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Nonlocal dielectric susceptibility of a semi-infinite insulator
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The excitonic contribution to the dielectric susceptibility of a semi-infinite simple cubic semiconductor
bounded by a (001) surface is calculated in the tight-binding approximation. The electron and hole

hopping integrals in the Hamiltonian for the system couple only nearest-neighbor sites, and the
Coulomb interaction between the electron and hole occurs at a single site. A pair of free surfaces is

created in an infinitely extended crystal by setting to zero the electron and hole hopping integrals
connecting sites on opposite sides of a fictitious plane normal to the [001t direction, but containing no
atoms itself. The integral equation for the two-particle Green s function in terms of which the
susceptibility is expressed is solved analytically for frequencies in the excitonic regime. The dispersion
relation for surface excitons is obtained, and the spatial variation of the polarization in the crystal
induced by a spatially uniform macroscopic field is determined from our results.

I. INTRODUCTION

When the optical properties of a crystal are an-
alyzed, one presumes frequently that the material
may be described by a frequency-dependent com-
plex dielectric tensor e,.j(&u). However, the dielec-
tric tensor may depend on the wave vector k of the
electromagnetic field as well as on its frequency.
In practice, the wave-vector dependence of the
dielectric tensor can assume particular importance
for frequencies near an exciton absorption line in a
semiconducting or insulating crystal. This is be-
cause the effective mass of the exciton is often
small, and its excitation energy can depend signif-
icantly on wave vector by virtue of the contribution
from the center-of-mass motion.

When the dielectric tensor depends on wave vec-
tor, then it is a short exercise' to show that the
displacement field D(x, f) [and the electric-dipole
moment per unit volume P(x, t)] do not depend on
the value of the electric field E(x, t) only at the
point x, but rather on an average of the electric
field over a certain small volume centered at x.
When this is the case, one says that spatial dis-
persion is present.

Over the years, there have been a large number
of theoretical studies of the effect of spatial dis-
persion on the ref lectivity of semiconductors near
exciton absorption lines. It is well known that the
standard boundary conditions (conservation of tan-
gential components of E and Ii, for example) fail
to provide sufficient information from which the
ref lectivity may be computed. An additional bound-
ary condition is required. While recent work has
emphasized that Maxwell's equations implicity con-

tain the additional boundary condition when the full
information in the nonlocal form of Maxwell's equa-
tions is utilized, ' ' a realistic calculation of the
ref lectivity requires knowledge of the nature of the
nonlocal response of the crystal to an applied elec-
tric field very close to the surface. This problem
has yet to be fully discussed, and the present paper
is devoted to exploration of one aspect of it, within
the framework of a simple model for which many
calculations may be performed by analytic methods.

An early attempt to study the effect of a surface
on the polarization induced in a semiconductor by
an external electric field is the work of Mahan and
Hopfield. These authors argued that the exciton is
excluded from a thin layer near the surface by re-
pulsive exciton-surface interactions. The reflec-
tivity spectra calculated from this model are in
very good accord with the data on CdS. ' More re-
cently, a rather different scheme has been proposed
by Zeyher et af. ' If we let Xo(x-x';(u) be the non-
local electric susceptibility of the bulk crystal, then
Zeyher et al. assume that the role of the surface
is to reflect the exciton with reflection amplitude R.
The nonlocal electric susceptibility X(x, x';e) of the
semi-infinite crystal is presumed to have the form

X(»x'&&)=Xo(xi' &a~~ ~'i~)+IIXo(Wi —xi'i&~+~';&),

(1.1)
where in this last statement the z direction is nor-
mal to the surface, and x„denotes the projection of
x onto the plane parallel to the surface.

As one of us has pointed out recently, the de-
scription of the interaction of the exciton with the
surface appears incomplete in one regard. In each
calculation, the exciton is presumed to interact with
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the surface as a single entity, which moves in some
presumed external potential. In their discussion,
Mahan and Hopfield argue that this potential is long
ranged, and suggest that the repulsive image po-
tential experienced by the exciton is an important
contribution to the potential. Zehyer et al. ' evi-
dently regard the effective potential as a short-
ranged one.

Actually, the exciton is a composite entity which
is composed of both an electron and a hole, both
of which interact with the surface separately. The
purpose of the present paper is to derive the form
of the nonlocal susceptibility for a model crystal
within the framework of a model that fully recognize!
the composite nature of the exciton.

As discussed earlier, one may appreciate the
nature of the problem by inspection of the diagrams
which describe the interactions of the exciton with
the surface. Rather than consider the exciton itself,
the point is readily illustrated by considering a
free particle-hole pair. In Fig. 1 we show the
propagation of a particle-hole pair from a point x
to a second point x', in the presence of the surface.
The diagram (a) describes direct propagation of the
excitation from x to x'. If the interaction between
the electron and hole and the surface is regarded
as short ranged, this diagram contributes the term
$0(x

~ gI, s —z '; ur) to the right-hand side of Eg.
(1.1). If we examine the diagram in (d), then to
the observer at x', the excitation appears to arrive
at x' after emission from a source point outside
the crystal. This diagram contributes a term of
the form Ryo(x„—x,'„z+z';&a), if the electron-sur-
face and hole-surface interaction are taken to be
short ranged. The diagrams in Figs. 1(b) and 1(c)
also contribute to the nonlocal susceptibility, and
their contributions have been omitted from Eq. (1.1)
These diagrams (in the case of the interaction of an
excition with the surface) describe interference be-
tween the electron and hole waves, and they have
their physical origin in the composite nature of the
exciton.

As remarked earlier, in the present paper we
wish to present a microscopic derivation of the form
of the nonlocal susceptibility of a semi-infinite mod-
el crystal. We set up and work within the frame-
work of a model that is sufficiently simple that ana-
lytic methods may be utilized in the major part of
the calculation. Our purpose is to examine the form
of the nonlocal susceptibility within the framework
of a model that includes all four diagrams of Fig. 1,
with the aim of exploring the range of validity of
simple phenomenological expressions such as Eq.
(1.1). While the model we use is a very simple
one, and cannot be expected to be applicable to real
crystals, within it we may explore rather complete-
ly the conditions under which various simple forms
for the nonlocal electric susceptibility apply.
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FIG. 1. Schematic illustration of the interaction of
a particle-hole pair with a surface.

H= E, g bt(l)b(l)+ P ys(ll')b~(l)b(l') —E, g a~(i)a(l)

—g y„(ll')at(l)a(l')+u, Pat(l)a(l)bt(l)b(l).
(2.3)

In this expression b~(l) and b(l) are electron creation
and destruction operators at the site l, while a~(l)
and a(l) are the corresponding hole operators.
ys(ll') and y„(ll') are "hopping" integrals associated
with the transfer of an electron or a hole from the
site l' to the site l, respectively. The last term
in the Hamiltonian described the interaction
between the electron and the hole, which is
assumed to be so localized that it is nonvanishing
only if both particles are at the same site. The
presence of a free surface on the crystal is reflected
implicitly in the forms of the coefficients (y„(ll )}

DERIVATION OF NONLOCAL SUSCEPTIBILITY

The physical system we consider is a simple cu-
bic crystal of lattice parameter ao, in which the
atomic positions are given by the vectors

x(l) = l„aq+l„a~+l,a„ (2. 1)

where the primitive translation vectors a„aa, a,
are

a, =(a„0,0), a, =(0, a„0), a,, =(0, 0, a,), (2.2)

and l„, l„, l, are three integers to which we refer
collectively as l. We assume initially that all lat-
tice point functions in our work obey periodic bound-
ary conditions, with the periodicity volume being
a macrocrystal whose edges are defined by La„
La&, La3, so that the total number of atoms in this
volume is L'=¹ A pair of adjacent free surfaces
will be created in this cyclic crystal, at the planes
l, =0 and l, =1, by setting equal to zero all inter-
actions between atoms on opposite sides of a ficti-
tious plane midway between these two planes.

Our starting point is the following Hamiltonian
for the interacting electron and hole:
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and {ys(//'}J, for which explicit expressions will be
given below.

The electric-dipole-moment operator for the
crystal ls

= —e dx4 xx~4(x, +=@,y, z (2.4}

%'here e is the magnitude of the electronic charge
and where the field operator 4 (x} can be expanded

4(x) =g p„fx-x(/})a(/)+ +cps(x- x(/))b(/),

(2. 5)
with y„(x) an s-like orbital and ps(x) a P, -like
orbital. If we keep only the contribution to the
dipole-moment operator from interband transitions,
and ignore the overlap of orbitals centered on dif-
ferent sites, we obtain for M,

/}f. = g/}f, (/),

In this expression g is an adiabatic switching pa-
rameter. Equation (2. 8) gives the dipole moment
induced at the site l by the electric field (2. 7).
The volume per lattice site in the simple cubic
crystal we are consjdel ing here ls &o, Consequent
ly, the dipole moment per uni. t volume, or polar-
ization, induced at the site / is

P,(l; t) = (1/a03) (/V/, (/; t))

=P,(l; &o)e
' ""'+P',(l; ~)e' '"','

(2. 9a)

P,(l; &u) = g X„(l/', ~)E,(/'; ~)

P'. (/; 4 ) = g X.'.(//'; ~)E'.(/'; ~) ~

(2. 9C)

Tile 110111ocR1 suscept1b1llty }t (ll; R) RppeRl'lllg 111

Eqs. (2. 8) and (2. 9), with which we will be con-
cerned in what follows, is given by

M. (E) = —en' 0(E),

0(l) = a1(/) b(/) + bt(/)a(l) = 01(/)

pl= d xpg x&+3 x,

(2.8c)

}t„(//'; &u) = —
3 [G(ill'l'; ~+ i 1/)

PlOO

+ G ( l'l '/l —~ - i 1/)] (2. 10

Here G(l1/~/~/4;E) is the Fourier transform with
respect to time of the two-particle (retarded)
Gl'6611 s fullctloll G(l1/3/Ol4, t):

G(l1/2l, l4, E)= dt e' 'G(l1l2lsl4; t), (2. 11a)

+ ao g ~,(/E'; ~)E;(E';~)e'"'"' (2. 8)

Kith a spatially varying electric field of the form

E (l &u)e '"'+E'(l ~)e'"' (2. /)

with 2: (l ~) —[E'(l ~)]* acting on the crystal the
expectation value of the dipole moment induced at
the Eth site can be expressed, in the form

(M, (l; t)) = ao g ~,(//'; &u)E, (l'; &u) e '"""'

G(l1/&lsl4; t) = —/8(t) ([a~(/1, t) b(la; t),

b 1(l ~; 0)a ( l4; 0) ]}, (2. 11b)

8(t) ls tile HSRvlslde unl't step function, Rnd 'tile

angular brackets ( ~ ~ }denote an average with re-
spect to the canonical ensemble defined by the
Hamiltonian H, Eq. (2. 3).

If we obtain the equation of motion obeyed by
G(/1/3/3/~; t), and decouple it at the earliest pos-
sible stage, we obtain

ih~ G(l1lalsl4; t)=kb(t)[5, , (at(l1)a(l4)) —5, 1 (b1(/g)b(/2))]+ (Z~+E, )G(/1/~/3/4;t)+ Qy„(/1/)G(//p/3/~;t)

+ Q ys(/, /)G(l1l/, l„t)+ug[n„(/, ) —ns(/1)]G(l1/, l, /4, t)+uo[(b~(/1)b(l, )}G(l1l,/, l4, t)

—(a~(/1) a(l2) ) G(/~ lais/4; t) ], (2. 12a)

ng(/) = (a'(/)a(/)), ns(/)= (b'(/)b(/)) . (2. 12b)

To solve Eq. (2. 12a) we introduce the auxiliary Green's function G0(l1lalsl4, .t) as the solution of the equa-
tion
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d
ih —Go(lz lplpl4, . t) = 55 (t) [6( ( &az(lz)a(14)) —5(,( (bz(13)b(13)) ]+ (E +E,) Go(lz lzl pl4,. t)

+ g r&(lz l ) Go(1131314,t)+ Q y (131)Go(1111314;t)+uo In&(13) —n (l1) l Go(l1 l3l ol4,' t) ~

l l (2. 13)

[E,—uonp (l ) ]az(l )a( l )
l

—g y„(ll') az(l )a(l'),
llo

and introducing the function

G()(l

zip

lpl4�'
. t) = —i 6(t) f—(b (l3 0) b (l3 ' t) )()

«"(1;t), (l.;o)].&o

(2 16)

+(a (l„t)a(l, ;0)),
x&[b'(l; o), b(l; t)].) ], (2. 16)

where averages with respect to the Hamiltonian Ho
are denoted by ( ~ ~ ~ )o and [A, B].denotes the anti-
commutator of the operators A and B.

It is readily verified that the function
Gp(lzlplpl4, t) defined by Eq. (2. 16) obeys the equa-
tion of motion, Eq. (2. 13), when time derivatives
are calculated by means of commutators with re-
spect to the Hamiltonian Ho, and the equal time
averages (a (lz)a(l4)), (b (l3)b(l3)), n„(l3), and

nzz(11) appearing in the latter equation are evaluated
with respect to HD rather than H.

If we now introduce the two spectral densities
p„(lz l4, (o) and po(1313: (o) by

(ee(), ; ) ()4, e0)e)e f due' 'e„(),)e; ), (2 1')e)

(b (l3; 0)b(lp, t))()—- d(oe ' 'po(1313, (u), (2. 17b)
«OO

we find that the Fourier transform G(lz lplpl4; E) of
the Green's function defined by Eq. (2. 16) can be
represented in the form

~ Oo 00 t|h tdig gh czii

G(lzlpl3l4, E)= d(oz d(03
~J ~00 00 E —(d i —&dp

It follows that the Fourier transforms of these two
Green's functions are related by

G(lzlpl3l4 e E) Gp(lz lpl3l4; E)-—
x'p Gp(lzlplzlz;E)G(lzlzlpl4, 'E) .

li (2. 14)
This relation is quite general. It holds for an in-
finitely extended crystal as well as for a semi-in-
finite crystal. In the latter case the sum on li ex-
tends only over the semi-infinite crystal.

The equation of motion of Gp(lzlplpl4, t) can be
obtained alternatively by starting from the Ham-
iltonian

Ho=+ [E,+upn„(l)]b (l)b(l)+g ys(ll')bz(l)b(l')

-g„(l1l4, —~+ iO) ],
1 1

pz)(13 3e (())—
2 33~ 1 [gz)( 3 3; —z )2pi e "+1

-gz)(1313; p)+zO)],

(2. 19a)

(2. 19b)

whereg„(lzl4, E) andgz)(1313, E) are the Fourier
transforms of the single-particle Green's functions

g„(l1 l4, t) = —1 t) (t ) & [a '(1» t), a( l 4; 0) 1, )o, (2. 20a)

gp(1313;t)= —i 9(t) &[b (l3; 0), b(lp, t)], )o, (2. 20b)

respectively.
To obtaing„(lzl4, E) nadg (pl 133E) we assume

that at the absolute zero of temperature

&"(l ) a(l4))o= b(,(„&b'(1,)b(l.)),= o,
n„(l)=1, n (l)=0. (2. 21)

These assumptions are justified by the results
based on their adoption. We conjecture that they
obtain also when the indicated averages are evalu-
ated with respect to the Hamiltonian H, instead of
with respect to Ho, thus making the identification
of the Green's functions Go(lzlplpl4; t) defined by
Eqs. (2. 13) and (2. 16) complete.

With these assumptions the equations of motion
obeyed byg„(l, l4;E) and g (l o1 3E3) are

(@E-E.)g„(lz l4, E)- Q y„(lz l)g„(ll„.E) = @6(.(

(2. 22a)

(@E—E.—uo)g 3(l l3;E)
-Qr (131)g (131,'E)=M(,(, (2. 22b)

l

where in the presence of free surfaces at the atomic
planes l, = 0 and l, = 1 the hopping integrals are given
by

rg(«') = rg" («') —rzb(„(„b(,(;(6(,ob(;1+ &(,16(;p),
(2. 23a)

rz)(ll') = r() '(ll') —y, bz ( ~ 6( ( (5( 06( 1+ 6( 16( p),
(2. 23b)

with

x pg(lz l4, (u) pz)(1313,. (03), (2 18)

where E must be understood to be a complex vari-
able.

The spectral densities (2. 17) are obtained from
the relations

1 1
p~(lzl4, (o)= . 3„„1[g„(lzl4, —(0 —10)2@i e "+1
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y„',~s(//') = y„,p if l and l' are nearest neighbors

=0 otherwise. (2. 24)

x{exp[iq,ap(/g, —/4, ) ]

—exp [iq, ap(/s, + l4, ) ]j, (2. 25a)

5 ~ exp(ik„[x„(/p) —x„(/p) j j
k

The solutions of Eqs. (2. 22) for /;, ~ 1 (i = 1, 2, 3, 4)
are found to be

k ~ exp{iq„[x„(/g)- x„(l4)]j
IE E„(q)-

x(exp [ik, ap(lp, —/p, ) ] —exp [ik, ap(l p, + /p, }]j,
(2. 25b)

where q„= (q„,q, , 0), x„(/)=/„aq+/„ap, the sums
extend over the first Brillouin zone of the crystal,
and we have set

Eg(q) = 6
I r~ I

—2
I r~ I (cosq. a p+ cosq, a p+ cosq, ap)

(2. 26a)

EB(k)= 6 lrp I
2 lrs I

(c»" ap+ cosa, ap+ cosk, ap),
(2. 26b)

(2. 26c)E,=E,'+6ly,
I

Substituting Eqs. (2. 25) into, Eqs. (2. 19) and then
into Eq. (2. 18), we obtain finally for Gp(/q/p/p/4, E)

k ~ exp(iq„[x„( q/)- x( /)4] jexp(-ik„~ [x„(/p) —x„(/p) j j,
q k

—exp [iq~ap(/„+ l4, ) ] j(exp [ik, ap(lp, —lp, ) ] —exp [ik, ap(la, + lp, ) ] j (2. 2V)

(2. 28a)

(2. 28b)

we find from Eq. (2. 14) that the relation between
these two new functions is

For the calculation of the susceptibility Eq.
(2. 10), only the Green's function G(ill'/';E) is re
quired. On defining

G(ll';E) =—G(ill'l'; E)

Gp( ll'; E)-=Gp(/ll'l'; E)

(2. 30)
where

G( /'/;E)= G(p/'/, E)-—Q Gp(//";E)G(/"/';E) .
(2. 29)

We can now express G,(ll'; E) as

Gp(ll';E)= —pQ Gp(Q, E ll, l,')
4/l

x exp {iQ„~ [x„(/) —x„(/') ]j,

k exp [iq, ap(l, —l,') ] —exp [iq, ap(/, + l,') j
G(Qp~~ El/g l ) = ~g g, @E Ep E ~

}
(exp [-ik,ap(l, —l,') ] —exp [-ik, ap(/, + l,') j }

(2. 31)

If we also expand G(l/';E) in the same form, G(QiiE Il /')=Gp(QiiE I/ /')
@ g Gp(lpE Il, l,"}

G(//';E)=~ g G(Q E ll. /.')
xG(Q„E I/; l,') . (2. 33)

xexp{iQ„[x~(/) x (l )]j (2 32)

then Fq. (2. 29) reduces to the one-dimensional
equation

The expression (2. 31) for Gp(Q, ~E Il, l,') can be re.
duced from a multiple sum to a single integral for
0&RehE &E~+u0..

G,(Q„E /, /~)= k dt e» [- t(E,'+ap- kE+ 6 Iy„l+ 6
I y, I) j rp(2y&t)ip(2rpt) [ii -i;(2lr~lt)ir;~ ~ (2l ra I'}

0

—I. ..(2 ly„lt)I, „.(2 lye lt) —I, „,'(2 lr& lt)i, ,;(2 lys lt)+i, ».,(2 ly„lt)I, .;(2 ly, It) j, (2. 34)

where

2rx = (4r~ + 8 lr~rp I
cosQ. ap+ 4rp) ", (2. 35a)

»p= (4&~+ 8l»rp I «»Q, ap+ 4rs)'", (2. 35b)

I

and I„(x) is a modified Bessel function of the first
kind. An analogous representation involving the
ordinary Bessel function J„(x)obtains for
ReSE &Eg+u0.
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We see from Eq. (2. 34) that Go(Q„EI l, l,') can be
written as the sum of a part that depends on E, and

E,' only through their difference, and a part which
has a more complicated dependence on these in-

dices~

G.(q„Elf.z:)=G, (q„Elf.-z:),G, (q„Elf.f:),
(2. 36)where

&l"(()„&I».-:)=-&J «»x (-&(«!+~.-«(&l~ 1+61~.1&)

'Io(»1 t) fo(2y2t)I), -);(2 I y~ I t)f(,-(;(2 I y, I
t) (2. 3V)

:(a„ I(.):&=~f d .*.(- ( :...—~ .)
I .I

.)
I .I & I .(3 , & .() . &(,.-,:(2 I .I & ...,() I .I &

+f),+(,'(2I»lt)I(;(;(2lys It) f),+(t(2-ly. lt)f);(;(2lyslt) j .

At this point, we pause to comment on the view of-
fel ed by oui model on the vRlid1ty of the AÃsatz 1n

Eq. (l. 1), which forms the basis of the analysis
presented by Zeyher et ul. ~ The function.

G(oQ E((ll / ) may be used to compute the nonlocal
susceptibility of the model semi-infinite solid in
the absence of the Coulomb interaction between the
electron and bole, i.e. , in a picture where only
the contribution of single-particle interband excita-
tions are included in the dielectric susceptibility,
with the effect of Coulomb interactions ignored.
Th18 cori esponds to the dlagl Rms lllustx'Rted 1n

Fig. 1, where the Coulomb interaction is ignored.
The contribution Goo)(Q„ZI l, —l.') on tbe right-

hand side of Eq. (2. 36) gives rise to the term
go(x„—x'„, z —z'; ~) on the right-hand side of Eq.
(1.1). The Ansatz in Eq. (1.1) is then valid only
if the function Goo)(Q„E I t, l,') is a function only of
the sum /, +l,', and not of I, Rnd l,' separately. In-
spection of the terms within the brackets in Eq.
(2. 38) shows that this is not the case in general.
The third tex m inside the brackets is indeed R func-
tion of only /, + l,' [this term corresponds to the
diagram in Fig. 1(d)j, but the first and second
terms twbicb give the contributions from the dia-
gram in Figs. 1(b) and 1(c)j cannot be expressed
in simple fox'm. Thus, at this point, even though
we have yet to examine the effect of the Coulomb
interaction on the nonlocal susceptibility, we can
Rppx'eclate fl om our simple model the fRct thRt the
Ansatz in Eq. (1.1) is not expected to be valid gen-
erally.

%e no+ return to the pxoblem of determining the
nonlocal susceptibility in the presence of Coulomb
interactions for our model.

If ReKE lies in the energy gap sufficiently far
from both the valence and conduction band edges
that the inequality

Gl"C,~ I
o) =-AC,E),

G."'C,W I
~1) = -~(@,W),

Go"4w I») = G@g}

(2. 4Oa)

(2. 4m )

(2. 4Oc)

The dependence of each of these coefficients on the
two-dimensional wave vector Q„can be made more
explicit by expanding I,(2y, t) in powers of sin'~Q, a,
(j = x, y} in Eqs. (2. 37) and (2. 36). ln this way we
find

"@"=2(ly„i.Iy. l)

x g"'x — "~ a" xg + ~ ~
2 I &a'a ~ (3)

(I yg I + I ys I)'

(2.41a)

ff(Q E) g(1)(~) I Y&ys I

2(lysi+ lys I) (ly~ I+ lys I)'

")"'(~)z(() )+ ") (2. 41b)

G(4„E)= 2 Iy~ya I

2(ly„i+ lysi') (Iy„l+ Iy l)3

xc"'(x)g(Q, , &+ . .
) (2. 41c)

where we have introduced the functions

E~+ &go- AE 21x=
( I I I), g(Q()) = 8111 2 Q«QO+ sill 2 Qyuo,

(2. 42)

The coefficient integrals are given explicitly by

is satisfied, then G,"'(@„Zll, —f,') is a rapidly de-
creasing function of I &, —t,'I, and G,"'(Q,P I t,&,') is a
rapidly decreasing function of l, and l,' separately.
In this limit we can take as the only nonvanishing
elements of these matrices (t„t', ~ 1)

Eg+@o —ReSE )
2(l y~ I + I ys I)

(2. 39) a")(x)= du e ""'")I3O(u)fo(o. u)fo(I3u), (2.43a)
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"p
du e ""'"'uI,(u)I, (u)I,(nu)I, (Pu),

f)(»(x) = du e ""'"'I()(u)I,(nu)I, (Pu),
W p

(2. 43b)

(2.44a)

5(2&(x)

c(1)(x}

"p

~ss p

du e "' '"&uIO(u)I&(u)I, (nu)I, (Pu),
(2. 44b)

du e ""'"'I (u) [I (nu)I (Pu) + I,(nu)I (Pu)

&4((&) —(@/uo)

28(Q „E)

whose real part is positive. The effects of the
crystal surface in the result given by Eq. (2. 4V)

are reflected in the presence of the bvo terms pro-
portional to e ~ ~'z''z'.

Combining Eqs. (2. 10),, (2. 28a), and (2. 32) we
find that the susceptibility y„(ll; &u) can be Fourier
analyzed according to

—I,(nu)I, (Pu) ], (2. 45a) X,(II';(d) = —Z exp'„~ [x„(I)—x„(&')]]

c('&(x) = du e ""'"'uI,(u)I, (u)[I()(nu)I, (Pu)
dp

+I (nu)I (Pu) —I (nu)I (Pu)], (2. 45b) with

&& x.,(4,+ I f,f,'), (2.49)

where

I yg l

ly~t+ ly~r '
Jya I

ly„t+ ly, I

' (2.45)

3 [G(Q„~+ i&i ~l, l,')
Sap

+ G(- |)&„—(d —i&7
~
l,'l, )] . (2. 50)

ft is shown in Appendix A that the solution of Eq.
(2. 33) for the Green's function G(Q((E ~ f f,') under
the assumptions made here can be represented in
the form

Now, it is readily found from Eq. (2. 31) that
Go(Q„EI f,l,') is even in Q„and is symmetric in /,
and l,'. It follows from Eq. (2. 33), therefore, that
G(Q„E ll, l,') is also even in Q„and symmetric in
l, and f,'. Thus we can rewrite Eq. (2. 50) as

5 'C e'"z""
up B B+Ce' ' (2. 47)

e'm'
Xg (4((+ lf f ) =

g [ (GQ (((+dpi~ I,I )z z ga3

+ G(f(}(( ((& i&i llglg)] . (2. 51)

where g(Q„E} is defined as that solution of the
equation

If we then substitute Eq. (2. 4V) into Eq. (2. 51), we
obtain finally the result that

xg~(Q(((d I V)I) =
2e2m2 ge2m2 e 0 (+)] lz lzl e-0 (")Ilz-Ized

s,s, "',s', 2ii( )sish((s) +KB(-)sisS((-))
)

g 2 8 e f(+&ogs(g-& e-(!( &(rgstg& -C(/) e-0(+&og+(g& C( )
u20ao 28(+) sinh$(+) 28(-) sinht(-) 8(+) 8(+)+ C(+)e ' 8(-)

e- f (-)(lz+ lz)

ii(-)+ C(-)s "') '

(2. 52)

where by the arguments (+) we mean (Q„+ (() + i&i).

The expression for the susceptibility given by
Eq. (2. 52) has the form obtained by Zeyher et al. ,

'
viz. , it is the sum of a function of ll, —l,' I alone
and a function of (l, + I,') alone. However, although
we will base the discussion in the remainder of
this paper on the results of this section, it is shown
in Appendix B that the form of the susceptibility
given by Eq. (2. 52) is a consequence of the as-
sumptions represented by Eq. (2. 40), in particular,
that the only nonzero elements of the matrix
G,"&(Q„EIl, —f,') are those corresponding to l, —I,

'

= 0, + 1. In fact, it is shown in Appendix B that if
the nonzero elements of Go (Q„E I f, —l,') are ex-
tended to include those for which l, —l,

' = a2, then
the susceptibility 1„(Q„(d l f, l,') already possesses

a more complicated dependence on l, and l,' than
that found by Zeyher et al. , and it is that which is
displayed in Eq. (2. 52).

The physical interpretation of the inequality in
Eq. (2. 39) is the following. The quantity B =

E,' '+ up is the energy gap in the model, after re-
normalization of the gap by the Coulomb interac-
tion. This quantity is the energy gap one would
measure in an optical-absorption measurement.
Thus Eq. (2. 39) requires, in essence, that E~ —IIE
be large compared to sum of the width of the val-
ence band and the conduction band. This clearly
requires the energy gap to be large compared to
the sum of the width of the valence band and the
conduction band. It is a condition poorly satisfied
in the semiconducting crystals where spatial dis-
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persion effects have been studied in the past (e. g. ,
CdS). In fact, if RE is chosen near a typical exci-
tion energy, then E —SE is small compared to the
summed bandwidths in general, and the inequality
in Eq. (2. 39) will be reversed. Thus we obtain a
form similar to Eq. (1.1) only under conditions that
are unrealistic for real crystals. As one sees ex-
plicitly from the results displayed in Appendix B,
a form such as that in Eq. (1.1) becomes invalid
as soon as the inequality in Eq. (2. 39) is violated.
While our model is a very special one, physical
considerations suggest that a criterion such as that
displayed in Eq, (2. 39) may be required quite gen-
erally for Eq. (1.1) to be valid.

III. SURFACE EXCITONS

E(x)+ "y', G(x)g(Q„) =O,
( I r„ I + I r)) I

)'

to first order in g(Q„), where

yQ) (
(i YA I +

I Y I) 11)( )) (I)( )
Qp

(s. 5)

+5"'(x) +c"'(x)

G(x) = a"'(x) ca'(x) + a S'(x) c"'(x)

(S.6a)

2(I yg I + I r~ I) (, )
Rp

—2[5"'(x)ba'(x)+c"'(x) cN'(x)j . (3.6b)

(d. 5) in a form more convenient for its solution,

The results of Sec. II enable us to obtain the
dispersion relation for a surface exciton, i.e. , an
electron and hole bound together by their mutual
Coulomb attraction, and at the same time localized
in the vicinity of the surface of semi-infinite crys-
tal.

This dispersion relation is obtained from the
poles of the Green's function G(Q))Ell, l,) lying in
the gap 0 & Re@E & E~+up. An examination of Eq.
(2.47) reveals that if G(Q),E Il, l,) has any poles in
this energy range they are given by the solution of
the equation

,.g(Q„s) (Q() )
C(Q„E) ' (3.1)

which must be solved together with Eq. (2.48).
In what follows we will assume that E is real,

and will denote it by ~. We will find that this as-
sumption leads to a solution of Eqs. (2. 48) and
(3.1) for 0 & ))I(u & Eo+a, .

Since for E real both B(g E) and C(Q,E) are pos-
itive, for small enough IQ I, we set

$(Q„&u) = $()(Q„(u) +f7(, Iteko(Q„(u)»

and rewrite Eqs. (3.1) and (2.48) as

(S.2)

(0 (Q()p&) (Q(( ) (S.3a)
C(Q„(c) '

cosh), (Q„~) =A (Q„(o) —(@/uo) (s. sb)
II

2B,&d

If we eliminate ((Q„&u) between Eqs. (3.3a) and
(S.3b) we obtain the dispersion relation for surface
excitons:

B'(Q„~)+ C'(Q„~) = C(Q„~) [a(Q„~)—(a/a, )] .
(s.4)

In order that any solution (d = &u(Q„) of this equation
be a valid solution, the function $, (Q(((()(Q())) ob-
tained from Eq. (3.3a) must have a positive real
part. This requires that B(Q„())(Q()))& C(Q (d(Q),)).

With the aid of Eqs. (2.41) we can rewrite Eq,

If we denote by xo the solution of the equation E(x)
=0, then the solution of Eq. (3.5) is given by

2 I r„ys I G(x,)
(Ir I+ lr I)' &'(x )

(3.7)

to first order ing(Q„). From Eq. (2.42) we find
that the surface-exciton dispersion relation is
given by

&~(Q ) =E!+ao-2(lr. l+ lysi)xo

4 I y„ys I G(x())
(ly„l+ lysi) F'(

(&x)

(s. 8)

to first order in g(Q„).
To obtain numerical results for &u(Q))) we assume

that

x, =1.2968, E (x,) =0. 24367xlo 3,

G(xo) = 0.64274 x 10 (S.lo)

so that the surface-exciton dispersion relation,
Eq. (3. 8) is, finally

h&(Q„) =E,'+5.4064 (Ir„l + Ir, I)

1.0551 ly„y~ I

((le I + lys I )
(s.»)

'Zhe dispersion relation for bulk excitons has
been determined in Appendix C. If we set ()), =0
in the result given there we obtain

II&(Q )b.)), = E,'+ 5.2112( I y~ I
+

I ys I )

".='(y. I+ ly. l» I y. I

= 5I y. I ~

so that a=~8, P =~6. The functions a""(x), I)""(x),
c"2'(x) for real x were evaluated from the repre-
sentations given by Eqs. (2.43)-(2.45), for 0. 5
—x~4. 0. The integrals were evaluated by a ten-
point Gaussian-I. aguerre quadrature formula.

The results of these calculations are summarized
by
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1.1136ly„yel
( I y„ I + I y, I)

(3.12)
sume that the amplitude of the electric field in the
crystal is spatially uniform,

From a comparison of the results given by Eqs.
(3.11) and (3.12) we see that for the same value of
the wave vector Q„ the dispersion curve for sur-
face excitons lies above that for bulk excitons.

Finally, we note that if the dispersion relation
(3.11) is substituted into Eq. (3.3a) the result for
)p(Q„p)) so obtained is real and positive, so that
Eq. (3.11) is a valid solution of Eq. (3.1).

IV. SPATIAL VARIATION OF POLARIZATION IN
CRYSTAL

To illustrate the result obtained in Secs. I-III
we apply them to the determination of the spatial
variation of the polarization induced in our model
of semi-infinite crystal by a spatially uniform
macroscopic electric field.

Our starting point is Eq. (2. 9b), and we as-

E,(I;&u) =-E,((d)

In this case Eq. (2. 9b) becomes

(4. 1)

P, (I;~) =E.(~)g X.,(II';~)

With the aid of the decomposition (2.49) this ex-
pression simplifies to

(4.2)

e vlPg(I„(p)=,— E,((p)x„((d
l I,)a

where

P'(I, '») =E. (&)Z x-(0(diI.I.') . (4»

The sum over l, is readily evaluated, with the re-
sult that

2 ( I y„ I + I ye I) 1 1 2( I y„ I ~ I ye I)
u 4b"'(x(+)) sinha —,

'
$ (+) 4b"'(x(-)) sinh —,

' ( ( ) u

1 c"'(x(+)) 1 e "'
4b"'(x(+)) sinh —,

' ( (~)) b"'(x(+)) b"'(x(+)) +c"'(x(+))e ' "1 —e ~"
2(lr~ I + I ra I) g( ) ( 1 c")(x(-)) 1 e '( '

4 'b(x(-))sinh —,
' ((-) ('(x(-))!"'(g(-)}ac"'(x(-))e''' ( —P.

'' ') '

(4. s)

In this expression x(+) =8(1 -y) —I(0.005), (4. 1oa)
0

( )
Eg+up+b(d . jgf/

( )2( ly„ I + I y, I) 2( I y„ I + lra I) '

E +Q + (0x(-) = —
' ' +i ", (4. 6b)2(l y„ I + I y, I) 2( I r„ I + I y, I) '

and $(+) are those solutions of

a ")(x(+)) —[2( I y„ I + I ya I )/u, ]
2b "&(x(+)) (4. 'I)

whose real parts are positive.
We have evaluated the function X„((d I I,) a,s a

function of l, for several values of g~ in the gap
between the valence and conduction bands 0 & g~
& E~+go. To present the results conveniently we
define a dimensionless photon energy y by

@COy= 0 —, 0&y&1E+uo'
In addition, we choose the values

(4. 8)

Consequently, the expressions for x(a) take the
forms

, =8(lr„l+ lr, I), lr, l =Sly„l

E,'+uo=l6(fr~i+ lral), g~=(0 oos)/2(Ir~l+ . lr. l).

x(-) =8(I+y)+I(O. OOS) . (4. lob)

The integrals a"'(x(+)), b'~)(x(a)), c"'(x(+)) were
evaluated by a ten-point Gaussian-Laguerre quadra-
ture formula, and the values of $(+) were obtained
from the results by means of Eq. (4. I).

In Figs. 2 and 3 are plotted ReX„(p) Il, ) and
ImX„(&u II,), respectively, as functions of I, for
several different values of y in the range 0.5 —y~ 0.95. In the absence of spatial dispersion, the
dielectric susceptibility X„(Ll;(d) would be inde-
pendent of the site indices l and l', and the polar-
ization P, (l; )(induced by a spatially uniform mac-
roscopic electric field (4.1) would be independent
of l. The departures of the curves in Figs. 2 and
3 from horizontal straight lines therefore give a
measure of the importance of spatial dispersion ef-
fects in the present model of a semi-infinite in-
su].ator.

Several conclusions can be drawn from these re-
sults. We see that for values of y & 0.5, i.e. , for
photon energies &co below about half the width of
the energy gap, spatial dispersion effects are neg-
ligible. However, as y increases and approaches
a critical value of y = 0.8379, which from Eqs.
(3.1) and (3.11) is the value corresponding to the
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energy of a, surface exciton at Q„=O, the effects of
spatial dispersion become more pronounced. Even
so, for values of y as close to the critical value as
y = 0.8 the polarization has reached its bulk value

by the third atomic plane into the crystal from the
surface (l, =3). It is only when y gets rather closer
to the critical value of 0.8379 that the effects of
spatial dispersion are felt deeper into the crystal.

For example, for y =0.825 both Rey, (~ If,) and

ImX„(u& Il,) are still changing with f, at l, =5.
Rex„(&u!l, ) changes sign at values of y close to the
critical, but at a different value for each value of

l, . Thus, it goes to zero at y = 0.8379 for /, =1,
y =0.8265 for l, =2, y =0.8261 for l, =3, y =0.8258
for l, =4, and y =0.8258 for l, —5. Similarly,
Imp„(&u Il, ) has a sharp maximum centered at each
of these frequencies. We see also that the magni-
tude of the real part of the polarization is de-
creased at the surface with respect to its value in

the bulk, for frequencies below the surface exciton
frequency, but is increased for frequencies above
the surface exciton frequency.

In conclusion, we have presented a calculation
in the tight-binding and Hartree approximations of
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FIG. 3. Plot of ImX {~ I l»), defined by Eq. {4.5), as
a. function of l, for several values of the dimensionless
photon energy. The surface of the insulator corresponds
to l»=1.
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the nonlocal dielectric susceptibility of a semi-
infinite simple cubic crystal in the excitonic regime
of frequencies. We have shown that if the exciton
is sufficiently spatially localized, in the sense that

the only nonzero elements of the Green's function

G, (Q,E Il, l, ) are those for which f, and l, differ at
most by a 1 [see Egs. (2.40) i, then the resulting
susceptibility has the form obtained by Zeyher et
a/. , namely, the sum of a function of I/, —/, I alone

and a function of l, +l, alone. We have shown ex-
plicitly that this result no longer holds for a more
extended exciton, and the conditions for the validity

of their Ansatz are sufficiently severe that they

will seldom be met in practice. We have obtained

the dispersion relations for both the bulk and sur-
face excitons predicted by our model, and have

demonstrated some of the consequences of the non-

locality of the dielectric susceptibility obtained by

using it to determine the spatial variation of the

polarization induced in the crystal by a spatially
uniform macroscopic electric field. A determina-
tion of the optical properties of our crystal model

based on the dielectric susceptibility obtained in

Sec. II will be varried out in a subsequent paper.

FIG. 2. plot of Hex (co I l ), defined by Eq. (4. 5), as

a function of l» for several values of the dimensionless

photon energy. The surface of the insulator corresponds

to l»=1.
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APPENDIX A. SOLUTION OF Eq. (2.33) FOR THE
GREEN S FUNCTION G(@IInil I )

In this Appendix we solve the integral equation
(2. 33) subject to the condition that the only non-
zero elements of the Green's function Go(Q„E I l, l,')
are given by Eqs. (2, 36) and (2. 40).

We begin by substituting the decomposition (2. 36)
into the last term on the right-hand side of Eq.
(2. 33) and transposing terms in the resulting equa-
tion to obtain

(II) y + Gt(U(o z(l l ))G(o z(l l )

Z g(4„EI/. /.")G.(Q EI/ /) = „[6„-g(Q EI//. ')]

+ g g(Q„Z Il, l,")GP'(Q„Z Il,"I,') . (A6)

If we combine this result with Eq. (2. 40c), and

substitute it into both terms on the right-hand side
of Eq. (A4), we obtain the compact result that

G(Q„E I/, /,') = —
I.6,,, -g(Q„E I/. /,')1

g(Q))E I/ I)C('Q))E)g('Q))Z I I/g)
( )1+ (u /A)C(Q, E)g(Q„Z I 11)

whose symmetry in l, and l,' is manifest.
It remains only to obtain g(g()E I l l ) With the

assumptions represented by Eqs. (2. 40a) and
(2. 40b), Eq. (A2) can be written explicitly as

—bg(lg —1, /I) —ag(/g, /g) —bg(/~+1, /g) =6g g ~, /I, /g —1

(AV)

where we have introduced the quantities

= Go(4((E I/. 4) —
@ Z Go"'4))E14/8')

x G(g„E I/,"/,') . (Al)

a(Q„E) = —'~(Q))E) —I,

b(Q„E) = —"'E(Q„E) .

(Aaa)

(A6b)
It should be kept in mind that each of the variables
l„ l,', l,"assumes only the values 1, 2, 3, ... .

We introduce a Green's function g(Q„E I l, l,') as
the solution of the equation

I. (&...;+ z'&"'(0,„&Il, - i,"))g(o,»~ ll."&,') =~, ,
(A2)

Because G~~"Q„E I l, —l,') is symmetric in l, and l,',
g(Q „EI l, —l,') will also be symmetric in /, and l,'.
In terms of this function the equation for G(Q„)E I l, l,')
can be written

G(4 ZI/. /.') =g g(QIE I//")Go(Q))ZI// ')

4 )g@)) I ) @))EII/'),
(A3)

where we have used the assumption that the only
nonzero element of Go(o)(Q„E I/, l,') is that given by
Eq. (2. 40c). If we set / = 1 in this equation, and
solve the resulting equation for G(Q„E I 1/,'), we ob-
tain for G(g„Z I l, l,')

G(Q„E I/. /,') = Qg(4„Z I/. /.")Go(Q„E
I l."I,') ——„'C(4„Z)

g(Q Z I/, 1)g)"g@„EI1/,")G (@,E Il "l,')
1+ (u /h)C(Q„E)g(Q„E I11)

(A4)
This result can be simplified considerably. If

we use the decomposition (2. 36) and the symmetry
of g(Q„E I l, l,') in /, and l,', we can rewrite Eq. (A2)
as

To simplify notation we have dropped the argu-
ments (Q))Z) in writing Eq. (A7), and will continue
to do so in what follows.

Equation (AV) holds for all l„ l,
' ~ 1. However,

we notice that when l, = 1 the Green's function

g(0, l,') appears on the left-hand side of this equa-
tion. As there is no site with l, =0 in the semi-
infinite crystal, we can write Eq. (A2) in the form
(A7) only if we impose the condition

g(0, l,') =0, l™1 (A9)

on the solution.
To solve Eqs. (A7) and (A9) it is convenient to

introduce the shift operators ~ and 4"', which are
defined in terms of their effect on an arbitrary
function of the discrete variable l:

&f(l,) =f (/g+ 1), & 'f (l,) =f (l, —1) . (A10)

cosh' = —a/2b (A12)

whose real part is positive. We now make use of
the results

(b —2cosh)+b, ')e~'~ =0,
~-CI lg-lg-I

(/) —2 cosh/+A ') . =6, ,—2 sinh

(A13a)

(A13b)

In terms of these operators we can rewrite Eq.
(AV) in the form

(4 —2 cosh)+ 4 i)g(/, /,') = —(I/b)5. .. . (A11)

where the parameter $ is defined as that solution
of the equation



to wl'ite tile solll'tloll of Eq. (AV) ln tile forIn

@&1&g -la'l

g(/. /.')= -'b . „-.+/8'",
2b s1nhj

(A14)

When we substitute Eq. (A16) into Eq. (A6),
aftel some slmp11flcatlon %6 obta1n the 1"esult

which remains finite as /, increases without limit.
The coefficient p. is obtained from the boundary
condition (A9), with the result that

@&t s~-sg @-k (&~+sg )

by Eqs. (AB), and

d(Q„Z) = (II,//I)/l(Q„Z) . (a4)

for all E, ~ 1. These conditions are equivalent to
the conditions

Since the atomic planes labeled by /, = 9 and

Eg = —1 are absent from a semi-infinite crystal, the
equations for g(/, /,') can be written in the form (B3)
only if we require that for E, = 1

-dg(-1, /,') —bg{o, /,') = o

for all /' 1, while for l, =2

(A16)
g(o, /.') = 0,

g(-1, /,')=o, /',

(»a)
(a6b)

When we take account of Eqs. (AB) this result be-
comes Eq. (2.47) of the text.

APPENDIX 8. GREEN'S FUNCTION a~@ EII,I,'~ FOR
SPATIALLY EXTENDED EXCITON

In th1s appendix w6 extend the 1esult fol
G(Q„Z l /, /,') obtained in the preceding appendix by
allowing the kernel Go(Q„Z //, /,') in Eq. (2. 33) to be
nonzero for values of E, and l,' differing by more
than unity. In doing so we demonstrate explicitly
the incorrectness of the conjecture by Zeyher et
e/. ' concerning the structure of the susceptibility

~ {//';+) of a semi-infinite insulator„which we
have already discussed in the Introduction to this
paper,

We again make the decomposition of G~(Q„Z I /, /,')

glvell by Eq. (2, 36), alld because olll' demonstration
does not depend on the assumptions made about
GOI3'(g „[/, /,'), as will be clear from what follows,
%'6 will Qlake the S1nlplest poss1ble assumption coI1-
cerlling 1ty v].z, ~

that

G,"'(q „z~/, /,') =5...5...c{Q„Z). (»)
This is the same as the assumption made about
Gol~'(Q„z [/g/g) in Appendix A, so that the result
glvell by Eq, (A6) fo1 G(Q ztg/g/g) is valid in this
appendix as well.

In solving Eq. (A2) for the Green's function

g(Q„Z I /, /,') to substitute into Eq. (A6) we assume
that the only nonzero elements of Go"'(Q„Z (/, —/,')
are those given by Eqs. (2.40a) and (2.40b), and

1n Rdd1tlon

G,"'{Q„Z~+2)=-n{Q„Z) .
With these assumptions Eq. (A2) can be written
explicitly as (/„ /,

' ~ 1)

—dg(/, —2, /,') —bg(/, —1, /,') —ag(/, /,') —bg(/, + 1, /,')

—dg(/, + 2, /,') = 5, ,;, (B3)

where a(g„z) and b(Q„Z) have already been defined

cosh)+ coshI/= - b/2d,

cosh( coshi/ = (a/4d) —g,

(ava)

(avb)

with Re) &0, Re'g&0.
In view of the result given by Eq. (A13b), to ob-

tain a particular solution of Eq. (B3) we make the

Ansggz

e-II Ig "lgl 8-gi Ig-Igl

When we substitute Eq. (BB) into Eq. (B6), we ob-
tain the equation

(o. + p)5, „,—(2ncoshI/+2pcoshg)5I I

+ (Q+ P)51 I It —51 Ie

It follows that

2(cosh) —coshI/)
(alo)

and consequently we find

&& t S~-Sg &- ql ~g-t~l

2d(cosh) —coshI/) 2 sinhg 2 sinhl/

(all)
If we note Eq. {A13a), the general solution of

Eq. (B6) which remains finite as /, increases with-
out limit is

g(/g/g) = Ps g+ P8 g+
2d( hg h )

~~

~&) ~,-sg

2sinhg 2sinhl/

which serve as boundary conditions on the solution
of Eq. (B3).

We can rewrite Eq. (B3) in terms of the shift
operators defined by Eqs. (A10) as

(b - 2 cosh (+6 I)(a - 2 coshI/+ b. ')

xg(/, /,') = —(1/d)5. .., (B6)
where ( and I/ are the solutions of the equations
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where the coefficients p, and v are to be obtained
from the boundary conditions (B5). We will not
record here the straightforward, if somewhat
tedious, determination of their values, and pass
directly to the final result:

g/, /,
' = 1 e& lg-q lg

2d(cosh) —cosh'q) (e~ —e")

&-gag-gi,' &-e C~r8 &

2 sinhg

~-n -q(i,+i, )
2 sinhr/ 2d(cosh) —cosh')

X (e&
[ lg-lgI 8-nI &8-&gt

h sihh( 2 sihhll ) B13)

APPENDIX C. BULK-EXCITON DISPERSION
RELATION

For comparison with the dispersion relation for
surface excitons obtained in Sec. III, we obtain in
this appendix the dispersion relation for excitons
in an infinitely extended crystal predicted by our
model Hamiltonian (2. 3).

The starting point for this determination is the
integral equation (2. 14), which we have noted al-
ready holds for an infinitely extended crystal as
well as for a semi-infinite crystal. The kernel in
this equation is still given by Eqs. (2. 18)-(2.22),
except that in solving for the single-particle
Green's functions g„(/, /„E) and g~(/o/o, E) only the
first term on the right-hand sides of Eqs. (2. 23)
is retained. The results for these Green's func-
tions now take the form

The presence of the first two terms on the right-
hand side of Eq. (B13) shows that g(/, /,') cannot be
written as the sum of a function of /, —/~ alone and
a function of l, +l,' alone. Since Go '(Q„E[l,l,') and

g(Q„E I l l,') coincide when Go"'(Q„E1/, /,') is identi-
cally zero, we have the result that under the as-
sumptions of this appendix G(Q„E [ l, l,') cannot be
written as the sum of a function of /, —/' alone and
a function of l, + l' alone when Go"'(Q „E~ l, l,') is iden-
tically zero. It follows from Eq. (A6) that it can-
not be written in this form for arbitrary nonzero
values of the elements of Go"'(Q„El/, /,'), which is
what we set out to show.

Go(///'l'; E) = Go(/l'; E)

where

= —Q Go(QE)exp(if. [x(l) —x(/')]],
(c2)

1
G.(4E) = —gN . 5E —Eg —uo —E~(q) —Ee(q —Q)

0 ~ ~ ~ ~

If we express G(l/l'l';E) in a similar fashion,

G(ill'l; E) —= G(ll'; E)

G(QE) = Go(4E) ——,
'

Go(OE)G(QE) .

From the solution to Eq. (C6),

G,(QE)'@ '=
1+(u,i8)G,@E)

(c6)

(c7)

we see that the dispersion relation for bulk excitons
ls

1+ (u, /a)G, (QE) = O, (C8)

since the energies of the bound states of our inter-
acting electron-hole system are given by the poles
of the corresponding two-particle Green's function.

In what follows we will assume that E is real,
and denote it by ~, and will look for solutions of
Eq. (C8) for h&o in the gap between the valence and
conduction bands, 0 & h v & E + up. For A + in this
range we can rewrite Go(Qa&) as a single integral

Go(gv) = —// dtexp[ —t(E~+uo k~+6lr&
I"0

+ 6
I ye I) ]fo(2y, t) Io(2y, t) fo(2y, t),

where

G Eexp i x/ -x/'
N q

(c4)
then the equation for Go(l/';E) which follows from
Eq. (2. 14),

G(ll'; E = Go(//'; E) —~@+ Go(//"; E)G(l"l'; E),
(c5)

can be reduced to the equation for the correspond-
ing Fourier coefficients,

-(o&(/ l .E)
8 p expbq. [x(/i) -x(/4)l]
N - hE —E(q)a'

(o)( 5 g exp(ik ~ [x(/o) —x(/o)] j
8.E -E,'- u, -E,(k)

(Cia)

(C lb)

2r; = (4r~+ 8 lr.rs I cosa, +4r.')'" (C 10)

and Q, =Q„ao, go= g, ao, qo=g, ao. If this expres-
sion is expanded in powers of sin 2 Q;, the leading
terms in this expansion are

When these expressions are used in Eqs. (2. 18)
and (2. 19) we find that the function Go(ill /; E) for
an infinitely extended crystal can be expressed in
the form

Go(4~) = —
( (

&(~)
2 ~r~~+ ~re ~

+
(

r"r'
), J(x)f(Q)+. . . , (cll)

'Yx+ 'Ya



3162 H YZHN YAKOV, MARADUDIN, AND MILLS

the functions I(x) and J (x) have the integral repre-
sentations

Qp
du e "'~"'Iso(u), (C 12a)

Z(x) =
Np

due ""' 'ur', (u) I,(u), (C12b)

where f(Q) is defined by

F(x)+ uo[y"",Z(x)f gj)+. . . =0
[y~ [+ [ys [

to first order in f(Q), where

(C 14)

E(x) 1
([ [ [

[)I(x) (C15)

If we denote by xo the solution of E(x) = 0, then the
solution of Eq. (C14) becomes

f (Q) = sin —,
'

Q„ao+ sin —,
'

Q„ao+ sin —,
'

Q,ao, (C13)

and x is defined by Eq. (2. 42), with E replaced by &o

The dispersion relation (C8) can now be rewrit-
ten

2[V~ye [ J(xo)
f(Q)

(ly& I+ lys I)' I'(x,)

to first order in f(Q). From Eq. (2. 42) we find
that the bulk-exciton dispersion relation is

@&(0)= &,'+ uo —2( ly~ I+ I ye l)x(Q)

(C 16)

=&!+uo-2(ly~ I+ Iys l)xo

x (sin —,
'

Q„ao+ sin —,
'

Q,ao+ sin —,
'

Q, ao) . (C18)

[VAVB [ ( 0) f (Q) (C 17)
[y~ [+ [ys [ I'(xo)

also to first order in f (Q).
To evaluate this dispersion relation we assume

the values for uo and [ye I/lyz I given in Eqs. (3.9).
The functions I(x), I'(x), J(x) were evaluated for
0. 5&@&4by the methods described in Sec. III. The
value of x for which I(x) = —,

' was found to be xo
= 1.3944. The value of J( x)o/ I(xo) was then de-
termined to be —0.2784. Gonsequently, we obtain
finally

@to(Q) =E,'+5. 2112(ly„l+ly, l)+
'

'4+ ye
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