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Theory of band-population effects in electroreflectance
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A theory of band-population effects in electroreflectance is presented without invoking the usual

Franz-Keldysh mechanism. The theory is based on the relative shift between the bands and the Fermi

level when an external field is applied. Spatially varying relative Fermi level near the semiconductor

surface and the effective-mass approximation to the bands are assumed when calculating the change in

the dielectric function (5&). Results are compared with experimentally observed structures in InSb and

PbSe,

I. INTRODUCTION

Band population in semiconductor materials
occurs when, under steady-state condition, the
Fermi level E~ lies within the conduction- or
valence-band states. This condition can occur
either in the bulk of the material under heavy
extrinsic doping or near its surface under heavy
accumulation or inversion biasings. In either
case, the band-population phenomenon manifests
itself in optical measurements either as a shift
in the fundamental absorption edge of the material
as a function of doping (the Burstein-Moss shift' ')
or as a shift in electroreflectance (ER) structure
of near-degenerate materials when the surface
of the sample is biased into accumulation. '

We focus our attention on the latter phenomenon
where band;population effects can be observed
in EB not only at the fundamental edge of the ma-
terial, but at all allowed interband transitions in-
volving the unoccupied electronic states near the
Fermi level. Figure 1 shows this schematically
where, at equilibrium, for a given applied bias
the Fermi level is constant throughout the crys»
tal, but at each point near the surface the band
population varies as one goes from the surface
into the bulk. In the ER experiments light probes
these differently populated levels, and the mech-
anism giving rise to EB structure is no longer a
simple critical-point-associated phenomena.
Indeed, for accumulation conditions at the surface
(assuming completely degenerate conditions
throughout the sample) the predominant mecha-
nism of ER will be band-population modulation.
It is this aspect of the problem we wish to address
in this paper, namely, the calculation of the
changes in the dieleetrie function of a material
under band-population conditions and its relation
to changes observed in eleetroreQectance.

In Sec. II we calculate the imaginary part of the
dielectric function e, under the constraint of the

exclusion principle (Fermi-Dirac statistics)
assuming a single-particle picture and quadratic
surfaces in the energy bands, Z(k). For com-
pleteness, we treat both valence- to conduction-
band and intervalence- and conduction-band tran-
sitions for both parabolic and hyperbolic band
surfaces. (For convenience we consider heavily
doped n-type materials). We follow by calculating
the screening depth and the spatially varying po-
tential near the surface of a nearly degenerate to
degenerate semiconductor. Utilizing this spatial
variation in band population within the space-
charge region we calculate the averaged (Ae)
over this region and finally obtain the normalized
change in reflectance bR/B.

In Sec. III we compare these theoretical results
with experimentally obtained line shapes in InSb
and PbSe and discuss the validity of the assump-
tions made. In Sec. IV we consider a specific
case where both critical-point (Franz-Keldysh
mechanism') and band-population mechanisms
contribute to the ER signal. We conclude in Sec.
V by discussing the effect of space-charge-in-
duced localized states on electroreflectance in
near-degenerate materials. Section VI is a sum-
mary.

II. BAND-POPULATION MODULATION IN

DEGENERATE SEMICONDUCTORS

A. Dielectric-function relation

The contribution to the imaginary part of the
dielectric function e, (h'&u) for photon-induced
direct transitions between a valence and a con-
duction band takes the form' (nondegenerate
bands)

e,(h(u, E~(e))

=[4m'e'S'/m'(hv)'] [2/(2v) ] (
e P„,('
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level or band (this implies a temperature-inde-
pendent Hall coefficient), and (ii) the electronic
band structure is the same as for the intrinsic
material but with the Fermi level raised con-
siderably into the conduction band, reflecting the
increased number of electrons. Note that we
have so far neglected the Franz-Keldysh mecha-
nism and have assumed that the dominant effect
of the applied field is to shift the bands relative
to the Fermi level a,s described by Eq. (2). See
Sec. III for a discussion of this point.

Equation (1) can readily be solved in spherical
coordinates for an isotropic M„M, -type' of iso-
energetic quadratic surfaces:

Ev
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FIG. 1. Schematic showing the shift of the threshold
energy AE at absolute zero for an optical transition as
the bands of degenerate n-type InSb are shifted with re-
spect to the Fermi level Ez by an applied bias. A va-
lence band E„and a conduction band E, are shown as a
function of depth z from the surface (left) and as a func-
tion of momentum K for an arbitrary depth zo about the
I' point (right). Modulation around a given bias is rep-
resented by the band-edge wobble. The symbols —and +
represent the bias direction for a p- and n-type surface,
respectively.

where the matrix element P„, is assumed k inde-
pendent. EE(E) is the Fermi energy with respect
to the conduction band at any point z in the crys-
tal and, in the space-charge region of a semi-
conductor, is given by (see Fig. 1)

E,(z) =E, +ey(E),

where e(t((E) is the potential energy of an electron
in that region. EE(E) incorporates the shift of the
bands relative to the constant Fermi level, E~,
under the action of an externally applied bias.
f„ is the occupation probability of the initial state
(assumed to be unity for va, lence —to-conduction-
band transition in n-type materials) and f,(EE)
the final state, respectively. f, is the Fermi-
Dirac factor given by

f (1 [Et, (k) - E (s) ]/E(( r) —1 (3)C

We intend to apply Eq. (1) to highly doped n-type'
narrow-gap semiconductors such that the di-
electric screening length is much smaller than
the effective Bohr radius of the impurity level.
We may then assume that (i) there is no impurity

G;(E,) =(E"'"+1) ',
D;(E ) =[E (E)+(( p, j/m,*)X]/kT, (6)

X =k(d —kg .

m, p. , m,*, u(g), and E, are the electron mass,
reduced mass, the conduction-band effective mass,
the unit step function, and the critical-point gap
energy, respectively. C is a numerical constant
equal to 8/(13. 6) if If~ is in eV. The upper sign
holds for M;, i =0 (i(, & 0), the lower sign for M;„
i =3 ((((& 0). Expression (4) describes the shift of
the (threshold) edge with increasing conduction-
band population (the Burstein-Moss shift").

Since in many materials band population can
occur at points in the Brillouin zone not at k =0
we consider, for completeness, the anisotropic
M;, i = 0, and M;, i = 1, type' of surfaces. Using
cylindrical coordinates in (1) we obtain

e, (M;) = ~ C(p r(((,'/m')"'(~ e P„, ~'/m )

(&X)2
x[1/(h(d)'] dy N;(y),

N;(y) = (e"' " (+1) ',
A =-(i(, z,/m,*r 7

~
p, E ~

/m,* )/kT,

D. = [EE(E)—(v, /m."r)x ] /k T,
= [EE(E) + ( I VE I /m,*r)&] /k T,

(1o)

(11)

(1~)

where the upper sign holds for i = 0 (p, r, p~ & 0)
and the lower sign for i =1 (pr&0, pE &0). pr (i(E),
m,*r (m,*E) are the transverse (longitudinal) re-
duced and conduction-band effective masses, re-
spectively. Note that Eq. (8) reduces to the form
of Eq. (4) for (((E/m,*~ = p, r/m, "r for a M, type of
surface. In general Eq. (8) has no analytical form
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identical to 1/Aw ec, where R„ is the Hall coeffi-
cient assumed to be temperature independent. '
8& is therefore used to determine n, and thus F~.

As regards screening, the Poisson relation
takes the form

D. Ae for nonuniform band population

In order to include the band-population variation
within the space-charge region, we use the non-
uniform-field relation derived by Aspnes and
Frova

V'y(z) = 4we[n(z) —n, ] /e.

-[F„,(~) -&„.(y)], (19) (Ae) =-2fZ
z ~~80

d

dzlte-2l Kc Ae(zI) (24)

where g =y+eP(z)/kT and e, is the static dielectric
constant of the intrinsic material. In contrast
to the classical Boltzman-statistics treatment of
the Poisson relation, "Eq. (19) cannot be solved
analytically; one can expand it and keep the linear
term

&'Q(z) = e'[(2m,*)'kT]"'F „,(y)p(z)/(we, h')

= y(z)/X', (20)

hc =Ae~+ihc2,

Ae, (z)= ' e-~'~' ~y„- g x

K =(n+f ~)&v/c.

(25)

(26}

where we can define a screening length A, by

X =[we, ff'/e'[(2m, *) kT]"'F „,(y)j'", (2l)

which is the Debye length at high temperature (or
low doping) and is the Thomas-Fermi screening
length for E1 /kT-+~. We intend our formalism
to apply to degenerate semiconductors in which

Zw (60.1 eV} may be comparable to kT at 300'K
(0.025 eV). Since the surface-barrier-electro-
reflectance (SBEH) experiments use the metal-
oxide-semiconductor (MOS) configuration, the
solution to Eq. (20} in the bulk of the semicon-
ductor has the form

p(z) ~ -)s~ g1 (22)

V, —V, , =[1+(e,je„„)(t.„/Z)] P, . (23)

Here V,:„is the flat-band voltage (it is a function
of surface-state charges, assumed unchanged by
bias, plus the difference of the work functions"),
c, the intrinsic semiconductor dielectric constant,
and e„, and t, , the dielectric constant and thick-
ness of the oxide, respectively. Helations (22)
and (23) are strictly valid near flat band (P, = 0);
they may be assumed to be approximately valid
even for

~ P, )
~ E~.

where f, is the potential at the oxide-semi-
conductor interface referred to zero in the bulk
(the semiconductor thickness is much larger
than A). Equation (22) is equivalent to linear di-
electric screening with a dielectric constant
e(q}=e, [1+1/(kq)']." We can go one step further
and calculate the relationship between the gate
voltage V~ and the surface potential, "thus estab-
lishing the relationship needed in Eqs. (2) and (22)
for calculating the contribution from each point z
near the surface to th~ total EH signal hA/A.
This turns out to be a linear relation in our ap-
proxirnation:

n, K, and c are the refractive index, extinction
coefficient, and the speed of light, respectively.
The phase factor in e " ' mixes the real and

imaginary parts of &e(z') thus strongly modifying
the line shapes of (b, e,) and (&e,) relative to those
of Fig. 2 and thus bR/R as obtained from the uni-
form-field relation, i.e. ,

-p~zs '
a I

~'I /e (28)

(Ae) = -2i(&u/c)(w +f z)Lv, A.

x Qg cos 2&H A, lIlx c

—i sin[2(u w X(lnx)/c] j
(29)

where Zv, =exp, , e,'(h&u, v, x) =de, /dv, the inte-
gl'at1011 var1able ls x = e = Q(z)/Qg, and

e,' (k &u, v, x) = (2jw)P

(d 62 k(d, 8+% (d —{d

(30)

The normalized change in reflectance b,R/R can
now be calculated from"

where b now is the penetration length of light and

has the value Kc/2zhe = 986.4/(k&u)tc A; a is a
measure of the mixing in Ae and has the value
986.4/(ha)n A. Note that if a, 5, and X (screening
length) are of comparable magnitude then the in-
tegral in Eq. (23) must be solved in its entirety.
Only if b» X and a» A. will the exponential [Eq.
(28)] be slowly varying over the range of integra-
tion and can it be assumed constant, in which

case the real and imaginary parts of 4e will inter-
change. "

Assuming the exponential decay in the potential
derived in (20), we obtain
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r R/R =He[-(2 ..~,D)-'(ae&], (31)

where n, and n, are the reflective indices of the
ambient and the substrate material, respectively.
D completely describes the effect of surface layers
on the substrate and it is related to the general-
ized Seraphin coefficients n and P by"

o! —iP =-(2 n~ n3D) (32)

Relation (29) is general insofar as it applies to
any mechanism giving rise to change in e pro-
vided the potential distribution within the space-
charge region decays exponentially. It turns out
that the line shape of (he) does not depend strong-
ly on the detail of this potential decay, but only
on v, and X." In calculating b.R/R in Sec. III we
will use the expressions from (16) for e,' in (29)
and (30}.

III. COMPARISON WITH EXPERIMENT

We have presented the simplest possible theory
having a reasonable chance of interpreting the ER
experimental data in narrow-gap semiconductors.
We have done so in order to focus our attention on
this particular mechanism of electroreflectance.
Despite its simplicity, there is a total of 12 in-
dependent parameters whose values must be de-
termined in order to calculate KR/R vs Su&. More-
over, we must do numerical integrations over two
variables for each@(d. Before we refine the theo-
ry, it therefore behooves us to compare the pre-
dictions of this theory with some experimental
results on degenerate semiconductors. Before
doing so it is wise to explicitly, but briefly, state
and attempt to justify the assumptions we have
made.

(i) The validity of the one-electron theory of
solids and of the random-phase-approximation
(RPA)" dielectric function for the contribution
of the transitions in question to e(&u).

(ii) The validity of linear dielectric screening
within the RPA vis-a-vis Eqs. (19)-(23). The
linear approximation is strictly valid only near
flat-band (P, =0.0) and we will consider situations
in which ~eg, ~&Ez. One of us (N. B.) has previ-
ously verified through numerical integration of
the equivalent exact expressions on nondegenerate
(classical statistics) doped semiconductors that
b R/R is most insensitive to the approximations
in Eqs. (19)-(23) as long as Q, and X are correct-
ly determined. " The RPA formalism is an asymp-
totically exact approximation to e(q) whenever
r, & 1, "which can easily be seen to be the case in
most situations of interest.

(iii) The electronic band structure for the doped
material is the same as that for the intrinsic
material but with the excess carriers residing

solely in the conduction or valence band (as the
case may be). In particular, we assume that we
are on the metallic side of the Mott transition so
that the impurity levels or bands are screened;
this will oeeur when X is less than the impurity
Bohr radius. A necessary condition is that the
Hall coefficient be temperature independent.

(iv) The crftical-point structure is adequately
described by simple k p theory, i.e., parabolic
bands with constant matrix elements.

(v) We have completely neglected the Franz-
Keldysh mechanism of electrorefleetance. This
mechanism is appreciable only within -0.1 eV of
the critical point; we will consider doping levels
such that E~ -0.1 eV and biased into accumulation
so that this approximation may be expected to be
valid. Moreover, the sharpness of the critical
point is washed out by the impurity scattering.
Nonetheless, for low doping and/or depletion
biasing the remnant of the Franz-Keldysh mech-
anism must be included. Note that band-popula-
tion modulation depends locally on the potential
and has structure near h~ E, +E~-(z) whereas
the Franz-Keldysh mechanism depends locally
on the electric field and has structure near ka

Band-population effects in ER were first re-
ported by Glosser and Seraphin' (GS). Their ex-
periments were done on n-type InSb. Unfortu-
nately, some of the parameters needed in the
analysis were not determined by them at that
time. GS interpret structure around 1.1 e7 as
due to the I',-I", transition (the "spin-orbit-split"
valence band to lowest conduction band}. In order
to satisfy assumptions (ii), (iii), and (v) we wish
to consider a relatively highly doped sample,
biased into accumulation. However, according
to Kane, " if n~10" cm ' the conduction band
becomes appreciably nonparabolic neat' E~. We
were able to obtain a spectrum for an n-type
sample of InSb with n =1.0x10" cm ' (the Hall
coefficient is independent of temperature from
77 to 300'K) and have listed the pertinent param=
eters of the experiment in the caption to Fig. 3
(along with certain derived parameters). We
actually used the continuously changing values of

K, n, P" of a two-phase substrate-ambient
system in the 1.0-eV region. The "oxide" layer
was achieved by anodizing the InSb in KOH. GS
estimated the thicknesses of all their films to be
about 300 A; according to Hung and Yon" the
dielectric constant of the resultant oxide is about
16. The flat-band voltage was not determined;
we have very arbitrarily used the value reported
by GS for a different sample. In principle V,;8
can be determined as that gate voltage where the
electroreflectance signal from a transition
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4.0X10 5-
EXP. GLOSSER, et el

-4.0X10-5—

I"IG. 3. Comparison between the experimentally ob-
served I'7- I"6 structure in electroreflectance by Glosser
et a/. in InSb and the theoretically calculated line shape
using Eqs. (29)-(31) and band-population modulation.
The material parameters used in the calculation were
as follows: no=1.0x10 cm, T =77'K, m~=0. 012m,
m„*=0.110m, Ez ——0.055 eV, matrix element (e"~ P )t/m
=3.96 eV, E~=0.90 eV, refractive index n=4.4, ex-
tinction coefficient z =0.3, penetration length of light b
=3000 A, screening length A, =193 A, static dielectric
constants of the oxide and InSb e,„=16and e~ =17.8, re-
spectively, thickness of oxide d =300 A, flat-band volt-
age of the MOS VFz -—+0.25 V, and gate and surface volt-
ages U&—-0.5 V and V, =0.092 V, respectively.

bridging the Fermi level inverts polarity. '
The resultant calculation is plotted in Fig. 3

with the experimental results supplied to us by
Glosser. The value for E~ was chosen to be 0.9
eV." As the experimental parameters were not
well determined (the insulating layer may even
be slightly conductive) we chose not to pursue
this material further except to note the following:
(i) The scale of the ordinate is as determined
directly from our calculation; it is approxi-
mately of the right size for an electroieQectance
signal, thus showing that, at the very least, this
mechanism makes a non-negligible contribution
to &R/R. The experimental curve was then scaled
so that the peak-to-peak heights agreed, as we
did not know the scale of the experiment. (ii) The
width of the spectrum agrees well with the experi-
mental results. That the spectral shapes are in
rough agreement is probably fortuitous as will
be seen shortly.

We also calculated spectra corresponding to
larger biases and found that our signal shifts to
the blue with increasing gate voltage more readily
than did the experimental signal, thus indicating
that V,.-, may well be large and negative (this
would also tend to obviate the necessity for using
a lower value of E~ ) or that the position of the
bands at the oxide-semiconductor interface is
otherwise pinned. We suggest that further ex-

K
K 2

1.9 2.1
hu(eV)

FIG. 4. Experimentally observed L4+&(4)-L6 (6) electro-
reflectance structures at 10'K in PbSe by Kinoshita and
Glosser for an n-type, no =1.0x 10 cm sample. The
ER signal in the metal-insulator-semiconductor struc-
ture was measured as a function of dc bias VG ——-3, 0,
5 V, respectively.

1.7 1.8

perimental and theoretical studies on InSb (n-10"
-10")in which VFa has been experimentally de-
termined and using a well-parametrized oxide
layer (such as evaporated Al, O, ), will be most
fruitful.

Recently, Kinoshita and Glosser" (KG) per-
formed the same experiment on n-type (1.0X10"
cm ') PbSe. In Fig. 4 we present their results
for three different biases at 10'-K, using an Al, 03
oxide layer. They identify this structure as aris-
ing from the I,',(4)- L,(6) transition. The spin-
orbit-split "twin" appears at -2.1 eV. In the
caption of Fig. 5 we have listed all the pertinent
parameters. The effective masses quoted are
(m ~~m'~)"' as per Eq. (8). KG were unable, at
low temperatures, to invert the 1.6-eV structure
which is presumably a Franz-Keldysh effect be-
tween two levels bridging the Fermi level. Evi-
dently, V~:& & -3 V owing to a large density of
surface states at the oxide-semiconductor inter-
face; consequently all three curves correspond
to an accumulation condition. In Fig. 5 we have
plotted the theoretical AR/R vs Iie for different
values of the gate bias (we have chosen not to
specify V,:&). In this calculation we have used
the generalized a, 18 coefficients" of a four-phase
(ambient, Ni,"Al, O„" and PbSe") system.
Several features are apparent.

(i) The sizes of the theoretical curves are much
larger than in Fig. 3 ~ This is due to a larger
matrix element and to the fourfold star of the L
point. Evidently, this mechanism is even more
important in PbSe than in InSb.
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(ii) Regardless of the choice of V~.-s, the spectral
shapes of the two sets will not agree. Tentatively,
we attribute this drawback to imperfect knowledge
of the required parameters, particularly of e,
(PbSe). To the best of our knowledge this parame-
ter, the truly static dielectric constant of intrinsic
single-crystal PbSe at low temperatures, has not
been measured directly and could conceivably be
off by a factor of 5. Zemel" has used the Lyddane-
Sachs-Teller relation to deduce e, , which there-
fore incorporates three different experimental
errors. Error in z, is reflected in error in A. ,
which directly governs the mixing of the spectral
shapes of Fig. 2 via the Aspnes-Frova relation
(24). We notice that the band-population mecha-
nism allows for a change of spectral shape with
bias.

(iii) The spectral widths of the two sets are, as
was the case for InSb, in more or less good agree-
ment. The widths of each increase with bias and

by roughly the same factor. This is to be ex-
pected from any mechanism from the Aspnes-
Frova relationship. The theoretical width of
hR/R vs k~ is always larger than that at flat band,
V~ —V&:& =0, which is larger than kT because the
modulating signal also decays into the bulk with
decay length A..

(iv) The band-population mechanism predicts a
shift of structure to the blue with increased bias
that is in quite excellent agreement with the ex-
perimental shift. In Fig. 6 we have plotted the
position of the maximum in the theoretical curves
as a function of VG —V&~, and likewise the posi-
tions of the experimental maxima vs V~. We have

FIG. 5. Theoretically calculated line shapes of electro-
reflectance as a function of applied dc bias &z —1/');z for
PbSe using Eqs. (29)-(31) and band-population modula-
tion. The following material parameters were used in the
calculation: no=1.0x10 cm 3, T =77'K, m,*=0.040m,
m„*=0.218m, Ex 0.076 eV——, matrix element ~e" P~~ /m
=50.3 eV, E~=1.75 eV, refractive index rt =4.4, extinc-
tion coefficient f~ =1.4, penetration length of light b =361
A, screening length A =280 A, thickness ofthe oxide d =200
A, static dielectric constants of the oxide and sample &px

=3.12 and ~, =280, respectively.
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FIG. 6. Shift with gate bias voltage of the observed
L45(4)-L6 (6) electroreflectance structure in PbSe from
Fig. 4 and the theoretically calculated structure in Fig.
5. The abscissa was shifted in order to bring t;he two
sets into line, corresponding to an arbitrary choice V„~
=—3 V in the theoretical curve.

12

IV. FRANZ-KELDYSH EFFECT IN DEGENERATE
SEMICONDUCTORS

So far we have concentrated only on band-popu-
lation mechanism giving rise to the observed .

structure in ER of heavily doped narrow-band
semiconductors. We have assumed that F~ was
far enough in the conduction band not to warrant
the inclusion of critical-point effect, i.e. , Franz-
Keldysh effect. If E~ is near the bottom of the
conduction band or if the effective electric field
E involves an extended region in k space, then

shifted the abscissas in order to bring the two
sets into line, corresponding to an arbitrary
choice V&:t& = -3 in the theoretical curves. The
observed experimental shift -0.1 eV over a range
of 8 V in bias cannot, as previously noted, be
explained by the Franz-Keldysh mechanism.

To conclude this section we emphasize the im-
portance of accurate values for the required 12
parameters even for this, the simplest of all
possible theories. In particular, one cannot theo-
retically interpret experimental results without a
determination of V);~ which is sharply dependent
on sample preparation, temperature, etc. Further
experimental and theoretical investigations will
be addressed to this problem.
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we have to include the Fermi-Dirac factor in the
general convolution relation of e, (h&u, F).4 In
general this relation is not readily solvable ana-

lytically. We can solve e, (h+, F, Ez) for an M,
critical point using the effective-mass approxima-
tion (EMA)' given by

e, (h~, F, Ez) =(4&/'e'~C P,„~'/m'~')( '~F, F,I', ~/h'6'6'6')

dE„dE, dE, Ai'(-E„/h6, ) Ai'( E„/8-6, ) Ai'( E, /5-6, )

@~)(&[zz - {P / mc & [E~ z+~ + gz& &/ && r + I )
- & (33)

where

E„,(k) =(h'/2&/. )g h';+E, =E+E, , i =z, y, z

E, (k) = i/. E/nz,",
6';=e'F';/2h

;&u, i =x, y, z

6'=e'jF ~'/2h&/, .

The first integration over the 5 function brings
the exponential term outside the integral. The
other two integrals are readily solvable using
integral relations for the Airy function. ' Thus

(34)

(35)

(36)

(37)

x~(ep), the band-population-modulation line shape
derived in Sec. I.

Similar arguments hold for an M, critical point.
Figure 7 shows this schematically for an inter-
conduction-band transition where such an M, sur-
face is most likely to occur because of k p per-
turbation, i.e. , m(&mP. In this case, when EJ,
&0 critical-point transitions will be possible be-
tween the now populated initial state and the final
state. II, &0 for most of the significant structure
in Ae, (ke, F) As Ez mo. ves higher up into the
conduction band, band-population modulation will
also becomepossible and, unlike the case of
valence- to conduction-band transitions where

e, (h&u, F, E ) =(a6"'/ru')[)Ai'(q)[' —q)Ai(&I)(']
zz- p/m )( /&&TI)-&

where

= e, (h(u, F)G,(E~), (38)

q=(h&u —E, )/h6=X/h6. (39) {Ti(u—E )I
B is a, numerical constant, ' and G, is given by (5).

The change in e, is now

n e, (he@, F, Ez) = [e 2 (he, F)G,(Ez)

+ e, (h e, F)G,' (Ez)] b.F, (40)

where the prime indicates the derivative with
respect to F The physica. l meaning of (38) and

(40) is apparent from Fig. 7, where the individual
line shapes constituting e2(ha, F, Ez) and
b, e, (h&u, F, Ez) for a field-on/field-off case are
shown. Note that for Ez &0 (Ez in the gap), G, = I
(constant), Eq. (40) reduces to the usual n. z, (he, F)
line shape associated with the Franz-Keldysh
mechanism. ' For E~ & 0, the conduction band will
populate and the Go term in (40) will tend to at-
tenuate the pronounced structure in Ae, (he, F);
i.e., there will be a suppression of the critical-
point effect as E~ goes higher into the conduction
band. In the limit that E~ »k0 the critical-point
effect will be completely suppressed and (40)
reduces to e, (hu, F) G,'(Ez)nF = e, (II+, 0)[dG, /d(e/t&)]

Mo TRANSITION

mf )m;")0
&it &0

—E )
II

=k

Ms TRANSITION

FIG. 7. Theoretical line shapes for e2(h~, 0) (solid
line), e2(h(', E) (dashed line), and Ae2(h~, &) for an Mo
and M3 type of critical-point transition as obtained from
Eqs. (38) and (40) when the Fermi level E&&0. The
energy-band states E(k) are shown on the left where E~
is the lowest (highest) energy difference between the
initial (i) and final (f) state for an Mo (M3) transition.
When Ez &0, the above line shapes will be modified by
the factors Go or II3 (depending on the type of critical
point) as given by Eqs. (14), (15), (38), and (40).
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E„»h8 and only the second term in (40}dominated
the line shape, now both the e,'(h~, &)&,(E~) and

e, (h&u, F) H3 (E„)terms in (40) will prevail. Note
that the line shRpe of 62H3 mill I1Rve R &8d shift
as E„ increases (see Fig. f). The chances of ob-
serving a M, -critical-point transition as de-
scribed Rbove Rx'6 good provided we cRQ Swing
the bands near the semiconductor surface from
accumulation condition (thus band population) to
depletion condition. The depletion-to-accumula-
tion change in bias mould allow the emergence of
the M, structure in KH.

V. SPACE-CHARGE-INDUCED LOCALIZED STATES
IN DEGENERATE SEMICONDUCTORS

The QRx'row degenerRte accuIQulRtioQ l egions
hereto considered mill give rise to discrete ener-
gy levels within the potential well near the oxide-
semiconductor interface"'" (see Fig. 1.) which
me have ignored. These space-charge-induced
localized states (for motion normal to the inter-
face) in turn can give rise to structure in capaci-
tance'6 or resonance absorption at far infrared. ~'

We briefly discuss such effects in this section.
Our procedure has been to treat the wave func-

tions in the space-charge region as if they mere
locally Bloch functions (this assumption violates
the boundary conditions at the surface) and to use
a potential derived from the linearized Thomas-
Fermi theory. The inadequacies of this procedure
can be seen most simply in the work of Baraff and
Appelbaum" (BA) who also consider an accumu-
lation region in a degenexate n-type semiconductor.
In particular, we have ignored the likely existence
of states mhose motion normal to the surface is
bound, and our potential is far from self-con-
sistent. Our approximation to Figs. 9-11 of Hef.
25 consists of straight lines through the origin
tangent to "Thomas-Fermi curve"; inasmuch as
~, =0.17 for n, =10" in InSb our treatment of the
potential is seen to be in reasonable agreement
with that of BA. Moreovex, the transitions me
have been considering involve states in the vicinity
of E» which is to say, states in the continuum of
the self-consistent potential, and our treatment of
the wave functions can therefore also be expected
to be approximately correct. It mould be of inter-
est to extend BA's work in the direction of our omn.

%6 thought it informative to use the simple ex-
ponential potential given by Eq. (22) to calculate
the eigenvalues associated with va, rious bias volt-
ages using Alferieff and Duke's relations. " For
a typical ¹-Al,O, -IQSb interface, @0=10"cm 3,
for band bending of eP, =0.175 eV below the bulk
conduction-bRnd mlniIlMm the following eigeQ-
values emerge: -E; =1.13, 10.9, 34,7, 79.4 meV,

respectively. In the above case the onset of a
single quantized level occurs for eQ, in the range
0-0.05 eV. Since we have assumed E~ to be above
the bulk conduction-band minimum, all of these
quantized states will be occupied and no photon-
induced transitions to these states mill be possible
from the valence states. If the Fermi level is
below the bulk conduction-band minimum (within
the potential well), then transitions to the quantized
sta, tes above the Fermi level can take place. It is
uQlikely tI1Rt such tx'RQsitioQS will be obsex'ved in
electroreflectance (even at low temperatures)
since the superposition of valence- to conduction-
band transitions near the Fermi level mill cover
up their presence (it is to be noted that for points
within the space-charge region where the Fermi
level is within the conduction band, different re-
gions of k space may be involved in the interband
tx Rnsition cRusing RdditionRl broRdening in the ER
structure). For degenerately doped semiconduc-
tors it may, however, be possible to observe
these states vis-a-vis interconduction-band tran-
sitions in which the occupied bound levels are the
initial states.

VI. SUMMARY AND CONCLUSIONS

We have presented the theoretical aspects of a
nem modulation mechanism. which, we believe,
gives rise to observed structure in surface-barrier
electroreflectance in semiconductor materials.
The theory is based on band-population effects
within the space-charge region of R material,
particularly in semiconductors having a narrow
band gap. This mechanism differs considexably
from the usual Franz-Keldysh critical-point-
associated phenomenon, mhich i.s normally as-
sumed to interpret electroreflectance structure.
Theoretically calculated line shapes based on
this mechanism explain reasonably mell the salient
features of electroreflectance structures observed
in n-type InSb and PbSe (and which cannnot be
explained by the usual Franz-Keldysh mecha-
nism}. Specifically, our calculation predicts (i)
values for b,R/R which are of the order of those
generally observed experimentally, (ii) spectral
linemidths in good agreement with those seen in
InSb and PbSe and whose widths increase with
bias in accordance with experimental obsex"va-
tions, and, most importantly, (iii) a blue shift of
structure (in PbSe) with increased bias in ex-
cellent agreement with experiment. Pxesent lack
of agreement of line shapes is traceable, in part,
to imperfect knowledge of the required parame-
ters. Further experiments are under may in this
laboratory to enable us to make an accurate com-
parison between theory and experiment.
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