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The "cluster-Bethe-lattice" method is extended to the study of heteropolar systems. The Bethe lattice
is solved for binary compounds of arbitrary coordination using simple tight-binding models. In
particular systems with tetrahedral coordination, such as the zinc-blende, BC-8, and random-network

structures are examined in detail. The results are compared with recent experimental photoemission data
on the amorphous phases of binary compounds and interpreted in terms of topology.

I. INTRODUCTION

The "cluster-Bethe-lattice"' method is a par-
ticularly useful tool for studying infinite connected
systems, which may be periodic or not, in terms
of the local configurations of the atoms in these
systems. The method involves treating part of the
system exactly (as a cluster) and replacing the ef-
fects of the rest of the infinite environment by a
Cayley tree (or Bethe lattice). Results on homopo-
lar systems indicate the importance of local atomic
configurations and ring topologies in determining
structure in the electronic density of states (DOS).
A natural extension of this method is to heteropo-
lar systems. In this way one can in principle
study the alloy problem, as well as amorphous
binary systems.

In this paper the method will be set up for the
study of infinite connected binary systems of arbi-
trary coordination. To do this, a heteropolar Bethe
lattice of arbitrary coordination will be solved in
detail. This, in general, permits a study of a
large class of problems including alloys and amor-
phous binary systems. The focus here, however,
will be to use the cluster-Bethe-lattice method to
study the effects of topology on the DOS of amor-
phous tetrahedrally coordinated binary compounds.
In particular, only structures which can be made
with no like-atom bonds will be studied. Specifical-
ly, the DOS's of binary systems constructed using
the atomic positions of the diamond, BC-S, and
Connell random-network structures will be cal-
culated and examined in detail. These systems
form a series of structures whose local atomic con-
figurations become increasingly more disordered.

The format of the paper is as follows. In Sec.
II the cluster-Bethe-lattice method is discussed,
simple one-orbital and four-orbital tight-binding
Hamiltonians are defined, a transformation be-
tween the states of a one-orbital and four-orbital
Hamiltonian is introduced for heteropolar systems,
and an example of the cluster-Bethe-lattice meth-
od using these Hamiltonians is given. In Sec. III
the Bethe lattice is solved analytically for hetero-

polar systems using the one-orbital Hamiltonian.
Local densities of states for the cation and anion
are obtained separately and effects of heteropolarity
are studied explicitly. In Sec. IV the amorphous
phases of III-V compounds are discussed and the
results for the binary structures made from the
diamond, BC-8, and Connell random-network
structures are presented and examined in detail.
Finally, Sec. V is concerned with a summary and
concluding remarks.

II. CLUSTER-BETHE-LATTICE METHOD

The purpose of the cluster-Bethe-lattice method
is to prov'ide a simple and physical way of obtaining
the total DOS of an infinite system of atoms, which
may or may not have periodicity. The procedure
is as follows. Consider an infinite connected net-
work of atoms of coordination m. Any arbitrary
atom is picked as a reference point. A cluster of
atoms surrounding and including this atom is then
removed from the system. The cluster is chosen
such that every atom in the cluster is part of a
ring passing through the central or reference atom.
A Bethe lattice' (or Cayley tree) is then attached to
the dangling bonds so as to simulate the effects of
the original infinite environment. The Bethe lat-
tice is an infinite connected system of atoms of
coordination m such that every atom is equivalent
and there are no rings of bonds in the system.
Once the solution of the Bethe lattice is known the
local Green's function &0 igi0) of the central or
reference atom can be obtained exactly. The Bethe
lattice therefore serves two useful purposes.
First, . it provides the mathematical convenience of
solving exactly an infinite system without periodici-
ty. Second, it provides the physically attractive
characteristic of preserving the connectivity and
the coordination of the system.

The Hamiltonians that will be used consist of
simple one-orbital (h) and four-orbital (H) Hamil-
tonians for systems with no like-atom bonds.
These are given in the orbital representation by

a =+A+ [
f & & f( + Vg [

f & & ~'[
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H=~A+lij&&ijl+v, p Iij&&ij'I

v, Q Iij&&i'gl. (2)

.&ilgl j&=~„+2&ilI
I

I &«lglj&.

The local DOS n,.(g) of the ithatomis thengivenby

n,.(~) = —(I/w)lm&ilgl i) (S)

Z = 2V, + (4V', + V2+ A2+ V, V, a/V) "~

A=AV, /4V, (4)

where & and E are the eigenvalues of (1) and (2)
respectively. Thus one can now use the much sim-
pler Hamiltonian h for heteropolar systems in
order to calculate eigenvalues and loca/ DOS's and
use the transformations (3) and (4) to give the cor-
responding eigenvalues and local DOS's for the
Hamiltonian B.

To obtain the DOS of any system in a Green's-
function formalism using the Hamiltonian h one
must first define

g = 1/(~ —h) = I/e + (I/c) hg.

The total DOS n(e) is then given by

n(&) = (- 1/m) Im[Trg(e)]

and one is interested in the diagonal matrix ele-
ments of g(e). So that taking matrix elements of
(5) between a basis set (li&}, one obtains

h represents a system where an s-like localized
orbital li& is placed on each atom i and only near-
est-neighbor interactions V are taken into account.
The diagonal terms are positive or negative de-
pending on whether atom i is a cation or anion, re-
spectively. Similarly H represents a system where
four sp'-like orbitals lij& are placed on each atom
i with j= 1, 4. V& represents the interaction be-
tween different orbitals on the same atom and V,
represents the interaction between orbitals on dif-
ferent atoms, but along the same bond. Finally,
a positive or negative 4 characterizes a cation- or
anion-directed orbital. H is very useful, because
it supplies a simple yet relatively good description
of the DOS region everywhere except at the top of
the valence band. Here the upper P-like bonding
states form a flat band or equivalently a 5-function
peak in the DOS. (For the purposes of this investi-
gation, however, this is not very important since
it will be shown in Sec. IV that the primary concern
here is to examine the middle peak region of the
DOS. ) If one takes A=A=0, then the eigenvalues
of H (except those that lie in the 6-function peak)
are related by an analytic transformation' to the
eigenvalues of the much simpler Hamiltonian k.
This, however, is also true for 5 0 0 o~. For this
case a. similar analysis gives the transformations

n(e) =Q n;(~).

(~~A)&olg'lo&=I 4v&llg"Io&,

("A)&llg'I »= v& olg'I o)+sv&2lg'I o&,

(~ ~A) &21 g'I o) = v& ll g'I 0&+2v&SI g'I o& (lo)

+@'&21g'I »,
(~ +A) &Slg'I 0&=2v&2lg'I 0&+2@'&3lg'I 0&,

where g and g" represent the Green's functions for
the case of an anion and cation central atom, re-
spectively, and Q and P' are the fields of a. hetero-
polar Bethe-lattice acting, along one bond, on an
anion and cation, respectively. The fields P' are,
in general, complex functions of energy and de-
pend only on the properties of the Bethe lattice.
Section III will be devoted to their solution. As-
suming, however, that the Q' are known the local
Green's functions, &0 Ig'Io) can be obtained trivial-
ly from the linear equations (10). The result is

&olg'I 0) =(a+A —4V'fr+A —Sv'[~+A

4V'(~ + A —2y')-'] '}-')-'

n,'(e) = —(I/m) Im&olg'Io&, (12)

where no(e) and no(e) are the local DOS's of an anion
or cation central atom, respectively. These re-
sults will be examined again in Sec. III once the
solutions for P' are obtained.

III. HETEROPOLAR BETHE LATTICE

This section will be concerned with solving the
total and local Green's functions of a heteropolar

As a simple example of how the cluster-Bethe-
lattice method works, consider the cluster of atoms
in the diamond structure shown in Fig. 1. The ref-
erence atom is labeled 0 and from symmetry many
atoms are equivalent and therefore labeled with
the same number. Thus, there are only four in-
equivalent atoms in a cluster of 29 atoms. Further-
more, there are 12 sixfold rings of bonds passing
through the central atom. A zinc-blende-Bethe-
lattice system ean now be constructed by placing
cations or anions on a,ll the odd or even numbered
atomic positions and attaching a corresponding
heteropolar Bethe lattice to the dangling bonds of
atoms 2 and 3. The local DOS for atom 0 of this
infinite system can now be solved ana. lytically
using Eq. ('7). One obtains
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Comparing Eqs. (13) and (14) and using the plus and
minus symmetry of the system gives

P'= V'/(&~A- (m —1)P') .
Solving (20) for P' gives

(f =Qa+iQq,

with

(f a = (e v A)/2( m —1)

(16)

[4(m —1)V'(e'- A') —(e' —A')']"'
2( 1)(..A)

(18)

FIG. 1. Cluster of atoms in the diamond structure.
The central or reference atom is labeled 0. All equiva-
lent atoms are labeled with the same number. The Bethe
lattice is connected to the one and two dangling bonds of
atoms 2 and 3, respectively.

(s+A) &ol g I
0&=1+(m-1)«llg I 0&

(~-A)&llg lo&=«olg Io&

+(m 1)@'&llg lo&.

Now consider again atom 0 but now remove it and
all of its m nearest neighbors from the Bethe-lat-
tice system. The Bethe lattice is then attached
to the m —1 dangling bonds of atoms 1 and one ob-
tains the following equations from (7):

(e+A)(olg-I o&=1+mv& llg-I o&,

(13)

(14)

(e —A) &llg I o& = v&olg
I
o&+(m-1)p'(Ilg

I
o&.

Bethe lattice (with no like-atom bonds) using the
Hamiltonian h defined in Sec. II. This will be ac-
complished by using a mean-field formalism so
that fields P' will be obtained which can then be
used to attach the heteropolar Bethe lattice to any
cluster of atoms.

Consider a heteropolar Bethe lattice made up
of atoms with coordination m. Choose any atom
in the Bethe lattice and remove it and m —1 of its
nearest neighbors from the system. Assume now

for simplicity that the atom chosen is an anion and
is labeled 0. Its nearest neighbors are labeled l.
Atom 0 has only one dangling bond, whereas atoms
1 have m —1 dangling bonds. If the Bethe lattice is
now attached to the dangling bonds of atoms 0 and
1 through the fields P' one again obtains a, com-
plete Bethe lattice and the following equations from

(7):

The choice of sign in the brackets [+] in (18) de-
pends only on the values of E and not on whether
the connecting atom is an anion or cation. The
minus sign must be taken when E» and the plus
sign when « —A.

The local Green's function for the heteropolar
Bethe lattice is now given by

& 0
I
g'

I
o &

= (e +A - my')-'

and the local DOS of the Bethe lattice na(e) from

n'(e) = —(I/m) lm (ol g'I 0&; (20)

therefore

mar'
7r (&+A —my'„)'+m'(y', )' ' (21)

The band edges can be obtained from (18) and occur
at

and

e =+[Aa+4(m —1)V']'~a

c =~A.

(22)

(23)

An examination of (21) shows that na(e) and na(E)
have square-root singularities at & = —A and E =+A,
respectively. These singularities are actually a
general feature of the h and H Hamiltonians and will
occur for all structural systems with no like-atom
bonds. Furthermore, although na(e) is singular at
& = +A, it is zero at & =+ A. This indicates that the
states occurring at the singularities g =+A and 4
= —A represent Pure cation and Pure anion states,
respectively. na(e) and na(e) are plotted in Fig.
2(a) as a dotted and dashed line, respectively, with
V=1 and A=2V. The sum of these two curves
(which is not shown) is of course the total DOS of
the heteropolar Bethe lattice. ' This is very sim-
ilar to that of a homopolar Bethe lattice except
that there is now a gap between (and singularities
at) e =+A. The local DOS na(e) for an anion is
clearly concentrated at low energies with a small
amount of states at high energies. The cation
local DOS is of course just the mirror image of
na(e) about &=0.
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FIG. 2. Densities of
states using the one orbit
a]. Hamiltonian. (a) Local
anion (dotted line) and
cation (dashed line) densi
ties of states for a binary
Bethe lattice and the den
sity of states (solid line)
of a zinc-blende-Bethe-
lattice system with the
c].uster of atoms shown in
Fig. 1.. (b) The local den-
sities of states for the
anion (solid line) and cation
(dashed line) for the same
zinc-blende-Bethe-lattice
system. The energy is in
units of the one-orbital in-
teraction parameter V.

In Fig. 2(a) is also shown (as a sobd line) the
DOS of the zinc-blende-Bethe-lattice system ob-
tained by adding no(e) and no(e) from Eq. (12). The
cluster in this system was described in Sec. II
and drawn in Fig. 1. It contains 29 atoms in a
zinc-blende configuration. The peaks around +2. 5

V arise from the 12 sixfold rings of bonds passing
through the central atom of this cluster. In Fig.
2(b), the separate contributions of no(&) (solid line)
and no(e) (dashed line) for the anion and cation, re-
spectively, are shown. Again the spectra are
mirror images of each other about e =0 with the
anion and cation having considerably more states
at low and high energies, respectively. Further-
more, the singula, rities of the local DOS's no(e) at
6 = +2 V occur along with vo(&) = 0 at & = w2 V. This
implies that the electron states at e = —2 V and c

= +2 V have wave functions which have zero coef-
ficients for the orbitals li) localized on all the cat-
ion and anion atoms, respectively. These states
therefore represent pure cation or anion states oc-
curring at the energies for isolated atoms.

As an example of a transformation from the
states of h to H, consider a comparison of Figs.
2(b) and 3(a). In Fig. 3(a), the filled valence bands
of the local DOS's of the zinc-blende-Bethe-lattice
system mentioned above using the Hamiltonian II
is plotted. These curves were obtained by using
the transformation equations (3) and (4) introduced
in Sec. II with V& = —2. 2 eV and Vz = —6. 2 eV. To
complete the filled valence band in Fig. 3 a & func-
tion of pure P-like bonding states must be introduced
near —2. 7 eV. This & function (containing 2 states/
atom) is only a property of & and independent of
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FIG. 3. Densities of
states using the four-or-
bital Ha miltonian. (a)
Local anion (solid line)
and cation (dashed line)
densities of states for a
zinc-blend e—Bethe-lattice
system with the cluster of
atoms shown in Fig. l.
{b) The density of states
(solid line) for this zinc-
blende-Bethe-lattice sys-
tem as obtained by adding
the local anion and cation
densities of states and
the density of states
(dashed line) for a normal
crystalline zinc-blende
structure. The energy is
in units of eV and the p-
like &-function peak near
—2. 7 eV is shown as a
solid line.
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the structure of a system as long as no like-atom
bonds are present. It will always occur neRr —2. 7
6V and repxesents the P-like region of the density
of states. . The effects on the valence band by trans-
foxming from h to H are rather small. The most
important differences, as seen by comparing Figs.
2(b) and 3(a), are a narrowing of the low-energy
anion band and a widening of the high-energy or
cRtlon bRnd.

Figure 3(b) shows (as a solid line) the sum of
the two local DOS's shown in Fig. 3(a). This is
compared with the total DGS of the zinc-blende
structure (dashed line) as obtained from a band-
structure calculation using the Hamiltonian B. The
agreement between the two curves in Fig. 3{b) is
very good considering that the zinc-blende-Bethe-
lattice system has only 29 atoms in a zinc-blende
configuration. This again emphasizes the impor-
tance of local atomic configurations in determining
the structure in the DGS.

rV. DISCUSSION OF WMORmoUS PHASES

Experimentally, information about the DGS can
be obtained from x-ray (XPS) and ultraviolet (UPS)
photoemission. spectroscopy. XPS and UPS spec-
tra on crystalline and amox'phous III-V compounds
reveal DOS'8 that are rather similar. The most
easily resolved differences between the crystalline
Rnd RIQox'phous spectlR occul 1Q the dip regloD be-
bveen the middle peak and the upper P-like bonding
peak at the top of the valence band. (The upper P-
1 ke bonding peak is analogous to the 6-function
peak obtained using Jf. ) In the amorphous phase
stRtes seem to shift frGIQ the D11ddle peak 1nto
this dip, thereby filling it in partially and making
it less prominent than in the crystalline phase.

Theoretically, effects of disoxder on the DGS of
amorphous binary systems have been studied by $0-
annopoulos and Cohens and by Kramer Rnd Treusch.
In the former study speclf1c types of dlsoldex'
(e.g. , bond length, bond and dihedral angle distor-
tions, differences in topology, effects of like-atom
bonds, etc, ) a.re examined by calculating the DOS,
using pseudopoteDt1R18, of vRl ious complex binRx'y
crystals made specifically by using the atomic
positions of polytypes and polymorphs' of Ge and
Si. Since the systems studied are stoichiometric
crystals with large unit cells this method leads to
an explicit examination of short-range disorder.
The results of Joannopoulos and Cohen can be used
to draw two main conclusions. First that the pres-
ence of like-atom bonds will tend to decrease the
gap, fill up the dip region, and also form a shoul-
der or peak at the lower energy and of the s-like
x'egion of the DQS spectxum. This last effect does
not seem to be observed experimentally. Second,
that systems without like-atom bonds but with bond-
angle distortions of about +10% and some variations

in dihedral angle and topology will produce rela-
tively small differences from the zinc-blende DGS.

Th18 18 1D conti Rst to th6 %'Gx'k of Kramer Rnd

%ho attempt to deal with homopolar sys-
tems and heteropolax' systems with no like-atom
bonds, and to understand the effects of variations
in dihedx"'al angles. Their method is most easily
RQd conveQ16Qtly described us1ng Only R homopolRr
system. The extension to heteropolar systems is
8tx'Rlghtfox'%'Rx'd. Thelx' Inethod 1nvolves tRklDg R
finite cluster of atoms (in a diamond-structure con-
figuration) consisting of four tetrahedral units con-
nected to a common central atom. The tetrahedral
units can then be rotated by arbitrary amounts to
yield changes in dihedral angle. An "effective"
potential p(g) is then defined as a weighted average
over the potentials p(q) of the atoms in the cluster
%'ltIl

p(g) = —Qe' ' ( p(q)¹,)
where N is the total number of atoms in the cluster
and 4; represents the difference in position between
RD RtoIQ l,n tIle clust6x" Rnd 1D R diamond 8tx'ucture.
As a first approximation this effective potential is
th6Q 1ntx'Oduced Rt the RtoIQlc posltlons of R dlRIQond
structuxe creating RD effective total potential given
by

V(q) = p(q) e"'"+ p(q)* e "', (25)

where + 7 xepresent the positions of the basis atoms
in the diamond structure. For the case where the
tetrahedral units Rre not rotated all the 4, = Q and
one returns to p(q) = p{q). In general, therefore,
the effective diamond structure (25) can be solved
using conventional band- structure methods. The
I'esults of KlRIQer. Rnd Tx'eusch uslQg Rn effect1ve
diamond and zinc-blende structure indicate that
dihedral angle variations will cause a broadening
of the DGS spectrum and a decrease in the funda-
mental gap. This mould agree well with what is
observed experimentally. Care, however, shouM
be taken in interpreting these x'esults, because they
are not caused explicitly by dihedral angle rota-
tions. This is clear since substituting (24) into
(25) gives

V(q) Q p(q} e'(l (T+7L. ) + p(q) e (c'(7+Z() (26)N; ~

which reveals that V(q) is just the average poten-
tial of a system of N fcc structures with basis
atoms at positions +(~+&,). This change in basis
positions will, in general, create diamond and
rinc-blende structuxes with both bond-angle and
bond-length distortions. Thus V(q) should not be
a good representation of the amorphous phase.

To examine the properties of heteropolar systems
with only unlike atom bonds further the cluster-Bethe
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FIG. 4. Densities of
states using the four-or-
bital Hamiltonian. (a)
Local anion (solid line) and
cation (dashed line) densi-
ties of states for a zinc-
blende-Bethe-lattice sys-
tem with a cluster con-
taining all tenfold rings of
bonds passing through the
central atom. (b) The
density of states for this
system as obtained by add-
ing the anion and cation
local densities of states.
The energy is in units of
eV and the P-like 6-func-
tion peak near -2.7 eV is
shown as a solid line.

lattice method will be used to study the effects of
topology and short-range disorder on the DOS of
a series of structures whose total atomic arrange-
ments become increasingly more disordered.
These structures will not be periodic, will contain
no like-atom bonds and will include the local atomic
configurations found in the diamond BC-8, and
Connell random-network structures. The Connell
model is of particular interest since it is a random
network model with a radial distribution function
that agrees very well with experiments. '" In addi-
tion, it contains only even-numbered rings of bonds
an'3 therefore offers the possibility of having a
random network structure with only like-atom
bonds.

The clusters that will be taken from the diamond
BC-8 and Connell random network structures to
be used as cluster-Bethe-lattice systems will be
chosen so that they include all tenfold rings of
bonds passing through the central atom. This is
ithe condition'on the size of a cluster that guarantees
very good convergence. This is particularly true

for amorphous systems. For the diamond and
BC-8 structures all the atoms are equivalent so
that the total DOS's are equal to the local DOS's.
For the Connell model all the atoms are ineguiva-
lent so that in principle one would need to average
over the local DOS of every atom to obtain the total
DOS. In this model, however, the local DOS of
various atoms studied were very similar. There-
fore, in these calculations as in those for homopo-
lar systems~ only an average over five central
atoms is taken.

The results of the DOS's for the aforementioned
three cluster-Bethe lattice structures are shown
in Figs. 4-6 using the Hamiltonian H. In Fig. 4(a),
the local DOS's of the anion (solid line) and cation
(dashed line) are shown for the zinc-blende-Bethe
lattice system. Figure 4(b) shows the DOS of the
zinc-blende-Bethe lattice system obtained by
adding the two curves in Fig. 4(a). The cluster
in this zinc-blende-Bethe-lattice system (as we
have mentioned) contains all tenfold rings of bonds
passing through the central atom. Therefore, it
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FIG. 5. Densities of
states using the four-or-
bital Hamiltonian. (a)
Local anion (solid line)
and cation (dashed line)
densities of states for a
binary J3C-8 Bethe-lattice
system with a cluster con-
taining all tenfold rings of
bonds passing through the
central atom. (b) The
density of states for this
system as obtained by
adding the anion and cation
local densities of states.
The energy is in (units of
eV) and the p-like & func-
tion near —2. 7 eV is
shown as a solid line.
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FIG. 6. Densities of
states using the four-or-
bital Hamiltonian. (a)
Local anion (solid line)
and cation (dashed line)
densities of states for one
atom in the Connell-clus"
ter-Bethe-lattice system
with a cluster containing
all tenfold rings of bonds
passing through the central
atom. (b) The density of
states for the Connell-
cluster-Bethe-lattice sys-
tem as obtained by averag-
ing over the local anion
and cation densities of
states of five atoms near
the center of the Connell
random network model.

is interesting to compare Fig. 4 with Fig. 3, which
contains the crystalline zinc-blende DOS and a
zinc-blende-Bethe lattice system with a zinc-
blende cluster containing only all sixfold rings of
bonds passing through the central atom. Figure 4
shows the correct trend of shifting states closer
to the singularities. Furthermore, the shoulder
near —5. 2 eV appears tobe developing although the
sharpness of this shoulder in the crystalline DOS
is a consequence of periodicity. ln Fig. 5(a), the
local DOS's of the anion (solid line) and cation
(dashed line) are shown for a binary system con-
structed from the atomic positions of a BC-8-
Bethe-lattice system. Figure 5(b) shows the DOS
of this binary BC-8-Bethe-lattice system as ob-
tained by adding the two curves in Fig. 5(a). The
BC-8 structure (with eight atoms in a primitive
cell) is more complicated topologically than the
diamond or zinc-blende structure. Furthermore,
the ring statistics of the atoms in these two struc-
tures are quite different. For instance, diamond
has 12 sixfold and 24 eightfold rings of bonds pass-
ing through a given atom while the BC-8 structure
has nine sixfold and 36 eightfold rings of bonds.
This smaller number of sixfold rings of bonds and
larger number of eightfold rings of bonds is respon-
sible' for the noticeable shift of states closer to
the singularities in Fig. 5 as compared with Fig.
4. Moreover the binary BC-8-Bethe-lattice sys-
tem also seems to have slightly more states in the
dip region between the middle P-like peak (near
—6 eV) and the upper P-like bonding states (& func-
tion near —2. 7 eV). This rather small effect was
also observed using pseudopotentials on a crystal-
line binary BC-8 structure.

Finally in Fig. 6(a.), the local DOS's of the anion
(solid line) and cation (dashed line) are shown for
a binary system constructed from the atomic posi-

tions- of a Connell-cluster-Bethe-lattice system.
These local DOS's, however, are only for one atom
in the Connell random network structure located
near the center of the network. The anion peak
near —10 eV actually goes slightly off the scale.
The DOS of an averaged (over five atoms) binary
Connell-cluster-Bethe-lattice system is shown in
Fig. 6(b). As it was mentioned earlier the average
DOS is very similar to individual local atomic
DOS's. There is, however, a very interesting dif-
ference between Fig. 6(b) and Figs. 5(b) and 4(b).
The peak near —6 eV is now very sharp and strong
and a comparison of this spectrum with the crys-
talline results in Fig. 8(b) does not reveal any
filling up of the dip region as it is observed ex-
perimentally for the amorphous phase. Topological-
ly this strong peak observed in the Connell model
is a direct result of the rather large number of
sixfold rings of bonds present in this network.
Specifically there are on an average about 16 six-
fold rings of bonds passing through a given atom.
The differences in bond angles and dihedral angles
have of course been omitted in this study; however,
judging from the pseudopotential results8 on the
BC-8 structure where they were included, one
would expect their effects to be rather small.

V. SUMMARY AND CONCLUSIONS

The cluster-Bethe-lattice method has been ex-
tended to the study of heteropolar systems. This
is accomplished by solving a binary Bethe lattice
of arbitrary coordination using simple tight-bind-
ing models. From these solutions effective binary
Bethe-lattice fields g'(&) are obtained which attach
the Bethe lattice to any cluster system of atoms
of a,rbitrary coordination. The tight-binding models
used include a one-orbital and four-orbital Hamil-
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tonian. A transformation between the eigenvalues
of the simple one orbital Hamiltonian to those of
the more realistic four-orbital Hamiltonian was
also obtained.

The cluster-Bethe-lattice method was then used
to study amorphous tetrahedrally coordinated bi-
nary compounds. To do this the atomic positions
of a series of structures were chosen to build bi-
nary cluster-Bethe-lattice systems. These struc-
tures included the diamond BC-8 and Connell ran-
dom network4 structures and represent materials
whose local atomic configurations are, respective-
ly, increasingly more disordered. The Connell ran-

dom network structure is particularly interesting
since it has a radial distribution function which
agrees very well with that of the amorphous phase. 'o

In addition, it only has even numbered rings of
bonds and consequently can be constructed as a
binary system with no like-atom bonds. However,
using only topological considerations the results
here show that this random network model does
not seem to reproduce features in the DOS as ob-
served experimentally ' for the amorphous binary
compounds. These results are explained in terms
of the very large number of sixfold rings of bonds
passing through the atoms in this network.
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