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The central-cell correction to the impurity potential for ionized-impurity scattering has been examined

in detail. This was then included with the Coulomb and phonon scattering as calculated by Ito and

Herring and Vogt for the anisotropic conduction-band valley to determine the theoretical mobility. The
central-cell correction was calculated in the spherical approximation with a potential determined

empirically from the bound-state energies of the donor, with many-valley effects included. It is shown

that the main part of the strain scattering is included as a small component in this empirical potential.
The scattering is calculated with Green's-function methods and accounts for most of the observed

resistivity, although a discrepancy remains. Similar calculations are reported for the case of Ge.

I. INTRODUCTION

Impurity scattering is the dominant process gov-
erning electron mobility in semiconductors at low

temperatures and remains important at room tem-
perature at moderate levels of doping. A detailed
understanding of the impurity scattering from a
theoretical standpoint is therefore of great inter-
est, and a complete treatment would be very val-
uable in allowing the prediction of mobilities for
a given level of doping or, conversely, prediction
of the doping level from a measurement of the mo-
bility. While there has been a considerable amount
of theoretical discussion in the past 25 years, it
seems to us that no completely satisfactory theory
is yet available. The pioneering work of Brooks
and Herring, who assumed a screened Coulomb po-
tential and spherical energy bands, gives a good
order-of -magnitude agreement with experiment,
but there remains a sizeable discrepancy, as re-
cently pointed out by Rode.

In this paper we examine the effects which arise
from the fact that the screened Coulomb form of

the interaction breaks down at short distances when

the electron is on the impurity atom itself. This
leads to a well-known chemical shift in the bound-

state energy of the impurity. 3' We shall make a
more detailed calculation of the effect of this local
potential on the scattering than has previously ap-
peared. Other workers, for example, Csavin-
szky, ' have suggested that the effect will be small.
In Fig. 1 we show a collection of experimental Hall

mobilities plotted versus the inverse of the Hall
number; the size of the discrepancy between theory
and experiment is apparent. Although there is a
considerable scatter in the experimental data, the
mobilities of P-doped Si do seem to be significantly
smaller than those of As- and Sb-doped specimens.
This observation suggests that the effects of the
local potential are not unimportant.

Recently Daga and Khokle have reported a cal-
culation of the effect of the strain-induced poten-
tial surrounding ionized impurities. They appear
to conclude that this mechanism can explain the
discrepancy, but we believe their calculations to be
unsatisfactory in several respects detailed in Sec.
VI. Indeed their theory cannot explain the discrep-
ancy for all group-V donors, as the sign of their
correction depends on whether the donor ion is
larger or smaller than the host. Experimentally
the correction has the same sign for all donors.
Instead, we find that the main part of the strain ef-
fect is already included in the short-range poten-
tial, if this is chosen empirically to give the cor-
rect bound-state energy.

The many-valley nature of the conduction band in
Si and Ge complicates the calculations. We include
this in our treatment of the impurity scattering. It
also introduces extra scattering from the strains
which we can only estimate approximately. The
ellipsoidal form of the valleys also complicates the
analysis and introduces a correction to the Brooks-
Herring term itself.

The paper is mainly concerned with the results
in Si, but a short discussion of the effect in Ge is
given. We find that our treatment goes a long way
towards explaining the observed resistivity, but a
discrepancy still remains which must arise from
other scattering mechanisms.

II. IMPURITY SCATTERING

The potential due to an ionized impurity varies
with position in a way which reflects the atomic
structure of the medium. The scattering should
be calculated from the Bloch electron states, which
also reflect the atomic structure. However, near
the band extrema, it is found thai the effective-
mass approximation~ is valid, and the effects may
be calculated from an effective potential acting be-
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tween free-particle states, where the atomic struc-
ture is ignored except foi the introduction of an ef-
fective mass. In this approximation the electron
wave function can be expressed, except close to the
impurity, as a modulated Bloch function

(} (r) =O'"Q E (r) y (r)

where y;(F) is the ]31och function at the center of
the valley i, and the envelope function E;(F) obeys
the effective-mass equation. In the effective-mass
Rpproxlmatlon g ls transformed RwRy RIld the eQec-
tive potential due to the impurity which appears in
the Schrodinger equation is that of a point charge
in a dielectric medium screened by the presence of
other electrons. Near the central impurity the ir-
regularity of the atomic potential may be included
in the effective potential as an extra short- range inter-
action x epresented by a delta-function pseudo-poten-
tlRl TIle potentlRl + ls locRllzed' so we define

~(F, r') = V(~)V(F- F')

U(r) =-(e'/e~)e "'"+vt.(F),
where the screening length X is given by

X2= eksT/4ve Nl .
Throughout this paper we assume that the electrons
have the same density as the ionized impurities
(i. e. , no compensation) and that the temperature T
is high enough for classical statistics to be obeyed.
In (I), U(r) has the dimensions of energy, & has
dimensions of energy/volume, and the dimensions
of V are energy&& volume.

The scattering properties are conveniently de-
scribed in terms of Green's functions defined in
terms of the envelope function

where the sum is over all states n. The I are
normalized to the crystal volume 0; so G has the
dimensions of (energy xvolume) . The energy E
is given a small imaginary part 5. For the per-
fect crystal with no impurities the Green's function
Gp 18 obtained using plane -wave states for E. The
T matrixwhich gives the total scattering due to & is

r(r, r') er(rr')+ f erir=, r '), G (r",r'", Z)

(~rrr ~r) d~rr d~rrr

which can be written formally as

T=(I-t:,~) '~ . (4)

The rate of scattering from k to k' is proportion-
al to the square of the Fourier tra, nsform of T

1'(r, e')= —f r(r, r')e "'e"'"dr dr' . (5)

By the optical theorem the total transmission rate
out of k is given by

—2lmT(k, k) =a/~(u);

however, the mobility is related to the weighted
average

p, =(8/3(E}) ((ET„}/m„+2(E7„}/m,),
and, for the Hall mobility,

2(E~„~,} (E~'} (E~„) 2(E~,}
~~Itt PP2J fPZ J Pal'

j t

(»)

The angular brackets represent a thermal average
over a Maxwell-Boltzmann distribution.

In this paper we shall be particularly concerned
with the effect of the central-cell correction on the
mobility. This is difficult to estimate in the aniso-

~(&) i T(k, k')i (I —cos8;",,)

&& t [E(k')-E(k}],
where 8"„"„ is the angle between the group velocities
'))'„E(k) at k and k'.

In the real many-valley band structure of Si and
Ge there are two types of contribution to the sum
over k', those in the same valley as k (intravalley
scattering} and those in different valleys (inter-
valley scattering). In the latter case the random-
izing condition of Herring and Vogtis essentially sa-
tisfiedboth for the phonon scattering and, as seenin
Sec. V, for theionizedimpurity scattering, inwhich
case the average over k leads to a simple density of
states n(E) for each valley and(for Si) the relaxation
ti.me for intervalley scattering becomes

h/7„(k) =2m([ T
[ +4[ T

~

)n(E) . (7)
The density of states n(E) is related to the imagi-
nary part of Gp evaluated at ~ = r = 0,

—vn(Z) =nG", (E) .
The subscript g indicates scattering between oppo-
site valleys, while f represents the four valleys on
different axes from that of k. Since I'& and T, are
independent of k, k, they can be represented by
effective short-range potentials V& and V~. These
will be determined empirically from the valley-or-
bit splittings of the bound states.

The intravalley scattering is complicated by the
anisotropic energy surfaces of the valley, and it is
only possible to perform the sum in (6) with an ex-
plicit form for T(k, k ). In fact this will be done in
Sec. DIbyusing the Bornapproxima, tion for Coulomb
scattering when T(k, k )- ~(k, k ). The relaxation
time is now anisotropic, and the electron mobility rep-
resents a weighted average over the six valleys, 8
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tropic band structure, and we therefore consider
an approximation where the band is regarded as
spherical for this purpose. Following Long, ' we
are able to treat the anisotropy of the phonon scat-
tering. Consequently, we may sum the individual
contributions to the mobility (9) in terms of the re-
laxation times for phonon scattering, v~, Coulomb
impurity scattering, v;, and the correction due to
the central cell, 7-„

(m/v), =m /rg+m, /r";+m*/7, . (10)

We estimate m* by finding the spherical effective
mass which gives the closest agreement to the an-
isotropic Coulomb scattering. We have found that
m* = 0. 30 m, gives a mobility which differs from
the anisotropic result by less than 5/o over a wide
range; we consequently use this value in (10).

When we do have spherical symmetry we may
separate the scattering into partial waves of angu-
lar momentum l and

rr 2 (I+1) sin (5r —5r.r) ~

III. SCREENED COVLOMB SCATTERING

The validity of the basic assumptions of Brooks
and Herring that the effective impurity potential is
given by the screened Coulomb form with the
Debye-Huckel screening length has been questioned
by Redfield and Afromowitz. " They pointed out
that for high densities (Kr & 10'7 cm ' in Si at 300 K)
the thermal electron wavelength is longer than the
screening length and that the usual assumptions are
inadequate in this situation. This is, in our view,
somewhat pessimistic since- the electron kinetic
energy increases and its effective wavelength de-
creases when it is close to the impurity. More-
over, detailed calculations by Glasko and Mironov
obtain a potential which differs little from the clas-
sical result up to densities which in Si at 300 K are
well in excess of 10"cm . Colbow and Dunn also
find that the classical result effectively holds well

T(k, k~) = —Q (2l+ I) T, (E) P, (cos6„.), (ll)
TI

since the scattering is elastic and Ikl = tk I =&.
Then T, (E) is related to the phase shift 5r(E) by

T, = [4 rr/0 G,'(E) I sin5, e "',
where GD(E) is given by (8). In this situation the

relaxation time for resistivity is

d8 sin8(1 —cos8) T, Tr'f
Ir QG('r (E)

(4 v)'

x P, (cos6) P, .(cos8) (2l +1) (21'+ 1)

'" o'-, 'E(I i)~T -T...~'
4 rr)'

beyond the density given by the simple criterion.
We shall therefore continue to use the Brooks-
Herring form as a basis of our estimate to the cen-
tral-cell effects, It is likely that any serious error
is--confined to the very high density end of the ex-
perimental range.

The screened Coulomb scattering is calculated
using the Born approximation. This too is inade-
quate in the high-density limit, where a full phase-
shift analysis is necessary. We have calculated
the relaxation times following the method of Ito, '
who has used the spherical harmonic expansion de-
veloped by Herring and Vogt' for phonon scatter-
ing. Consequently, we have evaluated Ito's Eqs.
(25) and (26) for v„and ~„using the masses
m „=0. 90 and m, = 0.192. The anisotropy of 7 is en-
ergy dependent, reaching a maximum value of
~„/~, =4.

In order to include the central-cell correction
we need an effective spherical band. For such a
band, in Born approximation,

112( @r)3I2 (ll(1 (( — ), (14(

where $ =44~X~& 1. It is convenient to scale al. l
quantities in the natural units of the unscreened
Coulomb problem so that lengths are given in Bohr
radii and energies in rydbergs. Then

& ==(mao) ' and E =R/o(',

where

ao=h e/m're~ and R=ea/2ea, .
The only uncertain parameter is the effective mass
m* of the equivalent isotropic band, which is taken
to give agreement with the variationally calculated~
Coulomb binding energy in the anisotropic case.
Ning and Sah' have found this to be m*=0. 30 mo in
Si.

The phase shifts for the screened Coulomb po-
tential are complicated. When the central-cell
potentia, l is included, it will affect 5, only since it
is a delta function. From (13), it is clear that this
only enters the mobility through 5~ —6o, and we ac-
cordingly need this quantity. In the Born approxi-
mation

5, —5, = —n [(1/() ln(l + E) —1 ];
in the region of interest this is approximately
equal to n and to the exact result for the unscreened
Coulomb case 5, —50= cot '(1/rr).

IV. CENTRAL-CELL CORRECTION

It is convenient to consider the effect of the cen-
tral cell as a, correction, assuming that the effect
of the screened Coulomb potential is already known,
and taking a spherical band for this purpose. The
total T matrix, which includes the Coulomb part
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T~ and a correction 8, is a solution of the equa-
tion

G = Go+ Go (To+8) Go .
The Coulomb pari is given by

G~ ——Go+ Go T~ Go,

and the correction can be written

G = G~+ G~ T' G~, (18)

T'(r, r') = (V/[1 —VG, (Z)]) 6(r) 6(r'), (2o)

where the first factor is a scalar. Gc(E) is Gc(&,
r', E) evaluated at r =r = 0. Thus the extra scat-
tering introduced by V can be directly calculated
if Gc is known. The result can be conveniently ex-
pressed in terms of phase shifts. If the total 8-
wave phase shift due to T~+8 is Go+Go, then it is
straightforward to show, using (12), that

S(k, k )=[1/nG (E)]e ' osin5'e"o . (21)

The wave function of the s-wave state of energy E
g(r) differs from the free-particle wave function at
large r by only the phase shift e"o. It can be shown
that

G, (O, r, Z) =n'"q(0) G, (O, F,z)8'~, (22)

since states of energy E dominate the Green's func-
tion at E. Hence from (19) we find

S(k, k') =n~q(0)
~

r'82"o, (23R)

Ol

T'(k, k') = [1/nG'(E)] sin5' e "o (28b)

as might be expected from (18).
The appea, rance of G~, rather than Go, in the ex-

pression for T gives an enhancement of the scat-
tering which arises from the buiM up of the elec-
tion wRve function on the impurity site due to the
screened Coulomb potential. The value of V can be
determined from the chemical shift of the ground
state of an isolated impurity. In this situation the
Coulomb interaction is not screened and the energy
is given by the pole of T ' as, using (20),

v-'= G„(z),
where G„ is the Green's function f' or the unscreened
Coulomb potential. By explicit evaluation of (2) and
setting E = —1/v2,

G„(z) =(1/2 11) [q(1+v)+ scot(11v) - lnv

—1/2v +y —1/ vb + 1nb] + 0(b),

Gc T'Gc = Go S Go

Since V is finite only at the origin, only the s wave
has a contribution

G„'(z) =G,'(E)nip(0) i
=--— (27b)

In this approximation (26) shows that 5o is indepen-
dent of the bandwidth.

An underestimate of 5o can be obtained by sub-
stituting Go into (26) instead of Gc, where

G,'(Z) =- 1/4~o. ,

1 1 n —b
Go(E = —

o
—

o ln
2 mob 4m o. n+b

(28a)

Taking b = 0. 1, corresponding to a bandwidth of 4
eV, we find that the two estimates of 5o differ by
Rbollt, 20%%uo. BecRllse of llllceltRllltles ill tile Rppl 0-
priate value of b we shall work with the pure Cou-
lomb form, anticipating a small overestimate of the
effect.

The resultant expression for tan5o from (26) and
(2V) has also been obtained by direct solution of
Schrodinger's equation for a Coulomb potential with
a central square well in the limit that the width of
the well goes to zero. This alternative method,
which ls summarized ln the Appendix, has Rlso
been used to demonstrate the insensitivity of the re-
sult to the details of the central well.

V. MANY-VALLEY EFFECTS

The calculations of Sec. IV proceeded on the ba-
sis of a single spherical band, but, as pointed out
in Sec. II, we must also consider intervalley scat-
tering. The local potential V is then a 6&&6 matxix
for Si with elements V;& = V, (i =j), V, (i opposite to
j), and V& (i sideways from j). We assume that the
screened Coulomb interaction acts as an intravalley
effect only. Its contribution to inter valley scatter-
ing is included in the effective potentials V;;. Since
k; —k; is nearly constant in intervalley scattering
the range of the effective V;& is not significant and
can be taken as a delta function.

In this approximation T and 8 become 6x6 ma-
trices with the same symmetry as V, i.e. ,

where ( is the digamma function, y is Euler's con-
stant, and 1/b is the energy bandwidth (in atomic
umts and hence b «1).

The extra scattering is related to 6o' defined by
(23b), which is given by, using (20),

tan6,'=G,'(E)/[V-'- G,(z)].
Unfortunately it is difficult to obtain G~ for the
screened Coulomb case. A good estimate of 5o
can, however, be made by using G„ instead. This
tends to over estimate the effect since it increases
'tile dellslty Rt the impurity site by too lR1"ge R fRc-
tor. Using Coulomb wave functions in (2) gives,
for the energy E = 1/n',

G„(E)= Beg(1+i8) —inn+ y+ lnb ——+O(b),
1

2' mb
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r,', =(1- vG,),v„, u(r) = (Sn/4v) r/r', (34)

where 0& is a diagonal unit matrix in the 6&&6 nota-
tion with element Gc(E). All these matrices can be
diagonalized by the same symmetry transformation
to give a singlet A, a doublet E, and a triplet T
representation of the cubic group. Then

V, =
6 ( Vg + 2 Ve + 3 Vr ),

Vy-—6 (V~ —Ve),

v, = (v„+2v, -3v, ),
(30)

VI. STRAIN SCATTERING

If silicon is assumed to be elastically isotropic
the displacements u(r) of an atom at point r, far
from the impurity at the origin, can be expressed
as

TABLE I. Energy levels of donors in silicon.

I'
As
Sb
Bl
Coulomb

45. 5
53. 7
42. 7
72. 9
30.9

E (me V)

32.4
81.2
80.4

30.9

Z~ (meV)

33.7
32. 6
32. 8
32. 2

80. 9

with similar relations holding for 8 and T'. The
impurity potentials can be obtained by using (24) to-
gether with the experimental values of the ground-
state energy of each symmetry type. These have
been collected by Ning and Sah4 for Si and are given
in Table I. The phase shifts 5; are then obtained
from (24) and (26) using (25) and (27) in each case.

From (13b) we have for the correction to the in-
travalley relaxation time

o( )(~

where the superscript C denotes the Coulomb T ma-
trix and 8, is the symmetrical combination analo-
gous to that in (30).

S, =~~ (S„+2Se+3Sr)
7te"'0

)
—(sin5„e ""+2sin5e e "e+3sinhr e "r)

QG, (E 6
(32)

The intervalley scattering is given by (7) with S&

and S~ for T& and T~,

2nG' E

+4i-,'(S„-S,)i ],
and is added to (31) to give the total correction (10).
Here S is the f =0 expansion coefficient of S(k, k')
equivalent to Eq. (11).

where &0 is the extra atomic volume occupied by
the donor impurity. The effective potential arising
from such a strain is

V(r ) =:-,& u(r) —2:-„P,(cosS)/r', (35)

where =„and =„are the deformation potentials and
0 is the angle between r and the major axis of the
effective mass tensor. It is difficult to solve the
scattering problem with an anisotropic potential
without making some severe approximations. A

good idea of the effect of the strain can be obtained,
however, by assuming the existence of a single val-
ley at the middle of the Hrillouin zone and assum-
ing the deformation-potential approximation to hold
even close to the impurity. In this case the effec-
tive potential becomes

V(r) =E~V ~ u(r) =E,&Q5(~), (36)

where E, is the appropriate deformation potential.
It gives a contribution to the delta-function poten-
tial we have already considered. Since V was cho-
sen to fit the observed bound-state energies the ef-
fect has already been included in the empirical de-
termination of V.

This contribution to V can be estimated using a
value for E, determined by fitting the acoustic pho-
non mobility in the same isotropic model. E, was
adjusted to fit the Hall mobility in the isotropic
model with a mass of O. 3 mo to the Hall mobility
obtained from Long's model using his parameters.
The oversize of the impurity can be estimated to be
about 2. 5 A' for the case of phosphorus from the
x-ray data of Cohen. ' There is some scatter in
the literature, but this figure is consistent with the
data of Pearson and Bardeen. ~7 Daga and Khokle
give a summary of the available evidence on other
donors which have size mismatches of a similar
magnitude. The result gives a contribution to V of
about 0.03 a. u. , while values estimated from (24)
are much larger. For example, using the 45 meV
binding energy of phosphorus, and assuming a band
width of 3 eV, a value of O. 65 a. u. for Vis ob-
tained from (24). A calculation outlined in the Ap-

yendix gives correction for the mobilities of less
than 1% compared with central-cell corrections of
the order of 10/o when a square well of radius 1 A

was used.
As well as the anisotropic form in the effective

potential due to the strain, effects arise from the
elastic anisotropy and the effective-mass anisot-
ropy. Nevertheless, the magnitude of the effects
due to anisotropy can reasonably be expected to be
no larger than that of the isotropic part just con-
sidered, which was seen to be small.

The recent results of Daga and Khokle show a
much larger correction than calculated here. They
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The Hall mobility due to anisotropic Coulomb
scattering has been calculated using the methods
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FIG. l. Hall mobility at 300 K vs the reciprocal of
the Hall coefficient for uncompensated silicon. Upper
curve represents the combined effects of phonon and Cou-
lomb scattering in anisotropic bands. Lower curve in-
cluded the central-cell scattering calculated for phos-
phorus. Experiments are represented by points which
differentiate authors and donor species: H (As) Morin
and Maita (Pef. 19); ~ (P), 6 (Sb), &(As) Brinson and
Dunstan (Ref. 20); $(P) Granacher and Czaja (Ref. 21);
'7(Sb), v' (As) Wolfstirn (Ref. 22); (P) Goldsmith and
Berz (Ref. 23); dashed line (Sb), dot-dash line (As) Fur-
ukawa (H,ef. 24).

have, however, made a number of assumptions
which do not appear to be justified. For example,
they assume that the strain field causes no dis-
placements beyond the first neighbors and that the
perturbing potential arises from charges on these
neighbors screened in the Debye-Huckel manner.
The change in potential due to the symmetric dis-
placements of these atoms in the strain field is that
of a screened octopole at large distances, but they
appear to use a screened Coulomb form. There is
also difficulty in determining what their final re-
sult is because they find a temperature-dependent
reduction of mobility in their first paper but quote
a temperature-independent one in the second. We
conclude therefore, in disagreement with Daga and
Khokle, that the strain effect is not particularly
important —in any case it is largely included in the
phenomenological value of V.

VII. RESULTS

A. Silicon

described in Sec. III and Eq. (9b). The phonon
scattering processes for pure silicon have been
added to the scattering rates to produce a mobility
which may by compared with experiment.

In Fig. 1 we show a collection of experimental
data'9 ~4 of Hall mobility p, „plotted against (Re)
where R is the Hall number. This figure is simi-
lar to that shown by Rode, ' but we have been care-
ful to plot only the Hall mobilities. Apparently,
corrected mobilities have sometimes been used by
Rode. Also shown in the figure is the calculated
curve due to phonon and anisotropic Coulomb scat-
tering. The agreement is good at low densities
where the impurity scattering is unimportant, but
gets progressively worse as the impurity density
rises. The theoretical mobility is too large by a
factor of about 2 at a density of about 10"/cma.

The central-cell correction has been added to the
impurity scattering in the way described by Eq.
(10) and using the results (31)-(33). Each of the
phase shifts was obtained from Eq. (26) using ex-
pressions for G„ in place of Gc, Eqs. (24), (25),
and (27), the value of v being obtained from the
corresponding value of the binding energy listed in
Table I. In Fig. 2 we demonstrate the size of the
correction by showing the drift mobility limited
only by impurity scattering as a function of temper-
ature at a fixed impurity density of 10'~/cms. The
result for each of the four Group V donors is
shown, and we see a clear chemical shift; in par-
ticular, Sb limits the mobility less than the other
donors. The energy of the I&(E) level of bismuth
has not been measured, but it can be guessed to be
somewhere between the hydrogenic value and the
value for the Is(Tz) level. The curve in Fig. 2 was
evaluated using the latter limit. It is seen from
Fig. 2 that, although the central-cell correction to
the binding energy to bismuth is larger than to the
other donors, its effect on the scattering is not
particularly different from the phosphorus or arse-
nic cases. This anomalous behavior is brought
about by the relative complex phases of To —Tj and
S in Eq. (31) which are not linear in the central-
cell potential. At very low energies it is even pos-
sible for the central-cell potential to decrease the
scattering strength.

The total mobility (including phonon scattering)
for P-doped silicon is also shown in Fig. 3.. There
is a, small chemical shift between donors which is
not shown, ' for instance, at a density of 10"/cm
Sb gives a. mobility of 205 cm /V sec in contrast to
175 for P. We see a distinct improvement in the
agreement with experiment, most noticeably in the
high-density region. However, it is clear that all
the resistance has not been accounted for and other
scattering mechanisms should be considered. For
instance, it has been shown by several authors~
that electron-electron scattering modifies the ef-
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2000 TABLE II. Energy levels of donors in germanium.

p
As
Sb
Bl
Coulomb

E~ (meV)

12. 9
14.2
10.3
12. 8
9. 8

E, (meV)

10.1
9. 9

10.0
9.9
9. 8

1500—

N

E

Cj

1000—

100 200
I

300
T (K)

400 500

in Ge have recently been listed by Hale~" and are
given in Table II.

In Ge there are four conduction-band valleys, and
the valley-orbit splitting gives rise to a singlet and
a triplet energy level of the impurity. Although the
hydrogenic Bohr radius in Ge is more than double
than that of Si, there is still a sizeable central-
cell correction to the donor energy levels.

The central-cell correction to the electron mo-
bility has been calculated in a way similar to that
of Si by using an effective mass of 0.17—that mass
which gives the correct Coulomb binding energy.
The results are shown in Fig. 3 for the impurity-
scattering limited mobility versus temperature at
a, density ot 10 '/cm~. The correction is seen to be
large, and again Sb limits the mobility less than

6000
FIG. 2. Calculated drift mobility in silicon vs tem-

peratuxe for an impurity density of 10~8/cm . Upper full

line refers to a Coulomb potential, the other curves to
each donor species.

5000-

feet of other scattering processes by redistributing
the momenta of the electrons. In the extreme case
of Coulomb scattering from impurities being dom-
inant the mobility is reduced by a factor of about
40%%uo. Whilst it is not expected to have such a large
effect in our case, it would certainly serve to re-
duce the residual difference between theory and ex-
periment, Moreover, as pointed out in Sec. III,
the screened Coulomb potential is itself suspect at
higher densities. Clustering of defects may also
produce a modification in this region. There is no

shortage of candidates to explain the discrepancy,
and we have not been able to estimate their relative
effects.
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CU
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B. Germanium

We will now briefly discuss the effects of the
central-cell correction in Ge. Because of the very
large anisotropy of the bands in Ge, we have less
confidence in our approximations than for Si, and
consequently we have not tried to compare theory
and experiment directly. The donor energy levels

100
I

200
I

300
T (K)

400 500

FIG. 3. Calculated drift mobility in germanium vs
temperature for an impurity density of 10 /cm3. Upper
full line refers to a Coulomb potential, the other curves
to each donor species.
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the other donors. Because of the spherical mass
, approximation we cannot be certain of the magni-
tude of the correction; we do notice, however, that
both Furukawa and Cuttriss ' have shown clear
chemical shifts in the mobility between Sb and As
donors, Sb giving the larger mobility.

VIII. CONCLUSIONS

Coulomb scattering, even when the anisotropy of
the conduction-band valleys is taken account of, is
insufficient to describe the electron mobility in n-

type silicon. By making use of the known devia-
tions from the Coulombic energy levels of the donors
and the valley-orbit splitting, we have calculated
the mobility of electrons scattering from the dif-
ferent Group-V impurities. The correction is
large at high impurity densities but is not sufficient
to obtain agreement with the experiments; it is
clear that other scattering mechanisms also play a
role, and we have indicated some other important
corrections. Finally we have estimated the correc-
tion to Coulomb scattering in Ge and found it also
to be large and to be significantly different for dif-
ferent impurities.
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APPENDIX

A. Schrodinger-equation derivation of 50 'I. 2

In Sec. IV, expression (26) was derived from
tan6~ for Coulomb scattering using the properties
of the Coulomb Green's functions. The same ex-
pression can be derived from the solutions to
Schrodinger's equation. In this case the infinite
bandwidth forces the use of a central potential well
of a finite radius:

U(r) = e'/er r—&r,

= —~o

1.0
in &o

0.8

0.6

0,4

with
.05

The radius of the central-cell correction to the po-
tential is much less than the natural unit of length;
so the solutions to Schrodinger's equation for the
two regions of space can be conveniently expanded
about the origin for the purpose of matching at rp.
Again, for a given small radius &o, a value for
tan6o can be found in terms of Vp, which can in turn
be expressed in terms of &E, (or of v). Taking the
limit of small ro reproduces (26).

It is of considerable interest to see how the val-
ues obtained for tan6p vary with ~o. This not only
shows how we1.1 the small-radius limit can repre-
sent more realistic radii but also gives some idea

0.2

0
1.0 'l. 2 1.4 1.6 1.8 2.0

FIG. 4. Variation of s-wave phase shift with ground-
state binding energy of the Coulomb potential in the pres-
ence of a central spherical square-well potential. Vari-
ational calculation was done using a y0=0. 05 and the per-
turbation calculation with ro = 0.
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The resulting expression for tan5p is also displayed
in Fig. 4. It can be seen that neither of these cal-
culations give satisfactory values for tan5p for any
value of 4Ep greater than about 0.1.

B. Estimation of strain effect

The importance of the strain scattering was in-
vestigated using the SchrMinger-equation method.
The potential used was taken to be the same for in-
tervalley and intravalley scattering. The total
strength (integration over all space) of the poten-
tial is given by Eq. (36). For a given strength the

phase shift 5p increases rapidly as the radius rp is
made smaller; so it is necessary to use a reason-
abl.e choice of &p in order to get a meaningful re-
sult. The value of &p chosen was 0. 05, which cor-

0
responds to a 1 A in silicon. A somewhat larger
figure is probably more realistic; so the small ef-
fect found is probably in reality even smaller.

Note added in proof. Price and Hartman [J. Phys.
Chem. Solids 25, 56V (1974)j have calculated the
intervalley scattering rate due to As in Ge obtaining
a result nearly twice what we obtain. Most of this
difference can be attributed to their use of first-
order perturbation theory.
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