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Binding energy for some atomic and exciton complex systems
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The general recursion relation developed previously for the exciton —ionized-donor complex has been

applied to diA'erent atomic and exciton complex systems. The calculated values of the energies in the
helium atom and the hydrogen negative ion are in good agreement with those obtained by Pekeris. The
binding energy for the excitonic-molecule positive ion has been calculated as a function of the mass

ratio cr = m, */mh~. The system is stable for all values of cr. For the exciton negative ion the
calculations are carried out in terms of 5 = m „*/m,*. The existence of such a complex is highly

improbable in the known semiconductors. The stability of the excited states for the
exciton —ionized-donor complex has been studied qualitatively in CdS, CuC1, and CuBr. Reasonable
agreement with experiment has been found for CdS.

I. INTRODUCTION

In a preceding paper~ referred to as I, the
Pekeris method for helium has been developed for
the exciton-ionized-donor complex (Fig. 1).
Haken's exciton potential3 in which the effect of the
polarizability is included has been generalized for
such a system. ~' The effect of the polarizability
between pairs of the three particles of the complex. .
of Fig. 1 is expressed in terms of X, j,, and v

which in this case have positive values. A consid-
erably long general recursion relation of 57 terms
has been obtained. An important advantage of this
general recursion relation is that by varying the
values of X, p, , and v and by taking some precau-
tions, which will be discussed in Sec. VIII, one can
calculate the binding energy of any three-particle
system, either atomic or exciton complex. In this
paper the energies for atomic systems such as the
helium atom He and hydrogen negative ion H (Fig.
2) are calculated and compared to those obtained by
Pekeris ' in atomic physics. The stability for the
excitonic-molecule positiv'e ion (Fig. 3) and the ex-
citon negative ion (Fig. 4) has been, respectively,
studied as function of o =m,*/mi*, and 5=m//I*,
where m,* and m& are the electron and the hole ef-
fective masses. The existence of the excited state
2S for the exciton-ionized-donor complex (Fig. 1)
in CdS has also been discussed.

= —m,*e4/2K, «h is simply —,
' a. u. In these atomic

units, the nonrelativistic Schrodinger equation
written for the system of Fig. 1 is

%II

pe + 1O.g2+ E L2 I 13 ~2 y 0
r12 r13 r23

where V, is the Laplacian for the electron; 7'„is
that for the hole; and A&2, p, &3, and v23 are the in-
verseuf the dielectric constants~ between the dif-
ferent particles 1-2, 1-3, and 2-3, respectively,
written in the form of Haken's exciton potential
where the effect of the polarizability has been in-
cluded. The quantities A.t2, pt3, and v23 are func-
tions of the longitudinal vibrational frequency & of
the lattice, of the effective masses m*, and m&, of
the optical E& and static E, dielectric constants as
well as of the distances r», r&3, and r23 between
the different particles. Due to the difficulty of
solving Eq. (1) with A~2, p~~, and v~ being functions
of the distances between the particles, mean values
X, p. , and v for these quantities have been consid-
ered. The values X, p, , and v correspond, respec-
tively, to the average of ~&2, p.~3, and v» over the
wave function 4 of the system. With the classical
method of Hylleraas, Eq. (1) for Fig. 1 can be
written in the form

II. METHOD OF SOLUTION

In I the binding energy for the complex of Fig. 1
has been calculated in terms of the binding energy
Ez of the neutral donor. The atomic units K„,S2/
m,*e~ and m,*e4/Ka„h ~ have been adopted for length
and energy, respectively, and the units m~ =S= e /
K,«= 1 have been used. The effective dielectric
constant K,«= K(r,2) has been chosen such that A. = 1.
In this case the neutral-donor binding energy ED

"13
FIG. l. Exciton-ionized-donor complex.
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u = ne( —r&p+ r&s+ r23),

v = pK (r&2 —res + F3),
u/= ye(r„+r„—r„),

where n, P, and y are variational parameters.
From E&l. (8) the distances r)~, r~s, and res between
the particles can be written in terms of u, v, and
K,

FIG. 2. Three-particle atomic systems such as He and
H".

Bk 2 84 Bk 2 s4
2 +— +v 2 +— +(1+a)
1a +1a 1a 13 +13 ~+13

r„=(1/2e)(v/P+ u)/y),

r„=(1/2e)(u/n+ u)/y),

r„=(1/2e)(u/n + v/P) .
If the energy E is given in terms of e,

E = —()&+ o X)e,

(4)

(5)

(
2 84 1x p +— — + — —(r,2+ r gg

—r „)—
&&as &as 8&as &1a &as Sr1a&was

where x and X are determined from the approxima-
tion at infinity, then one obtains

1 a a+0' (r„+ra)-r,~)-
y'13 'yas 9y'138 yas

K= 8(n +8p +y —2n'Y),

X = -.'(»'+ p'+ y 2py-)

(8)

(f)

v t

+2 E+ ———+—,+=o.
&1a &13 'Qs

(2)
With

e-&1/s) &u+v+w)F( )) (8)

Following the Pekeris method for helium, we in-
troduce the perimetric coordinates u, v, and sv

given by

and substituting E&ls. (8), (5), and (8) into (2), one
gets Eq. (25) of I, part of which seems useful to
give here
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With E&l. (8), the exponential part of the wave func-
tion can be written in terms of r1a, F13, and was,

)lI = e '&'"u+'"ss+~~s'y'(u v u))

where

a= —,'( —n+ p+ y),

&= l(n p+y), -
c= l(n+ p y)-

(1O)

"13

FIG. 3. Excitonic-molecule positive-ion complex.
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13

I IG. 4. Exciton negative-ion complex.

Assume the expression

F = P A(l, m, n)L, (u)L (v)L„(to),
l, m, n=0

(12)

E= —I(& .2 (14)

This procedure requires much more computation
than Proc I. To save computer time, one can take
the specific values of a, P, and v corresponding to
the minimum energy in Proc I and vary II,

' until con-
vergence is attained. This method is called "Proc
II." The method of computation according to each
of the two procedures is given in detail in I.

III. HYDROGEN NEGATIVE ION H

The system is represented in Fig. 2. This ion
is a particular case of Fig. 1. It results from re-
placing the positive hole of the exciton (particle 3)
of Fig. 1 by an electron of negative charge and ef-
fective mass I,*. In this case X=1, p, = v= —1, and
o =1. For this system the recursion relation (13)
reduces to the 33 term equation obtained by Pe-
keris ' for H . The computations have been car-
ried out following both Proc I and Proc II. With
Proc I the minimum energy E= -0.5224 a. u. is ob-

where L, , L, and L„denote, respectively, the
normalized I aguerre polynomials of order l, m,
and n. Using the different relations between these
polynomials and its derivatives, one obtains a con-
siderably long 5V term general recursion relation
between the coefficients A(l; m; n) The. recursion
relation takes the form of the eigenvalue problem

II+ (P+ erg)e = 0.
The H, P, and Q are 50&& 50 matrices and are func-
tions of the three variational parameters n, P, and

y which are determined from the minimization of
the energy E. The matrix H is also a function of
A, , p, , andv.

The solution of Eg. (13) following the procedure
in which e and E are related by Eqs, (5)-(7) is
referred to as "Proc I." Another procedure fol-
lowed by Frost to get the minimum energy is to
consider p=0 and to vary n, P, Z, and ~ simulta-
neously. In this case the energy is given by the
following equation:

tained for n= 0. 508, P=O. 514, and y=1. 522. As
has been pointed out in I, it is seen that the coeffi-
cients a and b of ~» and x», respectively, in the
exponential term of the wave function (10) have posi-
tive values while the coefficient c of x&3 is negative.
This corresponds physically to an attractive poten-
tial between particles 1-2 and 1-3 and a repulsive
potential between particles 2-3. This value of the
minimum energy E is in good agreement with the
value —0. 52775 a. u. obtained by Pekeris. ' Using
Proc II and the values for o.'= P= I and y=2, the
minimum energy E = —0. 5217 a. u. is obtained with
v = 1.9. The value of E obtained in Proc I is in
better agreement with that of Pekeris' than the value
given in Proc II. The effect of the variation in A.,
p, , and v has also been studied in Proc I. For A, = 1,
p, = —1, and v= —0. 95, one expects to get a greater
binding energy since the repulsive potential ex-
pressed in terms of the absolute value of v between
the pair of particles 2-3 is decreased. This energy
E= —0. 53966 a. u. corresponds to a = 0. 517, P
= 0. 528, and y = 1.513. For A. = 0. 95 and p, = v = —1,
one should get an energy less negative since the
value of X representing an attractive potential be-
tween the pair of particles 1-2 is decreased. This
energy E= —0.49286 a.u. corresponds to a=0. 58,
P=0. 394, and @=1.49. Considering X= 0. 95 and

p = v = —0. 95, the minimum energy becomes less
negative for a decrease in both attractive potentials
between the particles 1-2 and 1-3 expressed in
terms of X and the absolute value of p, , although the
repulsive potential in terms of the absolute value
of v is also decreased. In this case E= —0.4V646
a. u. when calculated with n=0. 468, P=0. 4V6, and
y=1.402. In all these cases one notes that the co-
efficients a, b, and c of ~12~ ~13 &

and &a3 in the wave
function (10) correspond to the physical situation.
This means that the coefficients a and b correspond-
ing to attractive potentials have positive values
while the c'oefficient c which corresponds to a re-
pulsive potential has a negative value.

Finally, one may think that the consideration ~
= p, = —1, v = 1, and the immobility of the positive
hole (particle 3) of Fig. 4 with o = 0, would lead to
the same results obtained above for H from Fig. 2
with A. =1, p, = v= —1, and a=1. This is not cor-
rect, at least in this treatment, since the interpar-
ticle distances x» and xa, of Eq. (4) would be inter-
changed which means interchange between l and n
of Eq. (12). As a matter of fact the interparticle
distances cannot be interchanged. Otherwise the
recursion relation (13) is not the same and the ma-
trices I', Q, and II are different. This question
will be discussed in detail in Sec. VIII.

IV. HELIUM ATOM He

This atom is represented by Fig. g with o= 1,
A, =2, p, = -2, and v= —1. In this case the recur-
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sion relation (13) reduces to 33 terms as that de-
rived by Pekeris for helium. For the helium atom
Pekeris considered the case n= P =1and y=2.
For this atom Proc II has been used. With the val-
ues for n, p, and y adopted by Pekeris, the mini. —

mum energy E = —5. 8038 Ry is obtained with v. = 2. 6.
This value for E is in better agreement with
—5. 8074 Ry obtained by Pekeris for ~ = 2 than the
—5. 80214 Ry calculated by Whitten and Sims. One
should note that in Pekeris treatment for helium
with 0= n= I3=1 and y=2, the value of ~=2 is deter-
mined from the approximation at infinity of Proc I
in the present treatment. In Proc 11 (Frost proce-
dure) tc is a variational pa, rameter obtained from
the minimization of the energy. In Pekeris treat-
ment, the matrix I' is then different from that ob-
tained by Proc II since it corresponds to different
values of II.". As a matter of fact what is denoted by
If'. in Pekeris calculations for the helium atom is
v+X in the present treatment for the same atom.
Considering cr= n= P=1 and y=2 and taking the Ry
for unit of energy as Pekeris did, instead of a.u. ,
one gets from Elis. (6) and (I) the value of x+ y = 2

which is the same as the ~=2 obtained by Pekeris.
The agreement between the general recursion

relation (13) and the results obtained independently

by Pekeris for H and He to three decimals gives
one confidence in this general relation (13). It

should be pointed out that relation (13) was devel-
oped for three-particle exciton complexes. In these
systems observations are not made with as much
accuracy as in atomic physics. As a matter of fact
the accuracy with which relation (13) is solved is
quite enough for the purpose for which it was de-
rived. The numerical solution to this relation was
carried out in double precision with a limitation to
50&& 50 matrices due to the capacity of the UNIVAC

1108 computer used. One has to mention that it is
the partitioning technique of Lowdin that has been
used in solving the eigenvalue problem of E(I. (13).
This method is different from that used by Pekeris
or by Frost. ' '1 It has to be mentioned also that
for the atomic systems H and He, the quantities
&,ll = &(&;&)= 1 and m,*= m(), where m() is the free-
electron mass.

V. EXCITONIC-MOLECULE POSITIVE ION

This molecule is represented by Fig. 3 in which
the fixed hole (particle 1) of Fig. 1 becomes mo-
bile. In this ca,se one has simply to add to E(I. (1)
the I aplacian for this hole. In the case that the
atomic units are the same as those considered for
Figs. 1 and 2„the term would by simply —,'oV„14'.
In other words the terms to be added to E(I. (2) to
represent Fig. 3 are

0 p +(
824 2 ee 934 2 84 1 2 2 2 9

+ 2 + + (+12+ +13 +23)8+ 13 ~12 8 ~12 8+ 13 +13 +13 +12 +13 18 13

The terms to be added to Eg. (9) a.re

(15)

, e'S, 8'S e'S 4u'v 4uv', 8'Z uv~ 4v'~ 4v~' 4u'w 4u~'
eu Bv eu8v n p np 8 nPy P y Py

+—(typ —tyy)( + -)+pa(~ —-y) +—(typ —p')(, + ) —4p(j. —~)
sBF 2 885% 4v K 45K 4Q 35 48K ll 5 2115 2111() 25K lPv Qv 2 2

s15 (3pr P'r A' ~ r ~r' o P c(P ~r pr ~'p P'c(

p 2uvK v K vugg u 'N uK 2v u 2uv 2um) 2vK+y' +, + - +, + . , +, ( —a+p —y)+p-y( —p —y) —py —+ +
nPy P y py ny ny p n nP ny Py

(16)

For the excitonic-molecule positive ion of Fig. 3

the eigenvalue problem of E(I. (13) becomes

If+ [P+o(q+ q, )]~=0.
xl =!f2(~'+ r') + P(P —~ —r)]. (19)

E= —((l+oyl)E, (18)

with )l the same expression given by Eq. (6) and

The term Q1 contains the matrix coefficients of the
additional terms of Eq. (16). The computational
procedure is carried out according to Proc I. In

this case Eq. (5) is replaced by

The expressions for x and X1 are determined as be-
fore from the approximation at infinity. With the
same atomic units of Figs, 1 and 2 in which the
binding energy ED is simply ~ a. u. , the minimum
energy E given by E/EV = 1.058 when &= p = 5 = 1,
n = 0. 659, I3 = 1.514, y=0. 482, and o = 0 are used.
To save computer time, the values of n, P, and y
are considered constant for all values of cr. One
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1"IG. 5. Plot of E/E„vs m~+/mg for the excitocic-mole-
cule positive-ion complex.

can note that the values of E/Eo, c. P and y are
practically the same as those obtained for Fig. 1
for the same value of o =0. This is quite logical.
One can also see that the coefficients a and c of the
exponential term in Eti. (10) have positive values
representing the attractive potential between the
particles 1-2 and 2-3 while b, corresponding to a
repulsive potential of the particles 1-3, has a nega-
tive value.

The stability of the excitonic molecule positive
ion has to be studied in terms of the exciton binding
energy E„andnot in terms of ED. In this case the
atomic units K,«5' /e M and Me'/K„,If have to be
adopted, respectively, for length and energy and
the units M = ff = e /K, « = 1 have to be used with M

being the exciton reduced mass. In these units the
exciton binding energy E„=—Me /2h K,« is simply
—,
' a. u. Since X= v=1, the dielectric constant K,ff
is the same for E„andE&. The results in terms of
ED can be easily obtained in terms of E„.Since

E/E„=(E/E, )E,/E„=(E/E, )m*, /M = (E/E, )(1+o),
(20)

the results in terms of E„arethose obtained in
terms of Es times the factor (I+cr). This conclu-
sion can also be obtained by writing the Schrodinger
equation in the beginning i.n both systems of atomic
units. The plot of E/E„asa function of g for the
excitonic-molecule positive ion is given in Fig. 5.
This curve that starts with the value 1.058 for o =0
and increases as o increases shows the stability
and the existence of such a molecule for all values

of o. No experimental evidence has yet been es-
tablished for such a complex. On the other hand
the values of E/Ec decrease as c increases and
consequently there is a critical mass ratio o,«1
below which the system is stable; for o &o, the sys-
tem is unstable. The molecule of Fig. 3 corre-
sponds in atomic physics to a positron bound to a
hydrogen atom. The theoretical study of a bound
state in such a system has been carried out by dif-
ferent authors. ' ' The calculations of these
authors are given in terms of E& and that is why
such a bound state has not been found for g= 1.
This result is then in agreement with the present
calculations.

II'+ (5P+ Q) e = 0 . (22)

The results of E/Ez obtained from the solution of
Etl. (22) are given as a function of 5 and not as a
function of 0 was the case for Fig. 1. These cal-
culations lead to the conclusion that it is highly im-
probable for Fig. 6 to exist in the known semicon-
ductors which have particularly big values of 6.

A complex in a more general form than that of
Fig. 6 can be obtained by having the electron 1 of
this figure mobile instead of being fixed. This gives
Fig. 4 that represents the exciton negative ion.
Figure 6 is then a particular case of Fig. 4 as Fig.

FIG. 6. Exciton-ionized-acceptor complex.

VI. EXCITON NEGATIVE ION

In a preceding paper~3 referred to as II, the ex-
citon-ionized-acceptor complex represented in
Fig. 6 has been studied. The stability of such a
complex has to be studied in terms of the neutral
acceptor binding energy Ez = —e mf/25 K,«and
not in terms of ED as has been the case for Fig. 1.
In the present case the atomic units K,«S /e mf
and e'm*„/KsKs«have been adopted, respectively,
for length and energy and the units mf = h = e /K, «
= 1 have been used. In such units the binding ener-
gy E„is simply —,

' a.u. The Schrodinger equation
for Fig. 6 is

a&&, ++ —,'&I, &+ [E+ (&/r„—y/r»+ v/r»}] 4' = 0,
(»)

with & and p. having negative values and 6 = yn„*/m,".
The eigenvalue problem similar to that of Etl. (13)
1s
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1 is a particular case of Fig. 3. The stability of
such a complex (Fig. 4) has been studied recently~4
as a function of o. For both complexes of Figs. 4
and 6 with 5=0, one should get the same results
for E/E„when the same values of A., p, and v are
used. Since 6=0 and not o =0 is the limiting case
for the study of the stability of the complex of Fig.
4, it is a strong argument to carry out the calcu-
lations for such a complex as a function of 5. This
point will be discussed in detail in Sec. VIII.
For Fig. 4 one simply has to add the term —,'5V„C
to those of Eq. (21). This term corresponds to
that given by Eqs. (15) and (18) except that the fac-
tor o should be replaced by the factor 6. In this
case the corresponding eigenvalue problem for Fig.
4 is

H+ [5(P+Pg) + Q] e = 0. (23)

The same computational procedure can be carried
out following Proc I. In this case Eq. (5) is re-
placed by

E= —(5~, +X) e',

with X the same as in Eq. (7}and

'[&'+ 2(-P'+ r') —c-'(P+ r)]

(24)

(25)

The expressions for X and I(.'~ are determined from
the approximation at infinity.

The stability of the exciton negative ion has to be
studied in terms of the exciton binding energy E„
and not in terms of E&. The atomic units adopted
in Sec. V for the excitonic molecule positive ion in
which E„is simply —,

' a. u. have to be used. As with

Eq. (20) and assuming that v and p. have the same
absolute values, one can show

E/E„=(E/E„)(1+5) . (28)

This would mean that for Fig. 4 the results E/E„
as function of 6 can be obtained by multiplying the
values of E/E& by the factor (1+5). The computa-
tions for all of these systems would normal1y need
an enormous number of computer hours. It ha,ppens
that for the exciton negative ion, one can use some
of the informations already given in this paper to
make some kind of analysis and consequently to
reach a reasonable conclusion without going through
the detailed computations. The binding energies
corresponding to 5 = 0 for both the exciton negative
ion and exciton-ionized-acceptor complexes of
Figs. 4 and 6, respectively, have the same value
E/E„=1.15. This is quite similar to the result ob-
tained in Sec. V, where the binding energies of the
exciton-ionized-donor complex (Fig. 1) and the ex-
citonic molecule positive ion (Fig. 3}have the same
value for o =0. Also one can consider the value
E/E„=1.048 obtained independently by Frost and

Kolos et al. ~ for the trielectron or positronium ion
with o = m*, /mf = 1 to be the same for the exciton

negative ion for the same value of 5 = ml*, /m, = 1.
The value E/E„=1.0448 has been obtained in Ref.
'7 for the system e e'e . One can see that for Fig.
4 the values oi' E/E„decrease as 5 increases. For
the known semiconductors 5 is greater than 3. It
seems then that it is highly improbable that the ex-
citon negative ion can exist in semiconductors,
which is also the case of the exciton-ionized-ac-
ceptor complex of Fig, 6 that has been treated in
full detail in II, unless the effect of the polarizabil-
ity plays a very important role. Note that all the
discussion given in this section concerns the case
A, = p, = —1 and v = 1 in which the polarizability has
been neglected.

VII. EXCITED STATES OF THE EXCITON-IONIZED-DONOR
COMPLEX

In CdS excited states of the exciton and exciton-
ionized-donor complex~~ have been observed. For
the A-band exciton the binding energy of the 28
state is 8 meV. For the excited state of the ex-
citon-ionized-donor complex the observed binding
energy ' relative to that of the 28 excited state of
the exciton is 9. 1 meV. The stability and existence
of the complex excited state has to be studied in
terms of the corresponding excited state and not in
terms of the ground state of the exciton. In spite
of the fact that these experiments do not specify to
what quantum number this complex excited state
corresponds, these results still show the stability
of the excited state of the exciton-ionized-donor
complex in CdS. The calculations have been car-
ried out in terms of the exciton ground state. To
have some correspondence between theory and ex-
periment it is good to give some experimental ratios
concerning the energies of the complex and the
ground-state exciton binding energy. The experi-
mental ratio between the ground state energy of the
complex and the A-band exciton is 1.1'71; that be-
tween the excited state of the complex and the A-
band exciton ground state is 0. 61. The value 0. 71
corresponds to the ratio between the excited state
of the complex and the ground state of the exciton
8 band. One has to mention that the experimental~6
binding energies of the exciton A and B bands are
28 and 24 meV, respectively. The recursion rela-
tion (13) has been solved in a self-consistent manner
in the atomic unit system corresponding to E„=—,

'
a. u. With o=0. 20'7, &=306, K~=9. 35, E,~t 10.33,
and Zo= 5. 24 the minimization of the energy of the
complex ground state has been obtained for ~
= 0. 988, p = 0. 98, v= 1, n= 0. 373, P= 1.4'74, and
y=0. 588. The first root of Eq. (13) corresponds
naturally to the complex ground state. The second. ,
third, fourth, etc. , should correspond to the com-
plex n 8 excited states. The calculated value 1.191
of the complex ground-state energy in terms of E„
is in very good agreement with the experimental
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ratio ' 1.171 mentioned above. The values of the
second, third, and fourth roots of Eq. (13) in terms
of E„are, respectively, 0. 8472, 0.7367, and
0. 5948. The third root is in agreement with the
experimental ratio 0.71 while the fourth root agrees
with the value 0. 61 which is given above. Although
these results for the complex excited states may
not be in quantitative agreement with experiment,
still they show the existence and stability of such
states in agreement with observations on CdS.

For CuCl with o = 0. 03846, the first, second, and
third roots of Eq. (13) in terms of E„are, respec-
tively, 1.149, 0. 918, and 0. 8537. With o=0. 0207
corresponding to CuBr these roots are 1.154,
0. 905, and 0. 845. Unfortunately the complex ex-
cited states in CuCl and CuBr have not yet been ob-
served. The comparison with experiment for the

complex ground state in these two materials has
been already discussed in II.

To study carefully the complex excited states,
one has to calculate the lower bounds of the differ-
ent energies. This requires the determination of
the corresponding wave functions of Eqs. (8) and
(12). This would be an elaborate task which would
take a great deal of computer time.

VIII. SOME REMARKS CONCERNING THE RECURSION
RELATION

As has been mentioned before in Sec. III, one
may think that with cr= 0, Fig. 4 corresponds to the
hydrogen negative ion H . This would mean that
Fig. 4 with o =0 give the same results as Fig. 2
with a=1. For Fig. 2 with a=1, Eg. (2) becomes

(
8'4 2 94' Ba@ 2 94' 9'4 2 84 I a a a 9 4

2 + + 2 +— '+2 2+— + rla+ ras r 1sr» By» 8 ss ss ss as as By ysa ras By»Bras

+
1 2 2 2(yss+ras —r») +2 E+ ———+—4=0.

r1s ras " ' ' 8r138ras r1s r1s ras
(27)

In this equation p, and v take negative values.
Writing the corresponding equation for Fig. 4 with o = 0, one gets

(
4' 2 84'

~

8 '0 2 84 8 4 2 84 1 2 2 2 8
+— !+ ~+— +2 a + + (yea+ ras —rss)8r23 ras 8r23 8 13 r13 8 13 8 12 r12 8r12 r12 23 8r128ras

1 2 2 2 8 + A. I V
+ (r»+r» yas) +2 E+ ——+—4=0,

r12 r13 8r1a8r13 r1a r1s ras
(28)

with A. and p, taking negative values.
By interchanging r» and ras, Eqs. (27) and (28)

lead to the same equation. This would mean that if
one succeeds in obtaining the same recursion rela-
tion for both Figs. 2 and 4, corresponding, respec-
tively, to o = 1 and cr = 0, by simply interchanging
r» and ras, one should expect to get the same re-
sults for H . From Eq. (4), the interchange of r»
and ras means the interchange of n and y as well as
the interchange of u and zo. This would mean that
the interchange of 8 E/Bua, BaE/Bwa, BF/Bu, BF/Bw,
9 E/Bvsw, BaE/Busv, u, and w should lead to the same
coefficients in Eq. (9) for both figures which is not
the case. The general recursion relation (13) de-
rived for Fig. 1 and adopted for Fig. 2 by simply
changing the signs of A. and v and putting o=1 cannot
be the same recursion relation for Fig. 4 with o = 0
in which the coordinates r,a and ras have been inter-
changed. As one can see, the interchange of r12
and ras changes completely the recursion relation.
Dealing with Fig. 4 such that it corresponds to H
with o = 0, one has to start from the beginning to
derive a new recursion relation. This would again

be a tremendous task. The only figure correspond-
ing to H and for which the recursion relation (13)
is applicable is then Fig. 2.

In applying the general recursion relation (13) to
a particular case similar to any of these represented
in Figs. 2-4 and 6, one has to be very careful not
to introduce any change except in the constants as
for instance in the signs and values of A., JLjt, and v
and the interchange between o and 5. The coordi-
nates r12, r13, and ras are not to be interchanged.
Any interchange between these coordinates is ca-
pable of leading to a completely different recursion
relation that would render inapplicable the general
recursion relation (13).

The Fig. 4 with o = 0 does not then correspond to
the recursion relation (13). On the other hand,
Fig. 6 that represents the exciton-ionized-acceptor
complex for which the atomic units correspond to
E& = —,

' a.u. is a particular case of Fig. 4. The lim-
iting case for Fig. 4 is then 6=0 and not o=0. In
this case one has to carry out the calculations for
Fig. 4 as a function of 5 and not as a function of o.
The Egs. (2) and (15) would have exactly the same
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form for both Figs. 3 and 4 except that the ma-
trices I' and Q are interchanged as can be seen
from Eqs. (1V) and (23). The matrices P, P~, Q,
and Q& for both Figs. 3 and 4 have exactly the same
forms. For Fig. 3, the matrix Q+ Q~ is multiplied
by the factor o and P is not while for Fig. 4, the
matrix P+P~ is multiplied by the factor 5 and Q is
no longer multiplied by o. These arguments show

why the calculations for Fig. 4 have been carried
out in terms of 5 and not in terms of cr.
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