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Shell-model calculation of some point-defect properties in a—Al, Os~
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A polarizable point-ion shell model has been developed for a—Al, 03. The material is treated as

perfectly ionic, the repulsive interactions were calculated from free-ion wave functions, and the single

empirical parameter of the model was obtained from an analysis of dielectric data. The model yields a
good account of the cohesive properties of the perfect crystal. Calculations of the formation energy of
vacancies and interstitials predict that Schottky defects are energetically more favorable than Frenkel

pairs. Preliminary calculations of defect motion energies suggest that 0 vacancies are the most mobile

defect. Existing data on diffusion and radiation-damage annealing are reviewed in light of the

calculations.

I. INTRODUCTION

There is considerable interest in the refractory
oxides for a variety of high-temperature and nu-
clear applications. The defect structure of these
materials is of great importance for atomic trans-
port and for response to high-energy radiation.
Aluminum oxide, Alz03, may be considered a pro-
totype suitable for theoretical study. Some experi-
mental information is available on A1203 from dif-
fusion and radiation-damage studies, but the in-
trinsic and mobile defects have not been identified.
It is important, therefore, to estimate theoretically
the formation and migration energies of aluminum
and oxygen vacancies and interstitials.

The interpretation of the available experimental
information is by no means clear cut. The data
are rather meager since high-temperature experi-
mentation is difficult. Further, very little is known

about impurities in Al&03, and these can play a
very important role in defect formation and motion.
The single-crystal experiments of Oishi and

Kingery for oxygen diffusion are most easily in-
terpreted. The over-all activation energy for dif-
fusion of oxygen Ez at high temperature was mea-
sured as 6. 6 eV while at low temperature E& was
2, 5 eV, If one assumes that oxygen migration alone
was measured in the low-temperature extrinsic re-
gion, then one can assign 2. 5 eV to the oxygen mi-
gration energy E„. If one now assumes that stoi-
chiometric oxygen and aluminum vacancies are the
dominant defects (three 0 vacancies and two Al '
vacancies for electrical neutrality), then the
Schottky formation energy E~ is given by E& =-5E+

+E&, yielding Ez ——20. 5 eV or 4. 1 eV per defect.
Oxygen diffusion in a polycrystalline sample was
characterized by a considerably lower ED of 4. 8
eV, about the same Ez value as found for aluminum

diffusion in a polycrystalline sample. With no
single-crystal data reported for aluminum diffu-
sion, it is difficult to estimate the migration ener-
gy for aluminum.

It should be mentioned that Fryer, on the basis
of sintering experiments with doped and undoped
samples, suggested quite a different assignment of
energies, since he concluded that the high-temper-
ature oxygen-diffusion experiment above was im-
purity controlled. Without further experiments a
clear conclusion is impossible.

Most of the experiments on the annealing of ra-
diation damage indicate activation energies near
2. 2 eV, which presumably characterizes the fastest
moving defect. It should be noted, however, that
two activation energies have also been suggested,
1.2 and 3.4 eV, for describing annealing in the
(400—1400) ' C temperature range. '

It is clear that not only is further experimenta-
tion necessary, but in addition theoretical studies
are required to clarify the nature of the point de-
fects responsible for atomic transport and the
annealing of radiation damage. Calculations are
presented in this paper based on a polarizable
point-ion shell model for n-A1203 with the major aim
of determining defect formation energies and hence
the intrinsic defects expected on the basis of ener-
getics. The symmetry and surroundings of simple
defects are outlined in Sec. II. The determination
of a suitable shell model for A1~O3 is discussed in
Sec. IG, and the properties of the perfect crystal
based on this model are presented in Sec. IV. The
calculations and results for the formation energies
of vacancies (Schottky defects) and interstitials
(Frenkel pairs) are given in Sec. V, together with

some estimates of activation energies for some
likely migration paths. The results are summarized
and discussed in Sec. VI.
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TABLE I. Cartesian coordinates of the ions in a unit
cell of o —A1203 in units of a=5. 124 A. The origin of
the coordinate system is located at the center of mass
of the unit cell (the vertex in Fig. 2).

Ion

1
2
3
4
5
6
7
8
9

10

Type

Al
0
0
0
Al
A1.

0
0
0
Al

0
—0.2457

0.2457
0
0
0

0.2457
—0.2457

0
0

0
—0. 1418
—0.1418

0.2837
0
0
0.1418
0.1418

—0.2837
0

0. 3750
0. 6334
0. 6334
0. 6334
0. 8918

-0.3750
-0.6334
—0. 6334
—0. 6334
—0. 8918

II. STRUCTURE OF a-Al&03 AND THE SYMMETRY OF
VACANCIES AND INTERSTITIALS

The structure of n-AlqO» space group D3~, may
be described as a slightly distorted hexagonal-
close-packed arrangement of oxygen ions (0 ") with
the aluminum ions (A13') occupying two-thirds of
the. interstices. A sketch, neglecting the distortion
from the "ideal" hexagonal-close-packed structure,
is shown in Fig. I, with the Al ions shown on lines
perpendicular to the close-packed planes of oxygen
ions. The X's indicate the positions where these

IDEALIZED A lp Op STRUCTURE

AL

Q2

PRIMITIVE UNIT CELL AND BASIS FOR ALp Op
0

a = 5.124 A

a=55 l7
FIG. 2. Primitive unit cell and basis for ~-Al&03.

lines intersect the planes. The primitive unit cell
is a rhombohedron of side 5. 124 A and vertex angle
55'17, as shown in Fig. 2, The basis is a group
of two molecules centered around the vertex. The
Cartesian coordinates of 10 typical ions are listed
in Table I.

An Al ' vacancy is located at position P in Fig.
l. Its nearest neighbors are two sets of three 0
ions, at distances of 1.86 and 1.97 A, as shown in
Fig. 3. An 0 vacancy is located at position B in
Fig. 3., surrounded by two Al ' ions at I.86 A and
two at 1.97 A, arranged roughly in a tetrahedron
around the 0 vacancy, as sketched in Fig. 4. The
most likely site for an interstitial ion is at position
I the octahedral interstitial site, in Fig. 1. As
sketched in Fig. 5, the octahedral interstitial site
has two Al ' neighbors at I.92 A and six O~ neigh-
bors at 1.98 A.

FIG. 1. Idealized n-Al203 structure. A and 8 indi-
cate the sites of aluminum and oxygen vacancies, and &

.is the octahedral interstitial site. Other symbols are
defined in. Section VB.

III. SHELL MODEL FOR Alp03

For the purposes of this calculation, it has been
assumed that the properties of point defects in
Alz03 can be calculated by treating the material as
perfectly ionic and by describing the cohesive prop-
erties by means of a polarizable point-ion shell
model, In this model the energy of the crystal in
any structural configuration is the sum of Coulombic
(monopole and dipole), closed-shell repulsive, and
Van der Naals's interactions. The legitimacy of
such a model for Al&03 depends, of course, on the
degree of agreement of its predictions with experi-
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FIG. 3. Nearest neigh-
bors to A13' vacancy.

perfect infinite crystal, to the octahedral intersti-
tial site, from A to I in Fig. 1, is 33.4 eV, white
the same displacement in the center of the 1855 ion
crystallite results in a value of 33. 5 eV. The
actual relaxations around the defects considered
here are much smaller than the displacement in the
example above, -0.25 A compared with ]..92 A

above, thus the error per relaxed ion is probably
less than about 0. 01 eV. For 30 relaxed ions, typ-
ical of these calculations, the total error in the
formation energy is less than about 0. 3 eV. (This
is probably an overestimate since the discrepancy
in q~fII) for displacing an 0 ion from Bj to I in
Fig. 1 is zero. ) Several site energies qbgo for an
infinite perfect crystal are listed in Table II. The
Madelung contribution to the cohesive energy, per
A120, "molecule, " is given by E""= —Se(P„,+ Q,„)
and amounts to 189.1 eV.

B. Closed-shell repulsive energy

mental results. First a description of the details
of the model will be given in this section, followed
by a comparison, in Sec. IV, between the predic-
tions of the model and experimental data for the
perfect crystal.

A. Madelung energy

The monopole -monopole Coulombic interactions
contribute the Madelung energy

z
2

to the total energy, where q, , q& are the ionic
charges and ~,.&

is the separation of ions ~ and j. N
is the number of ions in the crystal. Equation (I)
can be rewritten for an infinite crystal as

The repulsive interactions between the closed
electronic shells of ions are generally approximated
by some variation of the Born-Mayer potential, the
parameters of which are determined from perfect
crystal properties such as cohesive energy, equi-
librium crystal volume, compressibility, etc. No
such analysis has yet been performed for Al&03,
and alternatively these interactions were calculated
from the wave functions of the free ions using a
modification of the method, reputedly invented by
I.enz and Jensen' and periodically rediscovered.
Recently, this approach has been shown~ to give
good results for alkali-halide crystals, comparable
with the empirical Born-Mayer approach, and ap-
proximates the interaction by the sum of potential,
kinetic, and exchange energies of an interacting ion

E = — . = — q '+& (2)
$

where Q,. is the site potential for ion i, Q, is the
site potential for an infinite crystal with all ions
present either in perfect-crystal lattice or inter-
stitial positions, and b P,. is the change in the
Madelung potential when an ion moves from a per-
fect-crystal position (i. e. , when the lattice relaxes
around a defect). In this calculation, the infinite-
crystal rigid-lattice site potentials go were calcu-
lated by the method of Bartram, 7 and the changes
in potential due to lattice relaxation b.P,. were cal-
culated by direct summation over the ions of a
finite crystallite containing 1855 ions. While sub-
stantial deviations from results for an infinite crys-
tal can occur with finite sums for the site potential
itself, much smaller errors will occur in hp when

it is calculated by finite summation. For example,
the qhP which results when an Al

' ion is displaced
from its perfect crystal position, in an otherwise

A L"
I ONS SURROUNDING AN

0 VACANCY

FIG. 4. Nearest neigh-
'bors to 0 vacancy.

0 A L"' IONS

x 0- VACANCY
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TABLE II. Contributions to the potential energy of ions in various sites of a
perfect crystal of n-A1203. (All energies in eV. )

Ion and site
Mad clung

energy
Repulsive Van der Waals's

energy energy
Total potential

energy

Al3', lattice
site0, lattice
site

Al3', octahedral
interstitial0, octahedral
interstitial

—109.8

—52. 8

—8. 9

+5.9

+19.5

+13.0

+16.0

+9.4

—0. 1

—1.3

—0.1

—3.6

—90.4

—41.1

+7.0

+11.7

pair calculated from the electron density, obtained
from free-ion wave functions. The density depen-
dence of the kinetic and exchange energies is taken
to be that of a free electron gas.

The wave functions used for the Al ' ion were
those of Clementi, "while those of 0 were calcu-
lated by Watson" for an ion in a spherical well of
charge +1. The resulting interaction energy for
0 ion pairs and for Al '-0 ion pairs is shown in
Fig. 6, together with an empirical 0 -O inter-
action obtained by Huggins and Sakamoto~6 (HS) from
an analysis of cohesive data for the alkaline-earth
oxides, shown for comparison. The total repulsive
energy of the crystal is then given by

1~(rf f)

&rf

where the Born-Mayer parameters A. and 8 appro-
priate to particular ion pairs and designated ranges
of separation x;f were obtained by fitting the nu-
merical results of the Wedepohl procedure, shown
in Fig. 6. These parameters are collected in Table
III. Evidence for the accuracy of these interactions
in accounting for perfect crystal cohesive proper-
ties will be discussed in Sec. IV. The contribution
of the repulsive interactions to the potential energy
of ions in various sites in a perfect crystal is sum-
marized in Table II.

problem: a suitable microscopic model for the re-
sponse of a particular ion to a local electric field
and the determination of the local field itself, i. e. ,
the treatment of the dipole-dipole interactions. In
this calculation, a simple shell model was used to
describe local polarizability, and the local field
problem was solved by the use of a combination of
the matrix method of Dellin et al. and the Mott-
Littleton approximation for effective polarizabili-
ties ~8

The desirability of the use of some type of shell
model to describe the microscopic dielectric re-
sponse of crystals containing defects has been dis-
cussed by Norgett and Lidiard~; in the case of
Al&03 this becomes a necessity. The use of con-
stant polarizabilities, e. g. , those of Tessman,
Kahn, and Shockley, results in an instability of
the polarizable point-ion model of Alz03, even for
the perfect crystal. In this case, when an Al ' ion

NEIGHBORS OF AN INTERSTITIAL ION

C. Polarization energy

Possibly the most critical component in the cal-
culation of the energy of formation of lattice de-
fects, particularly vacancies, in ionic crystals is
the energy of polarization resulting from defect-
produced electric fields. For example, in this
calculation, about 40%%ua of the energy to remove an
Al ' ion from a rigid, unpolarized lattice is re-
covered when the ions relax their position and their
electron clouds polarize. About 75% of this relax-
ation energy is the energy of polarization. There-
fore, the accuracy of point-defect calculations for
ionic crystals strongly depends upon the treatment
of polarization. There are two aspects of this

I N TE R ST I T I A L 10 N

0 0 ION

at'++ I0N

FIG. 5. Nearest neighbors to the octahedral intersti-
tial site.
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is displaced toward a neighboring 0 ion, the di-
pole-dipole interaction force is sufficient to over-
come the repulsive forces and a polarization "ca-
tastrophe" results. This "catastrophe" does not
occur if the coupling of the polarizability of an ion
and its surroundings is taken into account, as has
been done in lattice dynamical calculations by the
use of shell models. Recent calculations ' have
shown that simple shell models give a good descrip-
tion of various properties of diatomic molecules,
where the electric fields are even larger than in
defect crystals, for alkali halides and alkaline earth
oxides. Therefore a, simple shell model has been
employed in this calculation.

Dick and Overhauser ' introduced the simple
shell model by proposing that the outer electrons
of an ion are predominantly responsible for both
the polarizability and the repulsion due to closed-
shell overlap. Thus they described each ion as a
rigid shell of charge, coupled with a spring to its
core, and coupled by springs to the shells of other
ions, thereby accounting, in the harmonic approxi-
mation, for the overlap repulsion. The charge of
the rigid shell is then expected to be of the order
of the number of electrons in the outer closed elec-
tronic shell.

TABLE III. Born-Mayer constants from a segmented
fit to the repulsive interactions for ions in A1203.

Ion pair

A13'-Al '
X(eV)

1.268 x 104

7. 775 x 104
7. 550

10.70

Range of separation
(A)

X&1.3
y'~1, 3

A 13'-0

0 -0

3.000 x 103

1.818 x 103
l.234 x 103

7, 676 x10
4. 061 x 102

4. 596 x 10~

1.713x10'
6.451 x 102

3.082 x 102

5.657 x 10
1.597 x 105

3.917
3.416
3.139
2. 889
2. 630

6.498
5.089
4. 170
3. 580
3.920
6.609

y& 1.
1.0 «y&
1.4«y&
1.9 «y&
2. 4 «y

y&0.
0. 7 «y&
1.0 ~y&
1.3 «y&
1.7 «y&
2. 06 «y

0
1.4
1.9
2. 4

7
1.0
1.3
1.7
2. 06

An analagous approach, ' which reduces to the
Dick-Overhauser model in a harmonic approxima-
tion and to the deformation dipole model of Hardy ~

in a linear approximation, is to assume that the ef-
fect of an electric field induced distortion of the
ionic electron clouds on the overlap repulsion be-
tween a pair of ions is to replace the interionic
separation r, &

in the repulsive interaction potential
for undistorted ions by an effective separation r', &'.

IOO

IO—

Q

K
LLI)
O

I

REPULSIVE INTERACTIONS

I

offtr. . ) (rty )
(4)

renutstve, distorted ~lreuulstve, undistorted

where r',.' is a function of the multipole moments
of the distorted ions. The potential function

g„,«„„„dis to be approximated by a Born-Mayer
function, or obtained by a Wedepohl-type calcula-
tion, for example. The simplest possible form
for r",,.' is a linear dependence upon only the dipole
moments p, ,

~"f -~ +" -~ (5)ij ij
Q Q

where the proportionality constants Q,.~, Q~~ are to
be determined empirically, and the direction of the
vector r, , is from i to j. (Including quadrupole
moment terms in r"' will lead to a breathing shell
model. )

In this scheme, the energy of the polarized crys-
tal excluding Van der Waals's contributions, is

O. l
' I

2
SEPARATION (A)

3

3(&t ' ~ts)(P~' rts)t'tr

hatt

5ri~

] ~Pi

1

(6)

FIG. 6. Bepul. sive in'eractions calculated by the modi-
fied Wedepohl method. where e, is the electric field at j, due to monopoles
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and applied fields only, and the final term is the
self-energy of polarization, with n, polarizability
of the free ion. The last three terms are explicitly
the "energy of polarization. "

The equilibrium dipole moments are obtained by
minimizing the crystal energy with respect to the
components of individual dipole moments, e. g. ,

()E/())22 =0, etc. Using the Born-Mayer form for
the repulsive energy, Eq. (3), the equilibrium ob-
tained by minimizing with respect to the x compo-
nent of the ith dipole moment, for a fixed arrange-
ment of ions, followed by expanding the exponentials
which include dipole moments to first order in p. ,
yields

, 1 (el~)~B,~A,.~e '&"~, r e*;,e,';B A„„e """,~ e,'~e';~B;A~e, 'A&)i i i i
i i i i i

Qi gA

3C -B ~ 7'. ' g mg oI3„e„A„e '& & ~ e, , ;,A;, e„p,
ip loo

Q Q.Q)go i )+4 i j
(7)

where Ei,l„is the local electric field at ion j, i. e. ,
due to monopoles, applied fields, and dipoles. Cal-
culations for diatomic molecules, where the electric
fields are substantial, indicate that the linearization
used to obtain the equilibrium equations results in
only a small error. ~ Equilibrium equations re-
sulting from minimization with respect to other
components of the dipole moment of ion i or with
respect to the dipole moments of other ions are
easily obtained by inspection from Eq. (7).

The equations above for the dipole moments can
be written formally as

~oulcmb ~repul ui ou)+C.i ~ 1OC i ylOC

That is, the dipole moment on site i is a linear
function of the usual Coulombic local field plus a
local distortion field due to monopoles, the second
term on the right-hand side of Eq. (7), and to di-
poles, the third term on the right-hand side of Eq.
(7). The effective polarizability tensor depends
both on the free-ion polarizability and on the sur-
roundings of the ion, as can be seen by examining
the coefficients of )li, )2P, , )22 in Eq. (7). Further-
more, it can be seen that as two ions approach one
another, the polarizability is quenched by the over-
lap, thus preventing the polarization "catastrophe"
discussed above.

The system of linear equilibrium equations, typ-
ified by Eq. (7), can be solved by matrix tech-
niques. In this calculation, the dipole moments
in a region of the crystal surrounding the defect,
roughly spherical in shape and containing 20-30
ions, were found in this fashion, while the dipole
moments in the remainder of the crystal were ob-
tained by the approximate method of Mott and Little-
ton. In this approximation, the local fields of
Eq. (8) are replaced by the monopole field alone,
and the effective polarizability (for isotropic crys-
tals) is given by

TABLE IV. Parameters used in the calculation of
polarization and Van der Waals's energy. Symbols are
defined in Secs. III C and IIID.

Parameter

no2- (~ )

no2- (A2)

G.o2- ~~ )

n"„,2e (L2)

C(ev Ae)

Value

2.24

3.88K

1.34'

1.08

2. 64

50. 0

where E is the static dielectric constant, ~ is the
unit-cell volume, and a, is the polarizability, in
the crystal, of the jth ion. The ionic polarizability
is the sum of the electronic and displacement po-
larizabilities, 6 net and nz, respectively. The
Mott -Littleton approximation becomes exact in the
limit that the monopole field is constant over the
dimensions of the unit cell, thus as the distance
from the defect becomes large.

The constants required for calculating the energy
of polarization are the shell parameters Q, the
free-ion polarizabilities n, and the electronic and
displacement polarizabilities n' and n4, for the
Mott-Littleton effective polarizabilities for each
ionic species. The constants used in this calcula-
tion are collected in Table IV and were obtained as
follows. The electronic polarizability of Al was
taken to be zero; the free-ion polarizability of 0
was that of Pauling~; the crystal electronic polar-
izability of O used in the Mott-Littleton approxi-
mation was obtained from the unit cell polarizability
of A1~03 reported by Tessman, Kahn, and Shockley
(with the Al polarizability set to zero); the dis-
placement polarizabilities for each ion were calcu-
lated with an Einstein rigid-ion model using the

ni" = —(l —e ') Q (n', +n', ) (n,'+n", )4~ - unit cell ~Reference 27. "Reference 20.
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repulsive parameters of Table III; the shell param-
eter Q for 0 was obtained by matching the high-
frequency dielectric constant, calculated with the
Lorentz local-field approximation and with Eq.
('7), to the experimenta, l value quoted by Tessman,
Kahn, and Shockley. The Lorentz local field is
not strictly valid for noncubic crystals, but the
value Q thus obtained is consistent with values ob-
tained for 0 by the analysis of a wide variety of
experimental data for alkaline-earth oxide mole-
cules and crystals. The relationship of this value
to the static dielectric constant will be discussed in
Sec. IVD, and the sensitivity of the defect forma-
tion energies to the precise value of Q is discussed
in Sec. VA.

D. Van der Waals's energy

The contribution of the Van der Waals's disper-
sion forces between the polarizable 0 ions to the
energy was included as

r

6

oxygen fons

(10)

The interaction constant was evaluated from the
polarizability by the approximate method of Slater
arid Kirkwood and is included in Table IV. The
contribution of Van der Waals's interactions to the
potential energy of ions in various sites in the per-
fect crystal is shown in Table II.

IV. PROPERTIES OF THE PERFECT CRYSTAL

The electrostatic monopole-monopole contribution
to the cohesive energy, the negative of the first
term of Eq. (6), has already been discussed in Sec.
IIIA and is 189.1 eV. The repulsive, polarization,
and Van der Waals's contributions were calculated
as discussed in Sec. IIIB-IIID and are —39.0,
0. 1, and 2. 0 eV, respectively. The total of these
contributions yields a calculated cohesive energy of
152.0 eV compared with the experimental value
of 166.7 eV, a discrepancy of 3%.

In order to test the validity of the model described
in Sec. III, calculations were made of several prop-
erties of the perfect crystal: cohesive energy, unit-
cell volume and geometry, and bulk modulus.
These properties are measures of the zeroth, first,
and second derivatives with respect to distortion of
the cohesive energy. In addition, an approximate
value of the static dielectric constant was calcu-
lated. (Experimental data exist for the elastic con-
stants and long-wavelength optic-mode frequencies
which provide further tests of the model; calcula-
tions of these properties are in progress but still
incomplete. )

A. Cohesive energy

B. Lattice parameter and crystal geometry

The stability of the model with respect to homo-
geneous deformations of the crystal was examined.
The volume of the primitive unit cell of Fig. 2 was
varied, scaling the lengths involved in the two-
molecule basis to retain constant "shape, " and the

0
minimum energy was found at go= 5. 25 A, compared
with the experimental value of 5. 124 A, a dis-
crepancy of about 2%. The unit cell shape was
varied by altering the unit cell angle and the vari-
ous lengths in the basis, and discrepancies of a
similar magnitude were found.

The basis of Fig. 2 can be slightly altered to
make the Alz03 structure become a hexagonal-close-
packed array of oxygen ions with aluminum ions in
the interstices, i. e. , the "ideal" structure shown
in Fig. 1. Our calculations show that the distorted
structure has a lower energy than the "ideal" struc-
ture, and thus that the distortions are not a con-
sequence of covalent bonding, which is not accounted
for in these calculations.

When a finite number of ions, placed in perfect
crystal positions, were allowed to relax their posi-
tions and dipole moments in an identical fashion to
the defect calculation it was found that slight shifts
in position (about 0. 1 A compared with the - 2-A in-
terionic separation) resulted with a concomitant
decrease in energy of G. 065 eV per relaxing ion
(for between 26 and 36 relaxing ions). Such "per-
fect-crystal relaxations" do not occur for cubic
crystals if the interatomic forces are not quite cor-
rect, being prevented by symmetry. In the defect
calculations themselves, the ions were originally
placed on perfect crystal positions, but the final
relaxed positions and energies were corrected for
the spurious "perfect-crystal relaxations. "

C. Bulk modulus

The bulk modulus was obtained by calculating the
cohesive energy as a function of volume and fitting
a parabola to the results for small deviations from
the minimum. The resulting modulus, 3.3~10
dyn cm, compares well with the experimental val-
ues~ of 3. 1&&10~2 dyn cm

D. Static polarizability

An approximate value of the response of A403 to
static electric fields was obtained by first deriving
equilibrium equations, analagous to Eq. (7), by
minimizing the energy with respect to both ionic
dipole moments and small displacements from per-
fect-crystal positions. These equations were then
solved under the assumption that the local field is
identical at all ions, as it is when the Lorentz
local-field approximation is valid. With this as-
sumption, it can be shown that the static polariz-
ability (the dipole moment divided by the local field)
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per A130, unit a, is given by

n, =3o.o(Q —2)~/Q~+ o, ,

where n and Q are defined as in Sec. III C. n~ is
the static polarizability of a rigid-ion Al&03 lattice,
and is found to be 4. 89 A3 when calculated with the
repulsive interactions of Table III and averaged
over direction with respect to the hexagonal axis.

In the limit that the frequency of the applied field
is too high for the positions of the ion core to re-
spond, the polarizability n„can be obtained from
Eq. (7) and is given by

c.„=3(12/n~Q~+ I/no) i . (12)

As mentioned in Sec. III C, Q= 2. 24 yields n equal
to the value obtained from the refractive index and
the approximation of the Lorentz local field. This
value of Q in Eq. (11) yields n, = 5. 02 A3 compared
with 8. 50 A obtained from the static dielectric con-
stant3~ and the Lorentz local field. To match the
experimental value requires a value of @=4.50.
This value is considerably higher than values for
0 obtained for other oxides, and furthermore
leads to a negative value of the Schottky formation
energy, as discussed in Sec. VA. These facts,
together with the fact that the assumption of the
Lorentz local field plays a larger role in the anal-
ysis of the static polarizability than in that for n„,
suggest that the correct value of Q is nearer 2. 24
than 4. 5. The sensitivity of the defect energies to
the value of Q is discussed in Sec. VA.

V. POINT-DEFECT PROPERTIES

The energies and lattice displacements associated
with point defects were obtained as follows. Ions
were removed or inserted in interstitial positions
in a rigid, unpolarized (except for the polarization
present in the perfect crystal) lattice, and the en-
ergy was calculated, using infinite crystal methods
for the Madelung energy, as discussed in Sec. IIIA.
A selected group of ions surrounding the defect,
about 30 in number, were allowed to relax from

their perfect crystal positions in small steps. Dur-
ing the relaxation process, the changes in the Made-
lung energy w'ere computed using a finite crystallite,
including the relaxing region, which contained 1855
ions, as discussed in Sec. IIIA. After each relax-
ation step, the dipole moments on the relaxing ions
were obtained "exactly" by solving the set of Eq.
(7) using a matrix technique. The total energy of
the crystallite was then obtained from Eqs. (1),
(3), (6), and (10), and the relaxation process was
iterated until the energy was a minimum. The con-
tribution due to the polarization of the remainder
of the crystal which was not explicitly relaxed was
calculated using the Mott-Littleton effective polar-
izabilities, Eq. (9), and the electric field due to
the defect itself. The entire procedure was re-
peated with no defect present, and the resulting
"perfect-crystal relaxation energy and displace-
ments, " discussed in Sec. IVB, were subtracted
from the results computed with the defect present.

A. Defect-formation energies

The energy required to remove an ion from a
lattice site or to insert one in an octahedral inter-
stitial position in a rigid unpolarized crystal is ob-
tained by inspection from Table G. The zero of
potential energy in this table is for an ion removed
to infinity, and the appropriate physical process for
defect formation is removal to or from the crystal
surface. Thus the entries in Table II must be cor-
rected by the contribution of the ion in question to
the cohesive energy, e. g. , the energy to remove
an Al ' ion from the interior to the surface is 90.4-
90.4/2 eV, while the energy required to remove an
A13' ion from the surface to an interior octahedral
position is 7. 0+ 90, 4/2 eV. The energies of for-
mation of various vacancies and interstitials in the
rigid, unpolarized lattice obtained in this fashion
are collected in Table V along with the several con-
tributions to the energy of relaxation and polariza-
tion and the consequent energy of formation in the
relaxed polarized lattice for the shell parameter

TABLE V. Contributions to the formation energy of vacancies and interstitials in n-A1203 ((q) =2.24). Q, ll ener-
gies in eV. )

Defect

Formation energy
ln rigid,

unpolarized lattice Madelung
Relaxation energy

Repulsive Van der Waals Polar.
Formation

energy
Al3' vacancy 45. 2 —5.9
Al3' interstitial 52. 2 —39.2
02 vacancy 20. 6 -15.9
02 interstitial 32. 3 —14.6
Schottky-quintuplet formation. energy, per defect
Aluminum-Frenkel-pair formation energy, per defect
Oxygen-Frenkel-pair formation energy, per defect

—3.1
+15.1
+5.7
+1.5

—0. 7
—1.0
—0 9
+0.6

—28. 5
—17.9
—8. 3

—11.0

+2. 1
+1.7
+2. 3
+1.7

9.1
10.8
3. 5

10.5
5. 7

10.0
7. 0

aPerfect-crystal relaxation energy. See Section IV B.
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TABLE VI. Shell-parameter dependence of the forma-
tion energy of vacancies and interstitials. {All energies
in eV. )

Defect Q =
Formation energy

2. 14 2. 24 2. 34

Al3' vacancy
Al ' interstitial
0 vacancy
O~ interstitial

10.3
10.93
3.6

10.48

9.1
10.90
3. 5

10.5

8. 0

10.50
3.45

10.2

Q= 2. 24.
It may be seen that the 0 vacancy is energetical-

ly the most economical of the defects considered
here, while the Al ' interstitial requires the most
energy. The formation energy, per defect, of the
various electrically neutral defect families is:
Schottky quintet, 5.7 eV; aluminum Frenkel pair,
10.0 eV; oxygen Frenkel pair, 7. 0 eV. Thus it
seems on the basis of this calculation that Schottky
defects are the intrinsic thermodynamic point de-
fects in n-Al&03.

The sensitivity of the results to the number of
ions explicitly allowed to relax and polarize was
studied, and it was found that the Al3 vacancy was
the most sensitive to this quantity of the defects
considered here, but the results obtained for 32 and
56 relaxing ions were essentially the same. There-
fore it is believed that a sufficiently large number
of ions was explicitly relaxed.

The sensitivity of the resu. ts to variations in the
shell parameter Q was examined and the results
are listed in Table VI. It may be seen that the Al '
vacancy is rather sensitive, but that the other de-
fects are insensitive to the exact value of Q, at
least over a range of + 0. 1 around Q= 2. 24. The Q

dependence is essentially linear over this range,
and the effect on the Schottky and Frenkel forma-
tion energies, per defect, may be summarized as

Schottky energy = 5.7 —5. 0(Q —2. 24),

Al Frenkel energy = 10.0 —6. 6(Q —2. 24}, (13)

Ox. Frenkel energy = V. 0 —1.3(Q —2. 24}

(all energies are in eV}. Assuming that these re-
lationships are valid over a wider range of Q, it is
seen that the Schottky formation energy becomes
negative if Q exceeds 3.4, but between 2. 24 and

3.4 the relative ordering of the energies of forma-
tion of the various defect families does not change.
Thus it appears that the conclusion that the Schottky
quintet is the energetically favored defect family
does not depend on the exact value of Q.

The relaxation of the neighbors to the defects is
somewhat more complex than is encountered in the
alkali halides, owing to the lower symmetry of

MOTION OF 3 0 IONS SURROUNDING AN AL+++ VACANCY

0 0 IONS

0 AL VACANCY

x AL+++ IONS {NEAR)

u AL + IONS {FLIRTHER)

FIG. 7. Pinwheel distortion of 0 neighbors to an
Al ' vacan. cy.

Alz03. For example, the displacements of the oxy-
gen neighbors to an Al ' vacancy form a "pinwheel"
pattern, as sketched in Fig. 7. However, as in
the alkali halides, the basic pattern of relaxations
is essentially outward from the defects, i.e. , posi-
tive formation volumes, owing to the dominance of
Coulombic interactions in the- relaxations of va-
cancies. (A table of relaxation displa. cements for
the various defects will be furnished by the authors
upon request. )

B. Activation energies of defect motion

A systematic study of various paths for defect
migration and of the relative mobilities of various
defects has been initiated, and several preliminary
results will be reported here. In each of the cal-
culations described below, about 20 ions around the
defect were allowed to relax explicitly, and the
shell parameter Q was taken to be 2. 24. In most
cases the exact position of the jumping ion at the
saddle point is not obvious, owing to the low sym-
metry, and a plausible guess was made. The fol-
lowing cases were investigated.

a. migration of an Al '
vacancy along the hexago

nial vari s. There are two neighbors to an Al ' vacancy
which lie along the c axis, one at 1.86 A and one
at 1.97 A. In Fig, 1, for a vacancy at 4, these
neighbors are labeled 1 and 2, respectively. For
a jump to neighbor 1, the obvious location of the
jumping ion is in the center of the triangle of 0
ions, and the migration energy for this jump is
found to be 3. 8 eV. For a jump of the vacancy to
site 2, the location of the jumping ion at the saddle
point will be at position I, and the a.ctivation energy
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is found to be 6. 6 eV.
b. Migration of an A, ls' vacancy PerPendicular

to the hexagonal axis. The jump of an ion on site
3 to site A in Fig. 1 gives the vacancy a displace-
ment with a component perpendicular to the c axis.
Together with the short jump discussed above, this
jump provides for three-dimensional diffusion of
vacancies. Two possible saddle-point locations of
the jumping ion were investigated. The first places
the jumping ion halfway along a straight line joining
the two sites. In this position, the two 0 ions B
and Bz are nearest neighbors to the jumping ion,
and the activation energy is found to be 3.8 eV. An

alternate location for the jumping ion was investi-
gated, at the center of the triangle of 0 ions la-
beled B, B~, and B2. The activation energy in this
location is, however, 6. 5 eV and therefore this
migration path from A to 3 is unfavorable compared
with the direct jump originally chosen.

c. An 0 vacancy jumP to a nearest-neighbor
Position. . The jump of an 0 vacancy from site B
to site B~ in Fig. 1 was investigated. A vacancy
taking jumps of this type remains in the basal
plane, and at least one other type of jump is neces-
sary to provide three-dimensional diffusion of the
vacancy. If the jumping ion takes a straight-line
path between these two sites, the energy maximum
occurs at the halfway point, yielding an activation
energy of 5. 2 eV. If the jumping ion is not con-
strained to lie in the basal plane (determined by
ions B, , B, , and B) and is permitted to relax in a
direction perpendicular to this plane, the saddle
point is found to be above this plane (nearer the
A13' ion labeled 3), and the activation energy is
2. 9 eV.

d. A l intexs titigl migration. The migration
of an Al interstitial ion from site I to site I' in
Fig. 1 was investigated by assuming the jumping
ion to be in the symmetrical position S at the center
of the triangle of 0 ions when it is at the saddle
point. With this assumption, the activation energy
is 4. 8 eV.

VI. SUMMARY OF RESULTS AND DISCUSSION

A polarizable point-ion shell model has been
developed for Q. -Al&03, in which it is assumed that
the material is perfectly ionic. The repulsive in-
teractions were determined by the modified Wede-
pohl method from free-ion wave functions. The
only empirical parameter of the model is the shell
parameter for the 0 ion which was determined
from the refractive index, and a value was found

which is consistent with results for oxygen in alka-
line-earth oxides. The model yields excellent re-
sults for the cohesive energy, unit cell volume and
geometry, and bulk modulus. An approximate cal-
culation utilizing the Lorentz local field yields a
static dielectric constant that is appreciably too
small, and it is not possible to choose a value of
Q to match this quantity without making the crystal
unstable with respect to vacancy formation. It is
possible that the assumption of the Lorentz local
field is the origin of this discrepancy.

The calculations of the formation of Al ' and 0
vacancies and interstitials at the octahedral site
indicate that Schottky defects are energetically
favorable relative to both aluminum and oxygen
Frenkel pairs. This conclusion is independent of
the exact value chosen for the shell parameter Q.
The value of the Schottky formation energy obtained
with @=2.24, 5. 7 eV per defect, is in fair agree-
ment with the value of 4. 1 eV implied by diffusion
experiments. Exact agreement is obtained with
@=2. 55 [see Eq. (13)j, a quite reasonable value.
It must be recalled, however, that the interpreta-
tion of the experiments is not unambiguous.

The defect with by far the lowest formation ener-
gy is the 0 vacancy. This implies that near
crystal surfaces where the electroneutrality con-
dition is relaxed, a space charge layer will occur
in which there are substantially more 0 vacancies
than are present in the interior where the higher
energy of formation of Al ' vacancies raises the
energy per defect of the Schottky quintuplet by a
factor of 2.

preliminary results for activation energies of
motion for the various defects suggest that 0 va-
cancies are more mobile than Al ' vacancies or in-
terstitials. The calculated migration energy for
0 vacancies in the basal plane, 2. 9 eV, is in
surprisingly good agreement with the experimental
value of 2. 5 eV from oxygen diffusion measure-
ments' (for which the same qualifying remarks as
before apply). Furthermore, the migration energy
of the nonbasal jump of the 0 vacancy has not yet
been calculated. The migration energy of Al ' va-
cancies was found to be 3.8 eV, which that for the
direct migration of the interstitial was estimated
to be about 5 eV, although the interstitialcy mech-
anism may provide a lower migration energy. No
calculation was made for the migration energy of
the 0 interstitial. These preliminary calculations
suggest that the experiments on the annealing of
radiation damage reflect the motion of 0 vacan-
cies.

)Research supported by the U. S. Atomic Energy Com-
mission.

*Present address: Dept. of Applied Science, Brookhaven
National Laboratory, Upton, N. Y. 11973.



3070 Q. J. DIE NES et gl.

Y. rishi and W. D. Kingery, J. Chem. Phys. 33, 480
(1960).

A. K. Paladino and %. D. Kingery, J. Chem. Phys. 37,
957 (1962).

G. M„Fryex, Trans. Brit. Ceramic Soc. 68, 185 (1969);
71, 231 (1972).

B. S, Wilks, J. Nucl. Mater. 26, 137 (1968),
B. S. Hickman and D. G. Walker, J. Nucl. Mater. 18,
197 (1966).

B.W, G. Wycoff, Crystal Structures, 2nd ed. (Intersci-
ence, New York, 1967), Vol. 2, p. 6.

B. H. Bartram (private communication).
SJ. O. Artman and J. C. Murphy, Phys. Bev. 135, A1622

(1964).
M. P. Tosi, Solid State Physics, edited by F. Seitz and
D. TurnbuH. (Academic, New York, 1964), Vol. 16,
p, 1.

OW. D. W1lson and C. I. Bisson, Phys. Bev. B 3, 3984
(1971).
M. T. Bobinson, in Interatomic Potentials and Simula-
tion of I attice Defects, edited by P. C. GehI, en. et al.
(Plenum, New Yox'k, 1972), p. 386.

2P. T. Wedepohl, Proc. Phys. Soc. Lond. 92, 79 (1967).
B. G. Goxdon and Y. S. Kim, J. Chem. Phys. 56,
3122 (1972); 61, 1 (1974).
E. Clementi, IBM J. Bes. Dev. 9, Suppl. 2 (1965).
B. E. Watson, Phys. Bev. 111, 1108 {1958).

6M. L. Hugging and Y. Sakamoto, J. Phys. Soc. Jpn.
12, 241 (1957).
T. A. Dellin et al, , Phys. Bev. B 1, 1745 {1970).

N. F. Mott and B. W. Gurney, Electronic Processes
in Ionic Crystals, 2nd ed. (Oxford U. P. , Oxfoxd, 1940).
A. B. Lidiard and M. J. Norgett, in Computational
Solid State Physics, edited by F. Herman, N. W. Dalton,
and T. R. Koehler {Plenum, New York, 1972), p. 385.
J. B. Tessman, A. H. Kahn, and W. Shockley, Phys.

' Bev. 92, 890 (1956).
D. O. Welch and G. J. Dienes, in Defects and Trans-
port ~n Oxides Proceedings of the Battelle Colloque
{to be published) and unpublished,
M. J. I.. Sangster, Solid State Commun. 15, 471 (1974).

~M. P. Tosi and M. Doyama, Phys. Bev. 160, 716
O.967).
B. G. Dick and A. W. Overhauser, Phys. Bev. 112,
90 {1958),
J. B, Hardy, Philos. Mag. 6, 27 (1961).

~J. W. Flocken and J. B. Hardy, Crit Bev~. Solid State
Sci. (CBC) 1, 605 (1970).
I.. Pauling, Proc. B. Soc. Lond. A 114, 191 (1927).
C. Kittel, Introduction to SoBd State Physics, 4th ed. ,
(Wiley, New York, 1971), Chap. 13.
J. C. Slater, Quantum Theory of Moleeules and Solids
(McGraw-Hill, New York, 1967), Vol. 3, Appendix 5.

3 F. Seitz, Modern Theory of Solids (McGraw-Hill, New
York, 1940), p. 83.

3 J. B. Wachtman. et al. , J. Bes. Natl. Bur. Stds. A 64,
213 (1960).
Alumina as a Ceramic MateHal, edited by W. H. Git-
Een (Am. Ceram. Soc. , Columbus, Ohio, 1970), p. 78.

"K. I.ehovec, J. Chem. Ihys. 21, 1123 9.953).


