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Uniform magnetic fields may couple in higher order to the antiferromagnetic order parameter in a
large class of compensated antiferromagnets. We describe this coupling as an induced staggered field. In
this paper we give the general rules which determine when the coupling is allowed by the symmetry of
the order parameter. We also discuss the dependence of the coupling on field direction. Some
implications of these results for the behavior of transition-metal fluorides and for metamagnetic
tricritical points are given. In particular we find that there is no induced staggered field in systems
such as FeCl, while a coupling is expected in FeCO; and FeF,, as well as in the recently discussed
case of dysprosium aluminum garnet. In all these systems, however, the staggered field should vanish
along certain symmetry directions for which metamagnetic tricritical points should exist.

I. INTRODUCTION

It was shown in a recent publication® that the ap-
plication of an external magnetic field to the com-
pensated antiferromagnet dysprosium aluminum
garnet could lead, depending on the direction of the
external field, to an induced staggered magnetic
field which coupled directly to the antiferromag-
netic order parameter,

This effect is at first surprising since in the
simplest models of antiferromagnets (the alternat-
ing-spin linear chain, for example) the order pa-
rameter is characterized by a wave vector q#0
and, rigorously, does not couple to a uniform field
because there is no way that such a field can dis-
tinguish between the antiferromagnetic sublattices.
Indeed the concept of a staggered magnetization is
so suggestive of a nonzero wave vector that one
tends to forget that there are many antiferromag-
nets for which the magnetic and crystallographic
cells are the sameand thus for which the wave vec-
tor of the order parameter is zero. In these ma-
terials, evidently including dysprosium aluminum
garnet, uniform fields can distinguish one antifer-
romagnetic sublattice from another, and can couple
to the order parameter, i

In this note we discuss the coupling of a uniform
magnetic field to the magnetic order parameter in
antiferromagnets. We consider first (Sec. II) the
restrictions on the form of the coupling due to the
symmetry of the order parameter. Next (Sec. III)
we discuss as a specific example the case of the
transition-metal fluorides. We then (Sec, IV) con-
sider implications of these results for tricritical
points in metamagnets.

II. RESTRICTIONS DUE TO SYMMETRY

The symmetry relevant to the problem of cou-
pling of uniform fields and zero-wave-vector order
parameters is that of the point group of the high-
symmetry (paramagnetic) crystal structure, We
look for combinations of the field and order param-
eter which are invariants of the point group and
which give rise to a part of the magnetic free ener-
gy of the form

G=-H™.7 (1)

where H'™ is some function of the applied field H,
and 7)is the antiferromagnetic order parameter,
which in principle can have many components. The
form of Eq. (1) is such that H'™ has the same ef-
fect as a staggered field which alternates in sign
among the different antiferromagnetic sublattices.
In particular, the sign of A™™ can determine the
sign of 7. Since it is induced by the applied field,
Tilnd may be appropriately called an induced stag-
gered field,

All paramagnetic crystal phases are invariant
under the operation of time reversal. By its na-
ture as a magnetic order parameter 7is odd under
reversal. In order for G to be invariant then, H!™
must be odd under time reversal also. It follows
that ' must be an odd function of H.

In the general procedure for finding invariants,
we identify the point-group representations con-
tained in 7 and then find odd-order combinations of
the components of H which transform according to
those representations. The direct products of cor-
responding H and 7 representations will then give
the required invariants. An illustration of this
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procedure for the case of the fluorides is given in
Appendix I.

Although the above method is completely general,
it turns out that in the important case where just
one component of the order parameter is relevant
for the phase-transition behavior, there is a short-
cut which makes matters much simplier. In this
case the order parameter (7) can at most change
sign under the crystal-point-group operations. If
we multiply those operations which change the sign
of 7 by time reversal we have a group of operations,
not including time reversal itself, which leave 7
unchanged. This group is called the “magnetic
point group”® of 7. It is easy to see that the nec-
essary and sufficient condition that Eq. (1) be in-
variant under the crystal point group and time re-
versal is that H'™ be invariant under the magnetic
point group. The invariants of the 90 magnetic
point groups are given in the literature. R i only
remains to identify the magnetic point group of the
order parameter and look up the allowed odd-order
combinations of the applied field.

Of the 90 magnetic point groups, 31 allow a cou~-
pling of the order parameter with a uniform field in
first order. These groups are at least weakly fer-
romagnetic and the nature of the coupling has al-
ready been discussed.** The 59 compensated anti-
ferromagnetic groups may be divided as follows
(notation is that of Ref. 2):

Coupling in third and higher order (27 groups)®:
For example, for the group é/mmm, which is that
of the z component of the order parameter in the
fluorides (see Appendix I), the lowest-order form
of Hi™ig HHyH,. For other third-order forms see
Table IVe of Ref. 2.

Coupling in fifth and higher order—four groups:
422, 4mm, 42m, 4/mmm. The lowest-order form
of H'*is H H, H,(H2 - H?).

Coupling in seventh and higher order—four
groups: 622, 6mm, 6m2, 6/mmm. The lowest-
order form of H'™ is H,(6 HH, — 20H3H + 6H3H,,).

Coupling in ninth and higher order—three groups:
432, 43m, m3m. The lowest-order form of H™ is
H,H,H,(H2 — H?)(H? - H2)(H2 - H?).

No coupling in any order—21 groups: those which
contain the operation inversion Xtime reversal.

To the last division we should, of course, add
those systems for which the q of the order param-
eter is not zero. In these systems the sign of 7
can be changed by a simple lattice translation and
it is clear that there are no invariants of the form
of Eq. (1). We arrive thus at the following con-
clusion: For a one-component order parameter an
induced staggered field can occur in any antiferro-
magnet for which the wave vector of the ovder pa-
rametev is zevo and fov which the magnetic point
group does not contain invevsionXtime rveversal.

If the order parameter belongs to a multidimen-

sional representation of the paramagnetic group,
we first select the magnetic subgroups to which
individual components belong and construct sepa-
rate invariantsin each of the groups. Any invari-
ant of the paramagnetic group will be contained

in a general linear combination of these invariants.
To find combinations invariant under the paramag-
netic group, we apply the additional operations of
the full group to the general expression and partic-
ularize coefficients to ensure invariance.

The magnetic properties of the transition-metal
fluorides were considered some years ago by
Dzyaloshinskii® and by Moriya.* They showed that
these materials, in which there are two translation-
ally inequivalent magnetic-ion sites per unit cell,
could exhibit the property of “weak ferromagne-
tism, ” provided the components of the oppositely
directed spins on the two inequivalent sites lay in
the x-y plane, as is the case for NiF,, For the
case in which the spins lie along the z axis, how-
ever, as in MnF,, CoF,, and FeF,, Dzyaloshinskii
predicted, and it was found experimentally, that the
antiferromagnetic structure is compensated, with
no net magnetic moment,

However, it may be seen from Fig, 1 that a uni-
form magnetic field can distinguish between the two
sublattices even in this case. A field along the di-
rection [110], for example, affects spin 1 differ-
ently from spin 2, and so should destroy the exact
cancellation of moments along z. This induced z
moment will be up or down according to the sign of
the antiferromagnetic order parameter which may
thus couple to a field component alorg z. The cou-
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FIG. 1. Tetragonal unit cell for the rutile-structure

transition-metal fluorides. Large numbered circles rep-
resent the two metal-ion sites M. Small circles rep-
resent F~ ions. The MF, dumbbells of site 1 are re-
peated at all the cell corners. The dumbbell axes for the
two sites differ by a 90° rotation about the ¢ axis.
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pling thus requires field components along each of
the x, y, and 2z directions, a result which we will
now obtain from group theory. .
Letting the two spins in the unit cell be §1 and S,,
we introduce 1 =§1 - S,, the staggered magnetiza-
tion. As shown in Appendix I, the components of
T and of the field H form two reducible three-di-
mensional representations of D,,, the crystal point
group. Decomposition into irreducible parts shows
that I, transforms as B,,, the pair {,, 1} trans-
forms as E,, H, transforms as A,,, and {H,, H,}
transforms as E,. An invariant coupling to {_l.,, Lt
can be formed from the E representation of H in
first order:

G, =-O8(Hi,+ H,1,), (2)

where 8 is a constant. These are the coupling
terms identified by Dzyaloshinskii and they give
rise to the weak ferromagnetism associated with
the order parameters [, and /,.

To couple to I, requires an odd-order combina-
tion of H which transforms as B;,. The lowest
order of such a combination comes from decompos-
ing the product representation E, X E,XA,, and gives
rise to a term of the form (with B a constant)

G3=— BHXHNH:ZI y (3)

a result which could have been obtained from the
magnetic point group of ,. The magnetic free en-
ergy for the rutiles can then be written in the form

G=5AI%+5al? —$b,H2- 1b (H2+ H?) - 8(H, 1,4+ H,1,)
- BHxHszlz

+ (other fourth- and higher-order terms),

(4)

where A, a, b,, and b, are functions of the temper-
ature. Equation (4) is to be minimized with re~
spect to 1 to obtain the thermodynamic properties
of the system.

Although the presence or absence of induced stag-
gered fields may be determined by symmetry
considerations alone, the magnitude of the effect
requires consideration of physical mechanisms.
The physical origin of the parameters & and B in
the free energy is, in the rutile structure, a con-
sequence of the fact that the principle axes of the
g tensors of the two magnetic ions in the unit cell
are rotated with respéct to one another by 90°.
Moriya.6 showed that this could explain the param-
eter 0, and in Ref. 1 it was shown that a nonzero
value of B could also be produced in this way. A
related phenomenon, the presence of nonlinear
terms in the susceptibility of antiferromagnets,
has been discussed by Dzyaloshinskii’ and Shtrik-
- man and his co-workers.®
A simple example illustrates the g-tensor effect

mentioned above. We consider two spins 3 coupled

antiferromagnetically with an Ising-type interaction
in an external field with components both along the
z axis and perpendicular to it. The Hamiltonian is

H=H,+V,
Hy=JSiS5 —g.upH, (ST +S35),
V=upH (gS1+855), J>0 . (5)

We assume that the g factors for coupling to the
transverse field are different for the two spins, i.e.,
g, for spin 1 and g, for spin 2, because of the dif-
ferent orientations of the principal axes of the g
tensors for the two sites. Theground state of H, is
readily seen to be doubly degenerate with E, _=E_,
where E, ., is the energy of the state with Sf =m

and S{=m’. Such a degeneracy would be lifted by
interaction with a staggered magnetic field along

the z axis, i.e., by a field which points up at spin

1 and down at spin 2. The effect of adding the inter-
action V is also to lift this degeneracy, as a simple
second-order perturbation calculation shows. We
find

E..—E, =2 -g)(upH,/J)%g,uH, , (6)

where we have assumed pgH,<<J. We can con-
struct a spin Hamiltonian for the interaction V if
we restrict the action of that Hamiltonian to the
two-fold degenerate ground state, neglecting inter-

actions with the states |++) and |- —). The effects
of V are then the same as those of

Veff = _ngind(Sf - S; ’
where the effective staggered field '™ is given by

H™ = (g8 -g8)(upH/IPH, .

This staggered field is proportional to 1H|3, as
expected from the group-theoretical argument. A
rough order of magnitude for H'*®for an antiferro-
magnet can be obtained for FeF,. If H, =H,~ H/V3
and J~kTy, then H™ ~30 G when H=50 kG. This
induced staggered field should be large enough to
produce single antiferromagnetic domain samples
of FeF, and other fluorides.

Similar effects are expected to be found in other
substances, and different physical machanisms can
then be responsible for the 6 and Sterms. Thus,
Moriya® showed that antisymmetric exchange pro-
duces the & term in Fe,O5 and CoCOg, among others,
and Giordano et al.® have shown that the geometric
arrangement of interacting spins in the presence of
anexternalfield could produce aneffective staggered
field (B term) and that such a mechanism is present
in DAG. Similarly, higher-order exchange inter-
actions can produce 6-type terms in other mater-
ials.
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TABLE I.
the rutile structure fluorides.?
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Transformation properties of 1 and I under the elements (a) of Diﬁ for

(E10) (2,10 (4,17) @17 (2,17) 2,17 (25100 (2,510
Ly Ly ~1y Z, -1, =1 Ly Iy -1,
Ly, I -1, =1, Iy Ly -1, Iy =1y
lz L Iz lz le Iy Lz =l =1
H, H, -H, —H, H, H, -H, H, —-H,
H, H, —H, H, -H, -H, H, H, —H,
H, H, H, H, H, —-H, —-H, —-H, -H,

a7 =1-@+a+o).

IV. TRICRITICAL POINTS IN METAMAGNETS

The interest in producing induced staggered
fields is particularly great for metamagnets with
tricritical points. For these materials the pres-
ence of a staggered field carries us away from the
tricritical point in a dimension which has not been
generally thought to be accessible. A recently
discussed case in point is dyprosium aluminum
garnet (DAG)! for which the existence of a coupling
for fields along [111] was argued from a physical
mechanism. The precise form of this coupling
may now readily be obtained from the rules given
in Sec. II. The order parameter in DAG is one
dimensional and for the presently accepted struc-
ture® the magnetic point group is m3m. For this
group the lowest-order invariant is found in Ref.

2 to be of the Form H,H,H,. Thus for DAG tri-
critical points should occur for fields in symmetry
directions such as [100] and [110], and the stag-
gered field portion of the phase diagram should be
accessible with field components along [111]. 1°

Another metamagnet for which the magnetic and
crystallographic cells are the same and for which
staggered fields are allowed is FeCO;. Again for
this case the order parameter is one dimensional
and the form of the induced staggered field is de-
termined by the magnetic point group (3#). The
allowed term is HS - 3H,H:. Thus for applied field
along z there is no induced staggered field and a
tricritical point should occur. The staggered field
dimension of the phase diagram can be explored witl
a field in the xy plane.

The occurrence of induced staggered fields in
metamagnets is far from universal, however. For
FeCl, and FeBr,, for example, the vector of the or-
der parameter is nonzero and thus induced staggered
fields cannot be produced in these substances.
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APPENDIX

The rutile structure belongs to the space group
P4,/nmn — Dt whose elements are combmatmns of
the primitive translations € =n,3 +n,a + nsC and the
rotational elements

@) (E10), (2,10, 4,T), ‘.17,
(2,17), (2,17), (2,,10), (2,5I0)
and
b) (10), (m,10), @,7), (3317),
(me17), (m,I7), (my,10), (m,y500),

where (R|7) denotes a proper or 1mproper rotatlon
R, followed by a nonprimative translation 7 =3a
+%a+3C. Theelements (b)are those of (a) taken
together with inversion, the inversion center being
at a metal-ion site. The group {Rr 17+7 )} is iso-
morphous with the point group D, under the corre-
spondence {(RIT+7)} - R.

The transformation properties of H are deter-
mined entirely by the rotation operations. The
transformations of / =S, —§2, on the other hand,
are affected by the fact that the translation 7 inter-
changes sublattices 1 and 2. It may be seen by ref-
erence to Fig. 1 that! is invariant under inversion,
las is H. Thus we only need consider the transfor-
.mation under the subset (a) above. These are given
in Table I. From the table it 1s stmlghtforward to
construct character tables for 1 and H find the ir-
reducible representations of 1 H and odd products
of H and thus find the invariant coupling terms as
described in the text.
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