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A mixed semiconductor crystal with graded composition (i.e., a heterojunction) is characterized by a
position-dependent effective mass, which leads to an additional force acting on free carriers. Taking this

force into account, as well as the carrier-concentration gradient, the Boltzmann equation is solved in

the presence of two oscillating electric fields of arbitrary frequencies, and a general expression for the

second-order conductivity tensor is obtained. This tensor is linear in the effective-mass gradient and in

the carrier-concentration gradient, and independent of carrier statistics. Limiting cases cur & 1 and
coo' g 1 are discussed in detail, For cow & 1, the expected second-harmonic generation associated with the

mass gradient is at least comparable with that observed in homogeneous semiconductors. For cov & 1,
nonlinear effects are much stronger than in a homogeneous material in this frequency range.
Measurement of the nonlinear current offers a method of directly determining the eA'ective-mass

gradient.

I. INTRODUCTiON

In recent years much theoretical and experimen-
tal work has been devoted to the investigation of the
properties of mixed semiconductor crystals with a
graded, slowly varying composition. Many mixed
semiconducting alloys can be prepared with compo-
sition varying over a wide range. Typical exam-,
ples are alloys whose two components have similar
crystal structure and lattice constants, e.g. ,
Cd„Hg~ „Te, The properties of such alloys are usu-
ally described in terms of composition-dependent
band structure. For mixed crystals with slowly
varying composition, band parameters (energy gap,
effective mass, etc. ) are treated as position de-
pendent.

There are several specific physical effects which
can be observed in graded mixed semiconductors.
In particular, two groups of effects seem to be of
special interest: effects due to position dependence
of the energy gay, and those produced by the ef-
fective-mass gradient.

Variation of the energy gap with position yields a
difference between fields acting on electrons and
holes (so-called "quasielectric" fields)~ and seri-
ously modifies effects such as, for example, the
yhotovoltaie effect and the photoelectromagnetic
effect. 3*7 Energy-gap variation leads also to an
anti-Stokes effect, i.e. , to the electric field de-
pendence of luminescent spectra in electron-hole
recombination. '

Less attention has been paid so far to the effects
produced by the effective-mass gradient, although
this gradient may be large in narrow-gap graded
mixed crystals because of the strong dependence of
the effective mass on composition. InQuenee of the

effective-mass gradient on the photovoltaic effect
in Cd„Hg& „Te was already recognized, and this
gradient was taken into account also in the calcula-
tion of the photoearrier distribution in graded mixed
semiconductors,

The classical Hamiltonian for a free particle with
position-dependent mass m*(r) is

a= p'/2m*(r)+ &(r) + U(r, f),
where p is the particle momentum canonically con-
jugated with r, and e(r)+ U(r, t) is the potential en-
ergy in external fields. For free carriers in
graded mixed crystals expression (1) was written
by Veri'. ' Here U(r, t) is interpreted as the po-
tential energy induced by a macroscopic external
electric field and e(r) as the position-dependent
band edge in the absence of an external field (i. e. ,
potential energy in the "quasieleetric" and macro-
scopic internal fields for carriers under consider-
ation). Expression (1) turns out to be the classical
counterpart of the quantum-mechanical effective-
mass Hamiltonian derived in the "virtual-crystal"
approximation under the following assumptions~
The composition (and hence both band edge and ef-
fective mass) varies very slowly over the lattice
constant; the energy-band extrema are parabolic
and nondegenerate; and their locations in the Bril-
louin zone are independent of composition. If,
moreover, the band extrema are spherical and the
crystal symmetry is high (e. g. , cubic), ~ we ob-
tain expression (1) as the classical limit of the ef-
fective-mass Ham3. ltonlan.

From the classical Hamiltonian (1) we obtain
equations of motion

0

p= Ip /2m* (r)] v„m*(r) —v„e(r) V„U(r, f), (2—)
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r = p/m*(r),

which can also be written in the form

—V„&(r) —V„U(r, t) . (4)

ing of frequencies are at least comparable with
those observed in homogeneous semiconductors at
high frequencies, and significantly stronger at low
frequencies.

II. BOLTZMANN EQUATION

Thus, the relation of velocity and momentum is
similar to that for a particle with constant mass.
However, an additional force appears in the equa-
tion of motion (2). This force is proportional to
V„m*(r) and is independent of momentum direction.
Two additional terms appear also in the expression
for acceleration, Eq. (4), The first one is paral-
lel (or antiparallel) to the velocity, and the second
is perpendicular.

An important feature of the equations of motion
(2) and (3) [or Eq. (4)] is that they are nonlinear
even for a homogeneous field —V„[c(r)+U(r, t)], in
spite of parabolicity of the band. Hence for par-
ticles obeying these laws of motion, a nonlinear
response to external electric fields may 'be ex-
pected. For an individual particle, this response
depends on the initial velocity of the particle.
Therefore the Drude approach is inapplicable to
calculation of the nonlinear response of a system
of particles.

Grinberg and Kastalskii have already suggested
the possibility of nonlinear optical effects produced
by an effective-mass gradient, and have estimated
the nonlinear polarizability of the free-electron
gas. However, they used the Drude approach and
incorrectly omitted the first term in the equation
of motion (2) (see Note added in proof).

The purpose of the present paper is to solve the
Boltzmann equation for free carriers obeying Eqs.
(2) and (3) in the presence of two oscillating non-

uniform electric fields of arbitrary polarizations
and. frequencies, and to calculate the second-order
conductivity tensor for this system. In graded
mixed semiconductors the effective-mass gradient
is usually accompanied by a band-edge gradient and

a carrier-concentration gradient (determined by
the previous two). We therefore also take into ac-
count the band-edge gradient (a.s well as the carri-
er-concentration gradient) in the calculation. The
case of several equivalent band extrema is also
included.

In Sec. II we solve the Boltzmann equation up to
terms of second order in the electric fields and

linear in the effective-mass gradient, band-edge
gradient, and nonuniformity of electric fields. In

Sec. III the second-order conductivity tensor is
calculated and discussed. The general results of
that section are then applied to the specific cases
of low and high frequencies of external electric
fields in Sec. IV. As will be shown in Sec. V, the
expected "second-harmonic generation and combin-

In this section we consider a single band extre-
mum. Obviously, if there are several equivalent
band extrema, the distribution function, carrier
density, current, etc. are the same for all of them.

Suppose two oscillating electric fields of arbi-
trary polarization and of angular frequency urz and

e~, respectively, are acting on the carriers, i. e. ,

—V„U(r, t)=qRe[E&(r) e '"~'+Ea(r)e ' &'] . (5)

Here q is the carrier charge, and E&(r) and E2(r)
are complex vectors. It is assumed that electric
fields of the space charges induced by the external
oscillating fields are already included in Eq. (5).

We assume that the charge density of ionized im-
purities (defects) is constant in time. This holds,
for example, if ~~ and ~3 are much higher than the
generation and recombination rates, or if all im-
purities (defects) are ionized. With this assump-
tion, the sources of field (5) are only the changes
in local carrier density.

In the collisionless case the motion of carriers
is described by the classical Hamiltonian (1), and
I iouville's theorem holds. Therefore, the left-
hand side of our Boltzmann equation is

f +p ~
—&~f + r ~ V„f, (8)

fo(p /2m*(r)+a(r)-q(r, t))d p . (8)

Here n(r, t) denotes the carrier density at a given
point and time. By definition, q(r, t) is the differ-

where fg, r, t) is the distribution function, and p
and r a.re given by Eqs. (2), (3), and (5).

The collision term in the Boltzmann equation
will have the simplest form if we assume the ex-
istence of a relaxation time 7 independent of posi-
tion and energy (i. e. , also of electric fields).
However, one should take into account that the car-

. rier density at a given point may oscillate. Then
the relaxation process changes the distribution
function towards the equilibrium distribution cor-
responding to the carrier density at a given point
and time (see, e. g. , Ref. 18). Thus, the right-
hand side of the Boltzmann equation is

—[f(p, r, t) -fo(p /2m*(r)+ a(r) -g(r, t)) ]/7,
(&}

where fo is the Fermi-Dirac distribution function
and p(r, t) is defined by

r(r, r)= )f(j, r, r)dr)
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ence between the actual quasi-Fermi level and the
Fermi level in the absence of external electric
fields. For m*, &, E1, and Ez varying not too rap-
idly in space, it is justified to neglect all terms of
the second and higher orders in first derivatives
of m*, &, E1, and E&, as well as terms involving
the second or higher derivatives of m*, &, E1, or
E2. Also, we will neglect all terms of the third
and higher orders in E1, E~, and their derivatives.

If V„m*(r)=0, V„e(r)—= 0, and the fields E, and

E2 are uniform, then q(r, t) = Oeve—n in the pres-
ence of E& and E2. Therefore q(r, f) is of at least
first order in V„m, V„&, or first derivatives of
E1 or Ez, and we can expand

f (p /2m*(r)+e(r) —q(r f))==fo —fog(r, f) (9)

In the right-band side of Eq. (9) and everywhere in
the following, the argument of fo fo fo etc. is
(p /2m*(r)+ Q(r)), and the single and double primes
denote first and second derivatives with respect to
the argument.

We have

(10)

only contribution to V„~ J is given by terms of J
independent of V„m*, V„& and of first derivatives
of E1 and E2, and linear in E, or E&. These terms
have the same form as for a homogeneous semi-
conductor in a uniform field but with the local val-
ues of m*, np, E1, and E2.'

o (&u» r) E&(r) e '"~'+ o (&u2, r) E2(r) e '"2',

where

(15)

c ~((u, r) = q n, (r)T„/m~(r),

T„=T/(1 —i+T) .
(16)

(17)

In Eqs. (15)-(1'7) and everywhere in the follow-
ing we use complex quantities; of course, only
their real parts have physical meaning.

As was already mentioned, the sources of field
(5) are only the changes in local carrier density:

z(~z)V„~ E&e '"& +e(&u2)V„~ E2e '"2 =42q(n —no) .
(is)

Here v(u&) is the lattice dielectric constant at the fre-
quency &, assumed to be position- independent.

Inserting Eq. (15) into Eq. (14), using (18), and

solving for n-np, we obtain

= - -,' no(r) (S '),
where no(r) and (h ~) (also depending on r) denote
the carrier concentration and the average recip-
rocal kinetic energy, respectively, in the absence
of external electric fields. Integrating Eq. (9) and

making use of Eqs. (8), (10), and (11), we obtain

gnp 7 V„m* V„np
m+ m+

p

( [(Q~ —
GPSS) T —g(dgT] Et 8

+ [(fi(g2 &2) T 2+2T] E2 e ' ], (19)

q=2(8 ') '(n-no)/no. (i2) where 0„ is the plasma frequency

= -1——(n-n, )=q V„J, (i4)

where J(r, f) is the free-carrier current density.
As was already mentioned, we perform all calcula-
tions keeping only terms independent of and linear
in V„m*, V„&, or first derivatives of E1 or Ez.
Thus, we neglect the contribution to V„~ J from the
part of J linear in V„m, V„e, or first derivatives
of E1 or Ez. The part of J independent of V„m*,
V„& and of first derivatives of E1 or E~ does not in-
volve terms of the second order in E& and/or E2
because of inversion symmetry. Therefore the

Of course, n -np is of at least first order in V„m*,
V„&, or first derivatives of E1 or E&.

From Eqs. (9) and (12), the collision term (7)
has the form

—[f-fo+2(& ') 'fo(n-no)/no]/T (»)
We shall calculate n —np using the equation of

continuity

&„=42q no/v(e)m* . (20)

Writing Eq. (18) [or, rather, writing Eq. (5)],
we have assumed implicitly that there is no time-
independent part N(r) of n -no (and no time-inde-
pendent part of V„U). In fact, N(r) vanishes, as
can be seen from the following argument. N(r)
should be linear in V„m, V„&, or first derivatives
of E1 or E~. Terms of the second order in and in-
dependent of E, and E2 and linear in V„m* or V„e
vanish because of inversion symmetry. The same
is true for terms of the first order in E1 or Ez and
linear in first derivatives of E1 or Ea. If we shift
the origin of the time scale, E1, E& and their de-
rivatives are multiplied by phase factors. This
will change the values of the remaining terms. On
the other hand, N(r) is independent of time and,
consequently, of the choice of its origin. There-
fore, N(r) vanishes.

One can observe from Eq. (19) that in the partic-
ular case of E1, E2 perpendicular to V„m*, V„np,
the quantity n —np—= 0 and the collision term is of the
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usual form —(f —fo}//v. It can also be seen that
n -no is independent of carrier statistics and de-
pends only on carrier concentration.

Expressions (10) and (ii) yield

v„n, =-'. n, (V,m+/m+) ——,
' n, (8 ') v„~ .

From E(ls. (2}, (3), (5), (6), (IS), (i9), and (2i)
we finally obtain the Boltzmann equation in the form

8 f+—[(p /2m~ ) v„m+ —v„e+qRe(E, e '"&'+E, e "3()]~ v,f +(p/m~). v„f

72f -fj)+ f() v q (6 ) "
~ ([(Q (() )1- j(d~T] E~e ' i +[(Q~~ (d~)7' s(d2T] E2e ' 2 }

I
fPE Sl J 7

(22)

The distribution function f can be expanded in powers of E&, E2, and of first and higher derivatives of E&,

Ez, m*, and e. The coefficients of this expansion are functions of m~ and &. We insert f in that form into
E(I. (22) and then neglect all terms of the second and higher orders in first derivatives of m, &, E~, and

E3, and terms involving the second or higher derivatives of m, &, Ez, or Ez. We neglect also all terms of
the third and higher orders in E&, Ez and their derivatives. Comparing coefficients, we obtain a set of re-
current equations. Soj.ving them, we find

f (p r f) f0+ I ((01)E1 + 9 ((()8)ERe +'P (+1 +1}E1Ei+0 (+2 +2)E2ER +'P ((db 41)E1Ele

+ ((() ((() (() )E E 8 2 + 2+ ((Og (02)EgE28 ~ ~ + 2()[) ((()g (Op)EgE38 (23)

where y and (I() are tensors of first and second rank, respectively, defined by

('(ro)E= —
(q )f,' E ~ p+(E. v,e)[v, +a[(Q' —ro')v' —( v7') —(E ~ '„)

x ++q Q~ —~ 7' —j~g 8 + + E«p p ~
+

—
+ p ~ +„E~ p

~&(~' ~'(}E'E"-~ ~ +~ f0 (7', + T~g. ) (E ~ E )+(TMi —T~~ ~ )m+ (E ~ p) E ~

m

-(~„.—~„„)m+ E'. ", (E".p)+[~„,+ ~„„+~„, „(~„,+ ~„„)]

~m+ '(E'. E") p. ", — —~'„.m* ' [E".v„(E'. p)] —~'„..m+ '[E' v, (E".p)]

-[~„'., + ~„, „(~„,+7„„)]m*'E'. [(p. V„)E"] [~„'.+ -~„.,„"(7„,+ ~„")]m"'E".[(p. V„)E']

3

+ ", f()' (~„,+~ „)(E'.p)(E".p)+(7~, v„+„„„( 7+v„,.) v~+„, [(Q„'. —s)")y~-f(g'g] ']
4m*

x[(E vt'E)(E p)+'[7 ~ ~ ~ + T& ~ +~et(1& ~'+ T~ ~ ~ )+ T74l ~ t[(QMi ~ (d )7 ~(() r]

m2

& (E' ~ g)(E" ~ v t) —([v, + v...~.(v .+ v„-)[ + vv„.[(Q —w' )v —(td'v'[ (g ) )
~R« ~ ", (E ~ p) — [r."+~„.„-(~„.+7„")],+77„.,[(Q„., -(o )~ -f(o ~]

~r &„rn re 3 p

x (E' ~ I))(E"~ p) —[7 ~, + 7„„„., (r„, + ~„„)]m~ '[p ~ v„(E' ~ p)] (E"~ p)

—[&„"+r„. "(v„.+ ~„")]m* ~(E' ~ p)[p ~ V„(E".p)j (25)
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III. CONDUCTIVITY

Because of relation (3), the current density is given by

&(», 0= „1»f(»,», 0&') .

Integrating Eqs. (23)—(25), expressing (p„e by )[('„no [see Eq. (21)], and using Eq. (18) and (19) to eliminate
V~ ' Ey and V~ ' E3 we obtain

J(r) f) = 0' ((dg)Eg e & + o ((dp)Eye 2 +0' ((()g, —(()g)EgE] +0' ((()p) —(()p)EEE2 +0' ((0gq ((]g)EtEg e

+o' ((0~, (()~)EpE2e '"~ +2o ((()&, (()2)E&E2e ' "&'"]l) +2o ((()&, —(0&)E&E2 e '("&~2)~,

where o is given by Eq. (16), and the third rank tensor cr, which determines the nonlinear contribution to
the current, is defined by

2 Ef
pi P 1 A I tt 3 ~o(I p+tdp pk7tdp + ~~~p l+Q QP 7' S Ttdt e

4m" i» [(0 . —» )»' —(»»]»»... ~ (» ~ +», ))

V'„m V'„no 4) T
I 3

~ ~cd'
»

~ E ~ --
q

— E+. 3 ~ 3 . , I+lB»» - (» [(0 —» )» —(» T]»» ~ (»»» ))

S go m* (2V)

Obviously,

0' (((), ((7 }E E = o' ( —(() )
—(() )E E

Integrating Eqs. (23)-(25) one can calculate n
and check Eq. (19) and continuity equation (14).
One can also observe that the second-order terms
in current are produced by both V„m* and V'„no,
and also by nonuniformity of electric fields.

An important featuxe of the second-order con-
ductivity tensor o given by Eq. (2V) is that it is
independent of carrier statistics and depends only
on carrier density. The sign, of o depends on the
sign of the carrier charge.

It appears that the case of E~, Ez perpendicular
to

ls of particular 1nterest. As was already men-
tioned, carrier density is then time independent.
The electric fields may therefore be uniform. In
that case only the third term in Eq. (2V) does not
vanish, and second-order components of the current

density are parallel to the effective-mass gradient
and do not depend on the carrier-density gradient.

For several equivalent band extrema the distri-
bution function, carrier density and current density
are the same for each extremum, and are given by
Eqs. (16), (19), (20), and (23)-(2V). One has only
to remember that eo denotes the equilibrium car-
rier concentration in a single extremum, except for
Eq. (20) where no is the total carrier concentration.
Summing up contributions from all extrema one ob-
tains the total carrier and current densities ex-
pressed by the same expressions (16), (19), (20),
(26), and (2V), but with no denoting everywhere the
total carrier concentration.

IV. LIMITING CASKS

In this section we will present approximate ex-
pressions for tt e second-order conductivity tensor
in different ranges of frequencies co' and co". There
are four limiting cases which are all discussed in
the following.

A. l~'j, l~ "I&& &/v

Keeping only terms of the lowest order in I v l v

and I (o"I v we obtain from Eq. (2V)

2( l ll)E 1@~11 q r @(] [(fig Il 2) Q ~ II
] g E Pl ~ P ~ ~P 0 E & 1 [(f12 lp) P, ~ &

]

(26
I»» SQ



3042 I EIBLER, MYCIE LSKI, AND FURDYNA

If E and E ' are perpendicular to

Vrm* Vr
m*

the second-order conductivity tensor does not depend on frequencies co' and co

B. ju 'j((1/r((j~ "j

Here we keep only terms of the lowest order in I 0)'I1 and in (I &u"I v), obtaining

37rl2I ~ «x~ ~v. «0' imp ttp Q ri p /tax p ~ tr a1 ~~ Vr m Vr~p
o se, e P rr2 + ~

I (&™&td»—& )7 —Zh) 7 J E4m+ 4g ! m~ Bp
I

&&E&&[(fl2 P2)&2 ~ &&]-1 E & . r m E110 E &&+ (E t, E te) Em
m+ np l

m+

—(E ' E,)E —(E "E,)E'}

If E' and E are perpendicular to

V„m+ V„
m* np

the second-order conductivity tensor depends only on the higher frequency ~". We thus have a type of
electro-optical effect.

(29)

j~'j, ju "j&)1/7, ju'+u "j(&1/v.

In this case we retain only terms of the lowest order in (I 0)'I w), (I (0"I v) and I 0)'+ 00 'I v. This yields

37 ~I2x 2 ~ ~~ 1-1 II ~ r m +r+p
2m* i(u ~

I

E &2 2[(fl2 &2)&2 ~ &&]1 E~ ~ r r 0 E~E+(E~. E~IE) E

m+ np m*

(30)

D. [m
'
j, jm "j,

I m '+ cu
"

j && 1/v

Keeping only terms of the lowest order in (I 0)'I v) ', (I (E)"I1) ', and (I (0'+(0 "I 'r) ', we obt»n from E(l. (2I)
~ 3

EEg E~ Pl 2$ fl0 gr( E») 2[(f12 E) 2) 2 . » ]-1 EZ&, +E ~ +r+0

t &E) 2[(f12 r2) 2 . E

] 1 E&. r r 0 E» (EE. EEE)
m* sp m*

-(E' E,)E"—(E" E,)E'}.

If fl„.1» I (or 0„"1.» 1), o has a resonancelike
behavior in cases B, C, and D for (0 - 0„. (or 0)
- n„„).

fields are not discussed at this point. We shall
restrict further consideration to the case of a sin-
gle electric field (i. e. , E2 = 0) perpendicular to

V. DISCUSSION OF RESULTS

We shall not consider here the detailed behavior
of the general expressions for the second-order
conductivity tensor, Eqs. (26) and (2V). In partic-
ular, combining of frequencies (heterodyning), and

effects originating specifically from the carrier
density gradient and from nonuniformity of electric

V„m+ V„gp
m lip

and we shall assume that this field is uniform. We
shall present some semiquantitative estimates for
both frequency regions (0, «1/1 and (0, »1/~. For
simplicity the subscript 1 will be omitted in the fol-
lowing. This case appears to be the most interest-
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ing (and the most practical) from the experimental
point of view.

A. ~«it'.
From Eqs. (16), (26), and (28) we have

J(r t)—= ( )Er'"'+(—)
x (z . z++z . z e-'* ').

V„m*
(1+cos2(dt) .m* (33)

Thus, the uniform electric field of frequency v per-
pendicular to the effective-mass and carrier-den-
sity gradients produces a current density parallel
to the effective-mass gradient. This current den-
sity is proportional to cos wt, i. e. , it has a time-
independent component and a component oscillating
with the frequency 2e.

Instead of measuring the oscillating component of
current parallel to the effective-mass gradient one
can measure the electric field E~~ cos2~t compen-
sating this current. From Eqs. (16) and (33)

Z„,/E'= —,
' q7'v„(m* ') = —(q'/2q) v„m*, (34)

where p(r) =
I ql ~/m*(r) is the carrier mobility. If

p(r) is approximately constant between the points
rz and rz, the compensating potential difference be-
tween these points is

U~ E(rQ) —U„E(r~)= (g /2q) [m"'(rQ) —m*(r&)] E

(36)
It can be noted that Eq. (34) may be derived in a

less formal but simpler and more intuitive way
without explicitly solving the Boltzmann equation

up to terms linear in V„n.* and V„&. From the so-
lution of the standard Boltzmann equation for free
carriers (in the case of V„mE = 0 and V„e =-0) one
finds that the oscillating part of average p is

n *'q'E' cos2~t,

and this gives a contribution to the average p [see
zq. (2)t.

This contribution is to be canceled by the elec-
tric field E„~cos2(t)t. Thus from Eq. (2) one ob-
tains

(m* g E cos2Q)t/2m* ) V„m*+qz, E cos2Q)t = 0

and, consequently, Eq. (34).
I.et us put I V,m*!=4mQ/cm (mQ is the free-elec-

tron mass) and p, = IOQ cm /V sec, which corre-
spond roughly to e-type Hg& Cd„Te mith x changing

For a linearly polarized electric field, E is real,
and

2 3

EoJ(r, t)= „' Erootrt+, ') E

J( t) q Q E tlt oq Q

gpss+ co 8'+ (d m+

x [4&oE ~ E* —(i/7)z ~ E e '"'] . (36)

We therefore have here a second-order electric
polarization P(r, f) oscillating with frequency 2Q):

P(r, f) =1(r)Z Z e '*'"', (3V)

where

J(r)EE= ( „t,) Et (38)

Let us put no= 3 && 10 cm, m* = 0. 02mo and
I V„m*l /m~ = 104 cm ~, corresponding roughly to
n-type Hgj „Cd„Te with x=-,' at the point in question
but changing from 0 to 1 over a distance of about
20 gm. For the wavelength of the CO& laser (10.6
pm), y is approximately 6x 10 Q esu, i. e. , of the
order of nonlinear susceptibilities observed in ho-
mogeneous materials. For lower frequencies, the
above effect mill dominate other mechanisms of
second-harmonic generation.
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from 0 to I in a distance of about one millimeter.
Equation (34) then gives E„,/E = 10 cm/V. For
E= 1 V/cm, E,~ = 10 llV/cm. If the sample is
0. 2 mm thick, we have Im*(rQ) —m*(r~)!=0.08mQ

and I U~E(r2) —U„E(r~) I
= 0. 2 pV. It seems,

therefore, that the effect considered may be used
as a method of determining the effective-mass gra-
dient.

In this paper me have not distinguished betmeen
the momentum- and energy-relaxation times. If
the energy-relaxation time is much longer than the
momentum-relaxation time (as it usually is), one

may expect strong nonlinear effects from the in-
crease of carrier temperature in the presence of
V„m* and V„no. There is probably one more effect
contributing to E~„namely, the thermoelectric
effect originating from an oscillating inhomoge-
neous temperature increase produced by the elec-
tric current. If the oscillation of lattice tempera-
ture is considered, it should decrease rapidly with

increasing frequency ~. The carrier temperature
oscillations mill decrease only for w higher than the
inverse energy-relaxation time. It should also be
noted that position dependence of the relaxation time

neglected in the present paper, may produce an
additional nonlinear current contributing to E~,.

B. ~))1/r
From Eqs. (16), (26), (30), and (31)
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Note added in proof. The Drude approach was
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