' shown by
the dotted line. This dotted line j.s a crude estimate
of the contributions of modes 1 and 2. Therefore,
while the disorder is sufficient to increase the po-
larizability of modes 4 and 8, it does not widen the
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peak of mode 5.
Suppose now that y varies in addition to the ran-

domness of the angles Q, Q, Q, . . . . It is found
that if y=150' +20' the RMS deviations of Q(n, iz)
for modes p, = 4, 5 are a.ltered less tha. n 0. 01 from
the values given previously. A calculation using
the basis states of the crystal with y=133' shows
that the matrix elements g(n, iz, iz ) are not signifi-
cantly altered from the results of the Appendix by
the additional variation in y. No study was made
of the variation of polarizabilities.

The small effect of so much disorder on mode 5
is contrary to what might be intuitively expected.
A similar result was found by Gaskell. ' The fluc-
tuations in P are due to a fluctuating coupling be-
tween atom 3 of one unit and atom 6 of a neighbor
(see Fig. 7). For mode 5 it turns out that the dis-
placements of atoms 3 are small and therefore so
is the variation in 0 .

In the glass, the NBO's are joined to alkalis by
force constants which presumably fluctuate from
one NBO to another. This can widen the peaks
as well. It is now shown that this effect is small.

The vibration frequency of Na in silicate glasses
is about 300 cm ', while the frequency of Kis less.
Then assuming one alkali bonded to one NBO, the
NBO-Na force constant is

on the average. Assume the distribution of NBQ-
alkali force constants is Gaussian with 1/e value of

Then

(k~ —k )- gk

P(&g) =
1 e-AH/4E E(fI )

2KE(iz.)gv

where

E(4) = 0. 2, E(5) = 0. 3,
E(8) = 0. 1, K= 6,

(75)

If u is the average displacement of an NBO, u
-0.3, the net RMS fluctuation due to the four NBO-
alkali bonds is

(1/v 2)kuz-0. 01,
where a factor of 2 enters because the four bonds
are independent. This variation is a very small
amount.

Clearly the only way to widen mode 5 is to dis-
tort the units in some other way —in particular, the
disorder must include a distortion of the tetrahedra
themselves. The tetrahedra may be distorted by
rotating Si-NBO bonds (keeping the Si atoms fixed)
through an angle b, e. Such a rotation adds an addi-
tional term b, g(n, p., iz ) to g(n, iz, iz ). Assuming
that he is Gaussian distributed, the probability dis-
tribution of Dtt) for p, = p, is

where

«e') = —,'K' .
Here the RMS deviation is 7'. The small distortion
of the tetrahedra leads to a half-width for the 950-
cm ' peak of 50 cm ', the experimentally observed
width. For all modes 1-9 (apart from 6 and 7) E
is between 0. 1 and 0. 3.

Combining the widening due to Eq. (75) with that
due to a randomness of Q, Q, Q, . . . , but y fixed
at 133', the modes 4, 5, and 8 are described by
Eq. (16), where now

o(4) =0. 073, o(5) =0. 07, o(8)=0. 1 .

The values of P are given in (74). The small dis-
tortion of the tetrahedra has a negligible effect on
the polarizabilitie s.

Therefore o(5)» p(5) and o(8)» p(8), so the Ra-
man scattering from modes 5 and 8 is calculated
from Eq. (21), while cr(4)-P(4) a,nd the Raman in-
tensity of mode 4 is calculated from Eq. (36).

The lattice vibrations for modes 5 a.nd 8 are
highly localized, while those of mode 4 are ex-
tended.

The total Raman spectrum for the high-frequency
region is given by the sum of the contributions of
the 3 modes I„(v) in reduced units

0. 08 0. 018
zz (v —1.19)~+ (0. 018)

54 25 -(u-1.3/0. 04)2I5(v) =
q

e ~

I, was calculated directly from Eq. (21) and no ex-
plicit functional form was determined.

The spectrum is shown in Fig. 11. It is quite
similar to the spectrum of Na metasilicate. The
conclusions about the structure of Na and K meta-
silicates to be drawn from these calculations are
discussed in Sec. VII.

VII. CONCLUSIONS

Several aspects of the calculation of Sec. VI are
now discussed. A model of atoms interacting with
nearest- neighbor harmonic forces adequately de-
scribes the meta, silicate chain. The similarity be-
tween the computed spectrum and the measured
ones for crystalline Na and K metasilicates is
striking.

As has been pointed out, the essential similarity
of the glass and crystal spectra argues for a basic
similarity of structure in that the glass is com-
posed of chains of approximate tetrahedra linked at
the vertices. It is found that distorting the tetra-
hedra has a large effect on the spectrum. If the
tetrahedra were too distorted, the crystal and gla, ss
spectra, would be more dissimilar, and this is evi-
dence for a similarity of structures.



3192 STE VEN BRA WER

I

I

I

I

I

I

I

I

I

I I &I I

I IOO l000 900 800 700 600
—I

D, v, Crn

I

I

I

I

I

I

I

I

II

500 400

FIG. 11. Computed Raman spectrum of metasilicate
chain disordered so that the angles (I), (I)', p", . . . are
random and the Si04 tetrahedra are distorted.

The distortion of Si04 tetrahedra is not unrea-
sonable. In very few alkali-silicate structures are
there perfect tetrahedra, but rather distortion is
the rule rather than the exception. ' ' Only ln

pure SiO~ do there seem to be perfect Si04 tetra-
hedra.

The calculations reported in the Appendix show
that the inequalities (12) are well satisfied. There-
fore for purposes of calculating the Raman spec-
trum it is a useful point of view to consider the unit
as the elementary vibrating quantity.

The mechanisms by which the disorder alters the
Raman spectrum are

(a) The polarizabilities of modes 4 and 8 are in-
creased, because the basis states are calculated
from Eqs. (4) instead of (3). The mixing with modes
5 and 3 also affects the polarizabilities. It is seen
that the presence of an extra peak in the glass
spectrum indicates considerable disorder.

(b) Modes 1-3 and 8 are widened considerably
by disordering a chain of tetrahedra, leaving the
tetrahedra themselves undistorted.

(c) The width of the strong 950'-cm ' peak is in-
creased only when. the tetrahedra themselves are
distorted.

(d) The NBO-alkali bonds have a small effect on
the peak widths.

(e) The less the disorder the smaller the widths
of the Raman peaks.

There is reasonable agreement between the cal-
culated spectrum and the measured one of Na meta-

silicate glass. For the calculated spectrum the in-
tensities of modes 4 and 8 are two orders of magni-
tude greater for the glass then for the correspond-
ing crystal. Therefore increases in polarizabili-
ties, and hence the appearance of extra peaks in the
glass spectrum, are a natural result of the calcula-
tion. It is proposed that modes 4 and 8 correspond,
respectively, to the 855-cm ' peak and the 1050-
cm ' shoulder observed in the spectrum of Na meta-
silicate glass. Further, mode 3 appears at 730
cm ', where there is a small peak in the measured
spectrum.

For the case of Na metasilicate the calculations
show that not only is there rotational disorder (an-
gles &f&, Q, Q', . . . random) but distortion of the
tetrahedra. Actually, there must also be a distri-
bution of Si-0-Si angles. The free-energy change
for distortion of the tetrahedra is certainly far
greater than for variation of the Si-0-Si angles.
This can be seen from the force constants. The
Si-0 noncentral force consta. nt is 0. 85&&10 dyn/cm,
while the force constant resisting bending of. the
Si-0-Si angle is about 10 dyn/cm, "a, factor of 8
smaller. Therefore it is easier to distort Si-0-Si
angles, than tetrahedra. Although no force con-
stants are available, it is probably easier to rotate
tetrahedra about Si-bridging-0 bonds than to distort
them. Consequently, the various types of disorder
should occur simultaneously.

Another type of disordering which was not con-
sidered is the fluctuation of Si-0 force constants,
which were presumed constant in the glass and
which could accompany structural disorder. More-
over, the effect of Coulomb forces was not consid-
ered. These omissions make the calculations pre-
sented here only qualitative. However, all the
qualitative ideas expressed here, which are con-
sistent with the calculation of Sec. VI, are expected
to carry through, unaltered, to the case of more
detailed calculation. The reason for this is that
even in the general case Eqs. (14) should still be a.

good first approximation.
The differences between the K and Na metasili-

cate glass spectra may be attributed to a difference
in the short-range order of the silica chains in the
two glasses. This is in agreement with the results
of the Raman spectra of other silicates (see Figs.
1-3) which show that, in general, the K silicate
glasses are more ordered glasses than the Na sili-
cate glasses.

The presence in the K metasilicate glass spec-
trum of fairly sharp peaks of small intensity, as
well as of a relatively narrow peak at 600 cm ',
argues for much less fluctuation of the angles P,

. . . than in Na metasilicate. The small-
ness of the 850-cm ' peak is also consistent with
this, since the intensities of the smaller peaks
should decrease with decreasing disorder. More-
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TABLE II. Various quantities vrhich appear in the equations of motion of the metasilicate chain, disordered so that
the angles ~t), p', fI)", . . . are random but the tetrahedra are not distorted.

(1,1)
(1, 2)
(2, 2)
(2, 3)
(3, 3)
(3,4)

4)
(4, 5)
(5, 5)
(5, 6)
(6, 6)
(6, 7)
(7, 7)
(7, 8)
(8, 8)
(8, 9)
(9, 9)

0. 025
—Q. 03
—0.01

Q. 02
—0.054

0.035
0.051

-0.02
0.011

0
0
0
0
0

0.0017
0

0.003

(p, p') p2(p, p')

0.036
0.18
0.078
0. 02
0.056
0.04
0.043
0.025
Q. 011

0
0
0
0
0

0.0038
0

0.005

0.025
0.02

—0. 01
0.03

-0.054
—0.07

0.051
Q. 035
0. 011

0
0
0
0
0

Q. 0017
0.02
0. 003

0.036
0. 02
0.078
0. 14
0.056
0. 075
0. 043
0.03
0. 011

0
0
0
0
0

0.0038
0. 01
0. 005

0
0.02
0.07
0.15
Q. 12

—0.08
0.04

—0.025
0.015

0
0
0
0
0

0.15
—0.05

0.014

0.02
0. 03
0.15
Q. 08
0.07
0.045
0.025
0. 015
0.011

0
0
0
0
0

0.1
0.03
0.016

n(n, p)

+0.98

0. 002 -0.83 0.1

0.006 + 0.13 0.09

0.008 + l. 5 0.02

0.005

0.004

0.006

0.02 0.01

0.39 0.009

0.06 0.04

0.015 + 0.65 ~ Q. 06

over, the narrowness of the 950-em ~ peak indica. tes
a smaller distortion of the tetrahedra than in Na
metasilieate. Qn the other hand, the large peak at
1050 cm in the glass is surprising. Therefore,
the features of the spectrum are generally consj. s-
tent with K metasilicate being more ordered than
Na metasilicate. Moreover, the. absence of any ap-
px'eclRble amount of cl ystRllinlty ln K metasilicate
glass may be inferred from the absence of a sharp
spike sticking out of the 975-em ' peak. Probably
in this glass the silica chains are sufficiently dj.s-
ordered so as not to lie parallel in crystalline con-
figuration. The different equilibrium positions of
the alkalis then lead to a slight distortion of the tet-
rahedrR.
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APPENDIX

Here the numerical values of various quantities
appearing in Eqs. (8)-(11)are given for the meta-
slllcRte chRin. The Rvex'Rge Rnd RMS vRl iRtlons
were calculated for both P and Q, varying in steps
of 80'. The matrix u" o' varies with Q and P, but
for each P and P, the bond joining angles 8 and 10

was chosen to lie in the 3™4-5plane. The va, riation
of the angle Q was incorporated into d V„B. It
turns out that for the high-frequency modes the cen-
tx'Rl force constRnt ls of ovel rldlng importance.
Since the component of u(6) along the 6-9 bond var-
ied by less than 10% for all g and Q, this variation
was neglected in comparison with the other varia-
tions.

%'e use the abbxeviations

P&(~, ~') =(P(~, ~ln- I, ~')&,

P, (u, u') = &P(~, u I
~+ I, v')) .

Therefore

P&(u, v') = P&(v ', u),

Rnd similarly fox' the HMS devlatlonss so lt ls nec
essary to give only Pa. Also we define

t, (~, 1, ~')=0(n, I, ~')- g P(~, win', ~'),

4&(~, u, v') = 4i(~, u ', v) .
For any A., let

The results are tabulated in Table D.
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