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Polaron bound to a massive hole: Binding energy of a bound piezoelectric polaron*
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A method for calculating the energy and wave function of a lattice polaron bound to a massive hole
applicable to both the band- and the non-band-mass theories for arbitrary binding and coupling strength
is developed. This is accomplished by a second-order perturbation theory on a basis different from the
usual perturbation theory, in which the electron-phonon interaction can be reduced to a small
perturbation even for the strong coupling. This method is applied to calculate the binding energy of a
bound piezoelectric polaron for a wide range of electron-phonon coupling and electron —massive-hole
binding. Then, the applicability of the usual second-order perturbation theory and that of the
strong-coupling polaron theory to the treatment of the interaction of a bound electron with the acoustic
phonons in a piezoelectric crystal is examined.

I. INTRODUCTION

An electron bound to a massive hole plus its asso-
ciated ionic polarization cloud is known as a bound
lattice polaron. In order to study the ionic-polar-
ization-field(IPF) effect on the electronic states, a
number of methods' "have been developed to cal-
culate the quantum states of such a polaron both
within the band-mass approximation and the non-
band-mass theory. Within the band-mass approxi-
mation, in which the electron-hole binding (will be
referred to simply as binding henceforth) is as-
sumed to be a pure Coulomb-type potential, such
methods include the path-integral method, the
variational method, ' and the usual second-order
perturbation method, in which the entire electron-
IPF interaction is taken as a perturbation. ' Both
the path-integral and the variational methods are
able to give satisfactory ground-state energies for
arbitrary binding and electron-IPF coupling (will
be referred to simply as coupling henceforth).
However, only the variational method can give the
corresponding wave function, which is needed in
some practical applications. For the usual second-
order perturbation method, the application is lim-
ited to weak-coupling cases only. The non-band-
mass theory with electron-hole binding deviated
from a pure Coulomb field was considered in Refs.
10 and 11. However, success of the methods pro-
posed in Refs 10 and 11 is limited to cases where
the wave function of the electron under considera-
tion is rather strongly localized.

Thus, inthis work we first formulate a perturba-
tion method on a basis different from the usual
second-order perturbation theory for calculating
the energy levels and wave functions of a bound lat-
tice polaron applicable to both the band- and the
non-band-mass theories for arbitrary binding and
coupling strength. Then. , in order to find an ap-
propriate approach for the treatment of the inter-
action of a bound electron with the acoustic phonons

in a real piezoelectric crystal and the correspond-
ing electronic binding energy, we apply the method
formulated to calculate the binding energy of a
bound lattice polaron in a piezoelectric material
for a wide range of binding and coupling. The for-
mulation of the perturbation method is described
in Sec. II. The application is given in Sec. III. A
summary is then made in Sec. IV, the last section.

II. METHOD

A. Formulation

4m (e,&~) e hs
k 2g2~Q p' p7

S
(2. 2)

Here &, is the static dielectric constant, V is the
volume of the crystal, c is the average elastic con-
stant, (e,») is an average of the piezoelectric ten-
sor components, e is the electronic charge, and
s is the velocity of sound in the crystal considered.

The Hamiltonian for an electron bound to a mas-
sive hole in the IPF may be written

p
2

+ V(r)+ Z AtAper+ Q(VfApe "'+c.c.),
(2. 1)

after a canonical transformation which eliminates
the explicit phonon-massive-hole interaction. '"
In Eq. (2. 1) the first term is the electronic kinetic
energy and V(r) denotes the electronic potential
modified by the IPF. The third and the last terms
of Eq. (2. 1) are, respectively, the Harniltonian of
the phonons and the interaction of these phonons
with the electron at the position r, written in terms
of creation and annihilation operators A~ and Ap
for phonons of wave vector k. Vp, characterizing
the coupling strength between the electron and pho-
nons, and ef in Eq. (2. 1) depend on the particular
case under consideration. For example, in the
case of a lattice polaron in a piezoelectric crystal
they are given by
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In the usual perturbation theory, the last term
in Eq. (2. 1) is taken as a perturbation. However,
in the case where the coupling between the electron
and thephonons is strong, thisperturbationbecomes
too big to be handled by a low-order perturbation
theory. In order to reduce the strength of this
perturbation, wetransform the Hamiltonian H given
by Eq. (2. 1) to

IVf I I (n le'"'Im ) I

m, k Cn- fe —CP

and the corresponding wave function is

(2. 8)

H = H + ~ otg Qf 6f+ p [Vf o!&X{1 )+ c.c. ] (2. 3)

by a simple canonical transformation in which the
operator Ap transforms to

Here IO) is the phonon vacuum state. Im ) is an

eigenfunction of H, in Eq. (2. 5) and e is the cor-
responding eigenvalue given by

nf = Af+ V&, o&T /&&, (2. 4)

and the operator Ap to n". Here the dimensionless
quantity op is a completely arbitrary function of k.
The operators o,g and a~~ thus defined are boson
annihilation and creation operators, respectively.
Then this op can be chosen so that the transformed
"electron-phonon interaction" as characterized by
X(r)=e' '- o&, in the third term of Eq. (2. 3) can be
handled by a low-order perturbation theory. II, in

Eq. (2. 3) is given by

4 2

+ ~ [l v&-,
l

—(ofpk „+c.c.)], (2. 9)

~y

where p&-, ~=(m Ie'""Im). It is interesting to note
that the form of the energy expression given by Eq.
(2. I) is the same as the corresponding one in the
usual perturbation theory, though the present per-
turbation theory and the usual perturbation theory
start from different basis, However, this is no
longer true if we include higher-order perturbation
corrections as can be seen from a comparison of
the present fourth-order correction 4E„'4' with that
of the usual perturbation theory.

+g — [lo&",
l

—(g&*, e' '+ c.c. )] . (2. 5)

It should be noted that the canonical transforma-
tion of (2. 4) is more general than in the adiabatic
perturbation theory ' ' since op here is allowed to
take a. more general form than in that theory (see
Sec. IIB).

Taking the last term in Eq. (2. 3) as a perturba-
tion and In) I0), in which there is a bound electron
in the state In) and no phonons are present, as the

initial state of the unperturbed Hamiltonian given

by the sum of the first two terms in Eq. (2. 3), we

obtain the energy correction due to the present per-
turbation to be 4E„=4E„' '+ 4E„' '+ -, where all

the odd-order perturbation corrections vanish. In

the following, we shall be only concerned with a
low-order perturbation theory in which the energy
correction is just the second-order correction
4E„' ' given by

o&", = "
~ j e'"'[V(r) —U,«(r)]dr (2. 10)

B. Choice of gk and effective potentials

If we choose Og to be zero, then the present un-

perturbed Hamiltonian H, given by Eq. (2. 5) and

hence the results derived above such as Eqs. (2. 7)

and (2. 8) become the same as those of the usual
second-order perturbation theory. On the other
hand, if we choose o-„ to be pg „, then the results
given by Eqs. (2. 7) and (2. 8) are nothing but those
of the adiabatic perturbation theory. '"' This is
because for op =Pl, „ the present unperturbed Hamil-
tonain 0, becomes the Hamiltonian in the adiabatic
or Hartree-type approximation, which assumes that

the electron moves so fast that the ionic polariza-
tion cannot follow the electronic motion and responds
only to the electronic charge cloud or the mean po-
sition of that same electron. 13

In general, however, we can choose 0„- to be

(2& ~ IV&, I I (n IX(r) Im ) I

~0 —EP
mph' n 75

(2. 6)
H, =P /2m+U, «(r) (2. 11)

where V is the volume of the crystal and write the

present unperturbed Hamiltonian in the form

Then, the energy of a polaron bound to a massive
hole is given by

2

E = co+DE+&= &nI + V(r) In &
n n 2m

in which the constant energy g„-I V&", I Io„.I /&&, is
dropped. Here U,«(r) is an effective potential,
which is an arbitrary function of r such that the in-
tegral on the right-hand side of Eq. (2. 10) exists.
We note that a. result similar to Eq. (2. 7) with Im)
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and &, respectively, the eigenfunctions and eigen-
values of Eq. (2. 11) can also be obtained for the
ground sta, te by the path-integral approach of Haken'
as done in Ref. 4. However, a similar result for
the excited states may not be directly obtained from
the same approach. In reality, as can be seen from
the present perturbation formulation, the result in
Eq. (2. 7) is explicitly true for both the ground and
the excited states.

An immediate consequence of Eq. (2. 11) is that,
by suitably choosing op, U„,(r) can be obtained as a
close approximation to the "effective" potential felt
by the electron due to the total effect of the massive
hole and the IPF. This mould result in a weakened
residual interaction which can be treated by a lom-
order perturbation theory with sufficient aceuraey.
Furthermore, by suitably choosing the form of o„-,
the unperturbed problem H, I m) = eo

~ m) can always
be cast into such a form that simple analytic solu-
tions exist. This makes the evaluation of second-
and higher-order perturbation corrections to both
the wave function and energy of any state a less
formidable task. In the following, me discuss horn

both purposes can be achieved.
Let us consider a choice of og giving rise to the

simple effective potential

(2. 12)

where y is a, parameter to be determined. For this
case, the unperturbed eigenfunctions and eigenener-
gies in Eq. (2. 7) are just those in the hydrogen
problem with an effective charge y. The unper-
turbed ground-state function, for example, is given
by e """~" . Then the last term in Eq. (2. 7) can be-myr/X ~

numerically evaluated as in the usual second-order
perturbation theory using the Coulomb Green's
function. ' It should be noted that it is not neces-
sary to replace P'/2m + V(r) in Eq. (2. 7) by a hy-
drogeruc Harailtonian in the present theory even if
ihe chosen effective potential is Coulombic.

Now, we come to the choice of the parameter y.
Theoretically, this y is arbitrary. However, from
the perturbation expansion point of viem it would be
advantageous to choose it in such a manner that the
present perturbation characterized by the last term
in Eq. (2.3) is effectively small so that the pertur-
bation expansion converges fast. This can be easily
accomplished in the ground-state ease. For the
ground state it can be shown straightforwardly by
using the path-integral approach of Haken ' that the
energy given by Eq. (2. 7) cannot be lower than the
true ground-state energy of the system for any
choice of the effective potential U,~,(r). Thus, for
the ground state the y can be chosen to give the lom-
est value of the ground-state energy E,"' from Eq.
(2. 7). This can be accomplished by varying the
E'~» with respect to y. The ground-state energy
thus obtained must be belom E~ calculated by the

usual second-order perturbation theory unless E~
is the true ground-state energy. This is because
the perturbation calculation here is numerically
equivalent to the variation of the ground-state ener-
gy of the usual second-order perturbation theory
mith respect to the hydrogenic 1s wave function.

The effective potential given by Eq. (2. 12) has the
Coulombic asymptotic behavior which is an essential
feature for most potentials binding a polaron to a
massive hole. However, its form near the massive
hole cannot usually conform with the actual poten-
tial in a xealistie case. In general, this effective
potential may be unable to give a ground-state en-
ergy close enough to the true one to make ihe high-
er-order perturbation corrections negligible. This
is indeed the ca.se when the electron-hole binding
or the electron-phonon coupling becomes large.
For this case a more flexible effective potential
may have to be chosen. For example, we choose
U„,(r) = —p/x+ 5/x, for which the last term in
Eq. (2. 7) may be numerically evaluated using the
corresponding Green's function' and the param-
eters y and n can be determ1ned 1n a manner s1m1-
lar to the determination of y in Eq. (2. 12).

III. BINDING ENERGY OF A PIEZOELEg~RIC
POLARON BOUND IN A COULOMB POTENTIAL

There have been three calculations "*' on the
ground-state energy of a piezoelectric polaron bound
in a Coulomb potential (will be referred to simply
as a bound piezoelectric polaron henceforth). All
three calculations are done within the usual sec-
ond-order perturbation theory for small binding
strengths. In the following, me apply the results
obtained in the preceding section to the calculation
of the binding energy of a bound piezoelectric polar-
on in the ground state for a mide range of binding
and coupling strengths. Then we examine the ap-
plicability of both the usual second-order perturba-
tion theory and the strong-coupling theory to the
tr eatment of a bound electron with acoustic phonons
in a piezoelectric crystal.

The binding energy in question is given as the
difference in energy between the ground state and
the state corresponding to yg = ~ (i. e. , the highest
bound state). In the limit of n= ~, where [g) is
completely diffused, the first term on the right-
hand side of Eq. (2. 7) vanishes and its second term
ea.n almays be calculated by using the method in
Ref. 9as

I&pl'

P &f, +5 k /2m

Note that ~E„does not depend on the particular
choice of op and isnothing but the electron self-en-
ergy due to the lattice polarization under considera-
tion mithin the second-order perturbation theory.
Therefore, in the present type second-order per-
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turbation theory the energy of the electron in the
state with m = ~, E„say, is just that given by Eq.
(3. 1) for any coupling strength. In the following,
as in Refs. 16 and 17, we use the dielectric-con-
tinuum approximation for the crystal and the system
of units in which 2mos = 1 for energy and h/2m„s = 1

for length. " Then, E„can be written

E„=—(2o./v) lnl 1+ k (3. 2)

2k 2kx i d v e ~ —4v sin —v +—(4vo+ 12vu+ Gu').p

x cps —v W„p 5 (++ 2v (3.4)

Here &= (k+ —,'yo)'~', v= p/2', I'(x) represents the

gamma function, and 5' and M are the Whittaker
functions. ' Accordingly, the ground-state energy
of interest can be numerically calculated by mini-
mizing the above E, with AE, given by Eq. (3. 4) with

respect to the parameter y for given P and o.'.
In addition, we describe how to get from E, given

by Eq. (3.3) the corresponding result by the usual
second-order perturbation theory and that by the

strong-coupling polaron theory (i. e. , the adiabatic
or Hartree self-consistent-field-type approxima, —

tion). The unperturbed Hamiltonian 8, given above

which is obtained from Eq. (3. 1) after substituting
Eq. (2. 2) into Eq. (3, 1) and repla, cing the summa-
tion over k in the first Brillouin z one by the k integral
with the upper limit k . Here, o.'.is the coupling
constant given by e (e;»)/2c@s&os and k is the max-
imum value of wave vector k. Note that a result
corresponding to that given by Eq. (3.2) for any
coupling strength cannot be derived entirely within
Haken's path-integral approach. '

Now, we come to the calculation of the ground-
state energy. This energy from Eq. (2. 7) is

E,=Vlf' ~/ lg). ~, , (3.3)

with ~~ given by

4v~ P I(g Ie'"'Im)I'
V ~ y(~o ~o l'o)

where P =e /egs being the strength of the Coulomb
potential and Im) and & are, respectively, the mth

unperturbed state and the mth unperturbed energy
depending on an effective potential that we shall
choose. Now, let us choose the Coulombic potential
as the effective potential so that Im) and &„ are, re-
spectively, the mth eigenfunction and the mth eigen-
energy of H, = p —y/r, where y is a, para. meter to be
determined by minimizing E, given by Eq. (3.3) (see
Sec. IIB). Then, &E~ given by Eq. (3.3a) can be
numerically evaluated by using the Coulomb Green's
function and Ig) = (y'/8&)'~axe ""~' as"

becomes that of the usual second-order perturba-
tion theory, i.e. , P —P/r, if the y above is set
equal to P [which amounts to setting crt, equal to zero
in Eq. (2. 3)]. Hence the corresponding result by
the usual second-order perturbation theory can be
obtained from Eq. (3.3) by simply putting y = p.
However, within the strong-coupling theory, the
corresponding result is, from Eq. (2. 9) with cr„

=Pf o (see Sec. IIB),

Pl ) 4vo'+ I(gle'""Ig) I'

where Ig) is a variational function. This E, is the
same a.s that obtained from Eq. (3.3) by keeping
only m=g in the sum over ~. Thus, the corre-
sponding result by the strong-coupling theory can
be calculated from the variation of Eq. (3. 3) ex-
cluding m 4g terms with respect to y for given P and

Then, the sum of the contributions from all the
terms excluded is a correction to the result of the
strong-coupling theory. This correction, in gen-
eral, becomes small as the binding A = —,'tI' or the

coupling & increases, because the energy denomina-
tor for mug is very large for large A or a.

The binding energy of a bound piezoelectric po-
laron can now be calculated as lE~ —E„j, where
E„is given in Eq. (3.2). The calculations as pre-
sented above have been performed for & = 1, 3, 10,
30 and A = 100, 500, 1000, 1500, 2000 using the IBM
360/75 at the University of Waterloo. The results
obtained are summarized in Table I. In this table
the results by the present second-order perturba-
tion theory, the usual second-order perturbation
theory and by the strong-coupling theory are, re-
spectively, denoted by EBsp EBUsP, and EsBc Here
we note that the maximum value of the wave vector
k used is k = 1000 (8/2mos) '. ' We also note that
the corresponding binding energy is almost inde-
pendent of 4 despite the rather strong 4 depen-
dence of both the ground-state and highest-bound-
sta.te energies.

Now, we can make some conclusive remarks on
the applicability of the usual second-order perturba-
tion theory and on that of the strong-coupling polar-
on theory to the problem considered in this section.
Firstly, as is shown by comparing EB with EB
in Table I, the usual second-order perturbation
theory is valid for any A as long a,s o. & 10. Second-

ly, as expected, the strong-coupling polaron theory
becomes better when increasing R or o. or both and

works better than the usual second-order perturba-
tion theory only in the region where e 230. How-

ever, this is far from the experimental region.
For the piezoelectric materials such as ZnS and

CdS, the coupling constant & is of the order of unity

and the binding A = —,'p is of the order of 1.6&&10'.

Therefore, experimentally we are in the region
where the usual second-order perturbation theory
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TABLE I. Binding energies of a bound piezoelectric polaron for 0. =1,3, 10,30 and 8 =100,500, 1000, 1500, 2000. gaU8~, .

+sc, and EP~ denote the results calculated by the usual second-order perturbation theory, the strong-coupling theory,
and the present second-order perturbation method with the hydrogenic effective potential, respectively (see text for de-
tails}. All energies are in units of 2~F2=1.

0! =1
CUSP E8Q EUsP

B EFBP EUsp
B

e =10
Esc8 EUSP

e =30
Esc

B
EPSP

100 104. 7
500 511.7

1000 1017,1
1500 1521.3
2000 2024. 9

101.9
509.7

1015.5
1519.9
2023. 7

104.7
511.8

1017.2
1521,4
2025. 1

114.0
535. 1

1051.3
1563.9
2074. 8

106.4
529. 6

1047.1
1560.3
2071.5

114.5
535. 8

1052, 0
1564, 7
2075. 6

146. 8
616.9

1171.0
1713.1
2249. 2

128.3
605. 5

1163.4
1707. 8
2245. 3

154.3
625. 4

1179.7
1722, 1
2258. 4

240. 5
850. 7

1513.0
2139.3
2747. 6

243.4
875. 2

1548.9
2182. 1
2794. 5

311,7
927. 9

1592.3
2221, 6
2831.6

works well, implying the interaction between a
bound electron and the acoustic yhonons in a, real
piezoelectric crystal is weak.

The computer work for the above exact calcula-
tion by the Green's function is very much time con-
suming. Consequently, we develop an approximate
method as described in the Appendix to evaluate the
last term in Eq. (2. "I) for practical cases. We
have used Eq. (A1) without S„s and S„4 to evaluate
Eq. (3.3a), which is the ground-state energy shift,
for y = p. The result so obtained is compared with
the exact result obtained from Eq. (3.4) for 'y = p in
Table II. Note that the ground-. state energy shift is
actually given as -(LATE~ -E„)/o', which is almost
independent of k, in Table II. It ean be seen from
this table that the approximate method commits a
small errox" in the region of R & 1000, i. e, , in the
experimental region. Moreover, the computer
time required is very much less for the approximate
method than for the exact calculation by the Green's
function (at least 1/100). Therefore, the approxi-
mate method suggested in the Appendix is practically
appropriate if a few percent error ean be tolerated.
In addition, we remark that for the present problem
the effective-mass method and the method in Ref.
12 do not work at all in the region of 8 & 1 (e.g. ,
for R = 1600, t&E~ E„-)/n is 636.-6 by the effec-
tive-mass method and —1.92 by the method in Ref.
12).

IV. SUMMARY

By means of a canonical transformation, we sep-
arate the interaction of the electron with the yho-
nons of the IP F into two parts. One part is included
in an effective potential which is chosen to approxi-
mate the total potential effectively felt by the elec-
tron in the combined fieM of the massive hole and
the IPF. The other part is treated as a perturba-
tion resulting in a perturbation method, which is
more general than the usual and adiabatic perturba-
tion methods for calculating the bound-polaron
states. By choosing an effective potential to be
close enough to that actually felt by the electron,
the perturbation can be much reduced so that it can
be tackled within the second-order perturbation

APPENDIX: AN APPROXIMATE EVALUATION
OF THE SECOND-ORDER ENERGY CORRECTION

The second-order energy correction like the last
term in Eq. 12. 7) can be written

TABLE II. Comparison of results of the numerical
evaluation and approximate calculation for the ground-
state energy shift- Q, E~-Eg/e (in units of 2mg2=1).

100
500

1000
1500
2000
2500
3000

Numerical
evaluated

4. 68
11.7
17.1
21.3
24. 9
28. 1
31.1

Approximate
method

5. 04
12.3
17.8
22~ 1
25. 8
29. 0
31.9

theory even for large coupling. In the ground-
state case, such a choice eox'responds to choosing
a trial function by the variation method and hence
the energy calculation by the perturbation theory
developed in this paper is eumerieaily equivalent
to a good variational calculation. Further, the
present results may overlap to a certain extent with
that derived from Haken's path-integral approach
for the ground state case. However, a simila, r re-
sult for the excited state may not be obtainable di-
rectly from Haken's approach, as is done in the
present work.

The method developed is applied to ealeulate the
binding energy of a bound piezoelectric polaron for
a wide range of the coupling and binding. From the
comparison of the calculated results with those of
the usual second-order yerturbation and the strong-
coupling polaron theories, it is seen that a weak-
couyling theory such as the usual second-order
perturbation theory is more applicable than the
strong-coupling theory for bound polarons in real
piezoelectric crystals. Thus, we may conclude
that the interaction of a bound electron with the
aeoustie phonons in a real piezoelectric crystal
is essentially weak and can be treated by the usual
second-order yerturbation theory very accurately.
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TABLE III. Comparison of the second-order energy
shifts of the ground state of an electron, bound in a Cou-
lomb field —P/y and interacting with optical phonons, b~
and 6z& calculated from the last term of Eq. (2. 7), re-
spectively, using the Coulomb Green's function in Bef. 8
and Eq. (Al) neglecting 8++8«. 8 is a usual parameter
that measures the binding strength. All energies are in
units of a phonon energy.

~(= ~p') -~„le -&~!~
0. 1
0. 5
l. 0
1.5
2, 0
4. 0
6. 0
8. 0

10.0
20, 0
30. 0
40. 0
60. 0

100.0

{s~+s«)/0,
—0. 002
—0. 003

0. 028
0. 057
0.078
0. 1.11.
0. 117
0. 115
0. 112
0. 094
0. 083
0. 075
0.065
0. 055

1.. 015
l. 082
1.195
l.302
l.397
l. 696
l. 930
2. 132
2.313
3.052
3.640
4. 144
5. 002
6.379

I ~p I
'

I pp. „I
'

n n
k k

with S„, which can be calculated as

(Al)

q X.- q.
q, yC s0

following a procedure similar to that in Refs. 7 and
12. The matrix element of Ep for plane waves

Iq ) and Iq ) is given by

(q IX) iI t'7 ) iri IE„, U.„]i q"))"
(AS)

with X = 2m')-, /I, obtained from the equation ([Ef,
II,] —&gF), Xf ) I n)-= 0 defining Ii f. Equation (As)
can be solved iteratively. Substituting (A3) and

(q[X„.[q ) = 5;,,„—p„„[);;.into Eq. (A2) yields

Sn = Sn&+ Sna+ Sns+ Sn4

with

2m P I &)-, I'1(nl q) I'
~ q. kI' X' (A4a)

2m+ I V), I 'p„„(n I q)(q+ kin)
(q+kfa q~

ksQ

(A4b)

2m gg I&),I'll;„-,.(nlq)(q In)

S„4 is given by Eq. (A4c) with (n Iq) replaced by
—p)-, ,„(nlq —k). HereR; f„.is —(q —k[[J'f, U„~]lq ).
S„,and S„2 can be evaluated exactly by replacing
the summation over k and q by the corresponding
integrals. However, S„, and S„4 can only be evalu-
ated by using (q IEflq ) obtained iteratively from
Eq. (AS). This needs a lot of computing efforts.

In reality, S„, and $„4 vanish in the weak-bind-
ing limit where the effective potential U,« is effec-
tively zero, because in such a limit B;„,.becomes
zero. In going from the weak-binding limit to the
strong-binding limit, the quantity which character-
izes the sum of S„, and S„4, i. e. , (nlq) —pt „(nlq
—k), tends to zero ((n [q) and (n [q —k) approach each
other and p; tends to unity) and S„, and S„4 cancel
exactly in the strong-binding limit. It is then ex-
pected that a lot of cancellation between g, and S„4
may occur even in the intermediate region of bind-
ing. In order to check this conjecture, we use the
formalism developed above to calculate the energy
shift given by Eq. (Al) with S„=S„,+S„~ for an op-
tical polaron bound in a Coulomb potential —P/r in
the usual second-order perturbation theory. For
this calculation [g) = p. '/m)'~ e "', with X= ~p. The
results thus calculated for the energy shift are com-
pared in Table IQ with the numerically exact calcu-
lation by means of a Coulomb Green's function in
Ref. 8. From this comparison, we estimate the
value of S„s+S„4for different binding B. As ex-
pected, S„,and S„4 cancel rather well and S„s+S 4

is small compared to the total energy shift ng par-
ticularly in the region where the binding R is less
than 2 or greater than 10. Accordingly, S„s and S„4
may be omitted in some practical case where a few
percent error can be tolerated.
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Using m~= 0. 2m~, where m~ is the free-electron mass,
and s = 3 && 10 cm sec- for piezoelectric materials such
as ZnS and CdS, we obtain 2m&s —2~10" meV and

I'/2m~s —10 cm. Then the maximum value of the wave
vector k is k —103(K/2m&s)" —10 cm"~.
&andbook of Mathematical +unctions, edited by M.
Abramovitz and I. Stegun (Dover, New York, 1965}.
For piezoelectric materials such as ZnS and CdS, c=5

&& 10 dyu/cm~, (e2&&g —{105 statcoulomb/cm2)2, &~ = 10
[G. D. Mahan, in I'olarons in Ionic &crystals and I'olax
Semicondlctoxs, edited by J. T. Devreese (North-Hol. —

land, Amsterdam, London, 1972}], and so (e~,g/c~,
—2X10 . Thus, ~& —&, and P=e /~&Ks —0.8X10 for s
—3&10 cmsec- . Accordingly, 8 =+ =1.6x 103 and
e &1.


