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Analog of the WKB approximation for Bloch electrons
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Bremmer's approach to the ordinary WKB approximation is used as the basis of a generalization to
the one-dimensional Schrodinger equation with a perturbed periodic potential. Numerical comparisons of
the proposed approximation with exact solutions are given for Kronig-Penney models with an external

field and with slowly varying period.

I. INTRODUCTION AND SUMMARY

The ordinary WKB approximation' has been ex-
tremely useful for discussing the behavior of
quantum-mechanical particles in slowly varying
potentials. The present paper will develop a
similar approximation for studying the single-
particle Schrodinger equation with a perturbed
periodic potential. To be precise, the equation
of interest is

(V'+ 2'-2[Z —U(r; ~)]) y = O, (1)

where U(r; X) is periodic in r for fixed &. We will
be concerned with the case where ~ varies slowly
with r. This includes as a special case the per-
iodic potential with a superposed weak external
field [U(r; X) = U(r )+A j which is of interest for
interband tunneling calculations as in the theory
of internal field emission (the Zener effect)' and
the theory of tunneling across semiconductor
junctions. ' By considering a much more general
dependence on A. , we will obtain results which
also apply to graded band-gap systems, to some
amorphous materials, 4 and to strained crystals
where even the period may change with X.

Zener's original treatment of internal field
emission' has implicit in it an ad hoc generaliza-
tion of the WKB approximation to Bloch electrons.
As is well known, solutions of (1) for fixed X have
the Bloch form

y k, (r; X) = e'"' uq, (r; X), (2)

where uq, (r; A.) is periodic in r with the same
period as U(r; &). Here kk is the crystal momen-
tum and s is a band index. By analogy with the
WKB approximation, Zener replaced, in the one-
dimensional case, the prefactor e'~" of the Bloch
form (2) by exp(i fkdx). A more careful treat-
ment was given by James, ' who constructed ap-
proximate solutions by joining together solutions
valid for a single period of the unperturbed per-
iodic potential. James's method was in turn im-
proved by Butcher, Hum, and Pike, ' who treated
more carefully the polarization effects due to the

variation of the perturbing potentials within in-
dividual cells of the periodic potential. The pa-
pers of James and of Butcher, Hum, and Pike
treated only the case of a periodic potential with

a superposed weak external field, but their meth-
od should admit of an extension to more general
perturbations. Effective-mass theory, ' derived
by using Wannier. functions rather than Bloch
functions as a basis, provides an alternative ap-
proach to perturbations of periodic potentials,
but appears to be of limited usefulness for dis-
cussing the more general perturbations which

arise in graded band-gap systems and some amor-
phous materials. Calculations using a Wannier
function basis have been carried out by Gora and

Williams and by Inglis and Williams for such
systems, but are limited to the case in which the
period remains unchanged.

One type of generalization of the WKB approx-
imation, initiated by Langer' and leading to uni-
form asymptotic approximations, is based on the
mathematical idea that approximately identical
differential equations have approximately identical
solutions. We shall, however, base our general-
ization on a more physical view of the WKB ap-
proximation first given by Bremmer. ' Bremmer's
analysis begins with the ordinary differential
equation

+ jg'x —0

and replaces a slowly and continuously varying
k(x) by the stepwise approximation

k(x) =k„-=k(x, + nAx), x, + noix& x& x, +(n+1)Ax.

At each step, reflection and transmission coeffi-
cients can be calculated. The WKB approximation
results from keeping only the transmitted wave
at each step and then passing to the limit of con-
tinuous k(x) by letting bx tend to zero. Correc
tions result from summing all once-reflected
waves, all twice-reflected waves, etc. From this
point of view, the success of the WKB approxi-
mation is due to destructive interference among
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the reflected waves. We will use Bremmer's
idea as the basis for a generalization of the WKB
approximation to Bloch electrons.

Section II presents the generalization of Brem-
mer's approach to Bloch electrons in one di-
mension. Section III presents numerical compar-
isons of the approximation scheme proposed in
Sec. II with exact results for Kronig-Penney mod-
els with an external field and with a slowly varying
period. Section IV discusses, but does not solve,
the problems of treating the neighborhood of the
band edge and of extending the approach to three
dimensions.

8y, (x;X,), 8y (x;X„),8y, (x„;X )

(7b)

The pair (7a), (7b) can be solved for Jt'„and T';
the result of Taylor expanding the solution in
powers of ~x for &x small is

E' = —[M, (x; X )/D(A. )] A, '(x )bx+ O((bx)') (8)

and

r„' =1 —[N, (x.; ~.)/D(~. )]~'(x.)~x+ O((~x)3),

where
II. ONE -DIMENSIONAL PROBLEM

The one-dimensional version of Eq. (1) is N+ (x; X) =— (io)

(3) 8A. &x + BxBA. '

where U is periodic for fixed" A.: D(A) = g ~x Bx
(12)

g, (x; A. ) =e'~" u, (x; A. ) (5a)

U(x+ a(~); ~) = V(x; ~) .

For fixed X, the general solution of (3) is a linear
combination of"

The fact that 8D/8x = 0 follows from the fact that
D is the Wronskian of ())„and P when A. is fixed.
The reflection and transmission coefficients

and T at x=x for a wave traveling to the left
can be obtained by interchanging the subscripts
+ and —in the preceding calculation to obtain

and

g (x; A. )-=e '"u (x; A. ), (5b)
E.—= —[M (x„;~.)/D(~. )])('(x.)~x+ O((Ax)')

where

u, (x+ a(X); X) =u, (x; X) .
and

T = 1 —[N (x;)). )/D(X )]X'(x )hx+ O((bx) ),
When k is real, we assume k ~ 0 so that ()), is a
wave traveling to the right and ( a wave traveling
to the left. The phases of P+ and P are chosen so
that 7)), = g . When k is pure imaginary, we as-
sume ik ~ 0, and choose the phases so that g+ and

a,re both real. In general, E depends on both
k and A, . Since we are interested in solutions of
(3) for fixed E, we fix the dependence of k on X

by requiring that E(k; X) =E, = const.

where

and

8q, 8y 8'y
8; 8~

'& 8.8~

8)t 8$ 82$
)=

8 8X ~8 8X'

A. A physical approximation

We will now apply Bremmer's method' to our
problem. Replace the continuously varying ~ by

A, = A„= )).(xo + n hx)) xo + nhx& x & xo + (n + I )hx )

and suppose that there is only the wave g, moving
to the right in x, +(m —1)bx ~x &x, +mAx. The
reflection and transmission coefficients 8 and
&' at x =x, + m&x can then be calculated by de-
manding continuity of g and of 8$/8x at x =x,
+ m~x:

y, (x;~,) =E'.y (x; X„)+ T'y, (x; X„), (7a)

Making the approximation of keeping only the
transmitted wave yields the approximate solutions

(,11T„' = (, e p(g)n)')

In the continuum limit 4x- 0, the approximate
equality in (17) becomes exact, yielding the ap-
proximate solutions
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d, (x)-=P,(x;X(x))exp(- ' " ' X'(x, )dx,)
" N, (x„~(x,))
0

(18)

which are our generalizations of the WKB solu-
tions. Here x0 is some fixed reference point.

It follows from (10), (12) and (15) that

8D(dt) =N, (x; X)+ N (x; X).

By using (19) to integrate the combination
~(N, + N )D 'h. ', the approximate solutions Q&

given by (18) can be rewritten as

(19)

~ ( )
D("(xo)) '~

( ( ( ))
" N (x„'X(x,)) —N (x„X(x,)),

( )1 1 (20)

For the case of propagating waves, where g, = P,
it follows from (10), (12), and (15) that N, =-N,
and D = D, so-that the exponential in (20) is pure
imaginary. The prefactor [D(d(.(x,))/D(X(x))]'I',
which is real, then gives the change in amplitude;
it is the analog of the prefactor 0 "' in the ordin-
ary WKB approximation, and guarantees current
conservation to zeroth order in ~'.

B. An alternative derivation and an integral equation

Before analyzing further the result (20), we will
derive a pair of integral equations which have (20)
as the first term of their Neumann series solu-
tion. We begin by looking for a solution to the
differential equation (3) in the form

g(x) = c, (x)P,(x; Z(x)) + c (x)(I) (x; X(x)) . (21)

c,(x)4,(x; A.(x)) =b, (x)(4(x) .

Then b & is given by

(27)

e, (x)=e, (x)exp( ' " ' X'(x,)dx,),N, ( xl(x(,))

(28)

clear from the analysis which led to (9) and (13):
the amplitude c+(x+ hx) of the wave moving to the
right at x+ ~x is the sum of the amplitude T'c,
of the transmitted part of the wave moving to the
right and the amplitude 8 c of the reflected part
of the wave moving to the left. The interpretation
of (26) is similar. The approximate solutions in
the form (18) now follow from (25) and (26) by
neglecting the cross terms proportional to M&."
We will now work with Q, and (t) instead of f, and

Define b+(x) and b (x) by

We fix c, and c by demanding, in analogy with
the method of variation of constants, " that

while (21) and (22) are replaced by

g(x) =b, (x)P, (x)+ b (x)P (x) (29)

g'(x) =c, ' + c
~X ~X

Differentiating (21) with respect to x and using
(22) yields

8$ 8$c+g++c'g = — c+
' +c A.'.

BA.

(22)

(23)

and

p'(x) = p, (x)p, (x) —)ep, (x; X))
8

X,=X(g)

a
+ b (x)Q (x) —in/ (x; X)

X=)x(N) ~

Inserting the expression for the second derivative
of P, obtained by differentiating (22) with respect
to x, into (3) and using (21) yields

The solution of (23) and (24) for the derivatives
c+ and c is

P.(x)=P, (x,)+f dx, d (x, )b (x, )
x0

X

b (x) =b (x,)+ dx, S,(x,)b, (x,),

(31a)

(31b)

where

The use of (28) in (25) and (26) followed by an
integration with respect to x yields the pair of
integral equations

c+ =-c, (N+/D)X' —c (M /D)X',

c' =-c,(M+/D)X' —c (N /D)X',

(25)

(26)

S,(x)

„,( )
N, (x„ l(x, )) N(x;, (x, )))X-

D(~(x,))
with M „N„and D given by Eqs. (10)-(12), (15),
and (16). The physical interpretation of (25) is

M, (x, z(x)),
( ) (3 )D(~(x))
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Specification of (}((x,) and P'(x, ) determines b, (x,)
as a consequence of (21), (22), and the fact that
b, (x,) =e, (x,) from (28). The first term of the
Neumann series (iterative) solution of the pair of
integral equations (31a) and (31b), that is to say
the approximations b, (x) =b, (x,) and b (x)—= b (x,),
yields the approximation of Sec. IIA. Because
this pair of integral equations is of Volterra type,
it has a Neumann series solution which converges
under rather weak conditions. ' Thus, for ex-
ample, M„N„and D bounded and D different
from zero on the path of integration is sufficient
to guarantee convergence. When k is real, the
exponential in (32) is pure imaginary as a con-
sequence of g, =P; the resulting oscillations,
which correspond physically to destructive inter-
ference among the reflected waves, tend to make
corrections to the approximate solutions Q, and

small. Error bounds on the approximate so-
lutions can be obtained by bounding the absolute
values of the kernels S+ in (31) and summing the
Neumann series with the true kernels replaced by
their bounds; the reader is referred to Froman
and Froman, ' who carry out such a program for
the ordinary WKB approximation, for details.
Our generalization of the WKB approximation fails
at band edges, where D=O because g, and (}( are
no longer linearly independent; this is the same
difficulty which arises at turning points in the
ordinary WKB approximation.

which, except for the unimportant constant factors
[X(xo)]'~'exp[six+(x, )], are the usual WEB so-
lutions.

D. Variation of the period

A naive approach to variation of the period with
x would begin by assuming (4) to hold when the
period varies. Application of our approximation
scheme then leads to difficulties, however, as
can be seen by looking more closely at the kernels
S& of the integral equations (31) in this case. Dif-
ferentiation of (6) with respect to A. yields

Bu,(x+ a(X); A) Bu, (x; A), Bu,(x+ a(X); A)

This is a difference equation for Bu, /BA. ; its so-
lutions have the form

Bu, (x; ~) a'(~) Bu, (x; ~)
BX (X)

where both Bu, /Bx and v, are periodic in x with

period a. By using (5) and (37) to calculate Bg, /BX,

it can be shown that

e2kkÃ ~ +

+[2mb '(E —U)-b']u', + 2iku,

a' ~u, Bv, ~u,
u+ + u+ —v+ +1k Q+

C. The usual WKB approximation

2mb-'[E —U(x; ~)]=X',

the solutions to the unperturbed problem are

g, (x) =e" " .

(33)

(34)

The use of (34) in (10)-(12), (15), and (16) yields

N+ = —i+ 2Xx,

N„= -i —2',
M =ie"+

M =ie

and

D= -2iA. .

The use of (35) in (20} produces

(35a}

(35b)

(35c)

(35d)

(35e)

~(x„)
p, (x) = " exp +i x,X(x,)+ A.(x,) dx,

As should be anticipated, the ordinary WKB

approximation can be recovered as a special case
of our method. If

U(x; &) = g U exp $2mim[x/a(A)] j . . (39)

From (39) it is clear that a given fractional change
a'/a of the period changes the phase of the ex-
ponential more for large ~x~ than for small ~x(;
this is the origin of the unphysical result (38).

The cure for the difficulty lies in the recognition
that the phase of the exponential should be changed
into exp[2n im fo" d$/a($)] when the period changes
(as in the ordinary WKB approximation). Thus,
when the period changes, we replace Eq. (3) by

(
d2

z zmK *(E —U(z(z, zl;z(z))() (=0, (40(

(38)
Because M, /D is a reflection coefficient, the
presence of terms linear in x in (38) is an un-

physical result: a given fractional change a'/a
of the period should not reflect more strongly for
large )x( than for small )x).

The difficulty arises from a poor formulation of
the problem. Let us suppose for the moment that
U(x} is representable as a Fourier series

(36) where U(z; A. ) is periodic with unit period for fixed X
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U(z + 1; X) = U(z; )(.) (41)

(42)

replaced by a ]J),(x, y; X) which satisfies the equa-
tion

+ 2 m K '(Z —U(g (x, ) ); 1)]) (', (x, ); X) = 0,

(43)
The analysis of Sec. IIA can now be repeated. The
results have the same form as before [Eqs. (8),
(9), (13), and (14)], except that the old P, (x; A. ) is

and the quantities A, 'N„~'M„and D are replaced
by

8( (x, y; }].} 8$, (x, y; X) 8$, (x, y; A.}, { }
8'P, (x, y; &) 8']I), (x, y; &)

8(,(x, y; A, ) 8$, (x, y; A. ) 8(,(x, y; X),
( )

8'y, (x, y; }).) 8'(I), (x, y; }].)

(44}

(45)

8), (x, y;X) 8) (x y X) 8( (x, y;X),
( )

8'P (x y X) 8')C) (x y X)
Bx

(46)

sy (x, y;X) 8y (x, y;~) 8y (x, y;}].), 8'y (x, y;X) 8'y (x, y;X)
~X

(47)

+)3p, y + 9$p
ex ax y-"g, X,= X{@)

The relation (19) is replaced by

—= {N+ + X )A.
' .dD

dx
{49)

Additional insight into the above modifications
used to deal with a varying period can be obtained
by using z instead of x as an independent variable.
The approximate equation (43) goes over into

Making the approximation of keeping only the
transmitted wave again yields approximate so-
lutions of the form (20).

The analysis of Sec. II 8 also goes thxough as
before. We look for a solution to (40) in the form

P(x) = c, (x)g, (x, x; X(x)) + c (x)(c) (x, x; X(x)), (50)

and fix c& by demanding that

,( ) ( (
)1( (x, );))

(
)8( (x, )t;))

Bx ~x y=g, )=xQ)

The coefficients c, can be shown to satisfy equa-
tions of the same form as before [Eqs. (25) and
(26)] except that now the X'N„A, 'M„and D which
appear are given by Eqs. {44)-(48). The remain-
der of Sec. II 8 also goes through as before with
the replacement of the old $„X„M„andD by
the new,

{52)

which is to be integrated with a and A. fixed. Un-
der this change of variables,

1 8 8 (y —x)a'(y) 8 8

8x a{y) sz" 8y [a(y)]' 8z 8y '

and

(y-x)a'(y) 8' »' a'(y)
sx 8y [a(y)]' 8z' +

a(y) 8y sz [a(y)]' 8z

With the aid of these formulas it can be shown that
the terms of X'M& and ~'N+ are proportional either
to a' or to X', and that the unphysical increase of
the reflection coefficient with increasing x has
been eliminated. As an example, we take X'M+
which goes over from the form (45) into
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1 &(t), (z; a, X) 8(, (z; a, X),
( }

&g, (z; a, A)

(53)

The right-hand side of (53) is to be evaluated at
z =z(x, x), a =a(x), and A. =X(x). The solutions to
(43) have the form

g, (x, y; A. }= exp[a ik(y; X)x]u, (x, y; X), (54)

(55)

where both eu). /&x and ~ are periodic with period
a(y) for y and X fixed. However, the change to
the variable z shows that

where u, (x, y; A. ) is periodic with period a(y) for y
and A, fixed. The argument which led to (37) goes
through as before to yield

&u, (x, y; X) a'(y) eu), (x, y; X)

n = .. . , -2, —1, 0, 1, 2, . . . .
The method used to obtain the exact results for
this model is outlined in the Appendix.

The parameters are chosen to have values which
are reasonable for a crystalline solid. The mass
m is the electron mass, the unperturbed well
depth V, is 5 eV, and the unperturbed constant
period a, introduced via z =x/a, [see E(l. (40) and

(42)], is chosen to be 2 A. With these parameters,
the first allowed band extends from -2.636 to
5.274 eV.

The initial conditions used to calculate the values
of P shown in the tables correspond to a Bloch
wave traveling to the right in the unperturbed lat-
tice at x = 0 [c (0) =0 in E(I. (21) and (22) or in

(50) and (51)]. The normalization of P is arbi-
trary.

A. An applied external field

(y —x)a'(y) &u,

[a(y)] ' sz

+ ( „) '()). (57) Z(x) = -eBx, (50)

Data for a constant external field, introduced
via

By comparing (56) and (57) with (55), it is clear
that

ya'(y) 9u„
v, (x, y, X) —

[ ( )],
(58)

Thus, v, now contains a term linear in y which
cancels the term linear in x in (55) when y is set
equal to x and eliminates the unphysical increase
of the reflection coefficient with increasing x.

(-V + X}, n& z& n+ z
U(z; ~) =

n+-', & ~& n+ 1
(5S)

III. COMPARISON OF APPROXIMATE AND

EXACT RESULTS FOR A KRONIG-PENNEY MODEL

The present section applies the approximation pro-
posedin Sec. II to a Kronig-Penney model and com-
pares the result with Zener's ad hoc approxima-
tion and with exact results. Both application of an
external field and variation of the period are con-
sidered. The potential is introduced in the form
contemplated in E(l. (40):

are presented in Table I. The value h =-5&10'
V/cm chosen for the field is of the order of mag-
nitude of the breakdown field in real solids, and
is, therefore, an approximate upper limit to the
field strengths of interest. Because the approx-
imation method is most accurate in the middle of
the band, initial conditions have been specified in
the middle of the band and the Schrodinger equa-
tion integrated in both directions until the band
edges are reached. The columns in Table I
labeled "neglecting polarization" are for an ap-
proximating potential which is constant between
discontinuities instead of slanted with slope -eh.
The column labeled "Zener" is the result of using
Zener's ad koc replacement of exp(ikx) by
exp(i fkdx) to approximate the phase change in g.
The columns labeled "&KB"are the results of
using the approximation, proposed in Sec. II, of
keeping only the transmitted wave.

It will be noticed that neglecting polarization is
a poor approximation for cells 64 through 78. The
reason for this is that the argument of the Airy
functions which appear in the exact solutions [see
the Appendix, especially Eq. (A14)] is small for
these cells; Airy functions of small argument are
not well approximated by the trigonometric and/or
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TABLE I. Comparison for a linearly varying external field with 8= -5.0x 10 V/cm and

E =5.225 eV.

Magnitude of g Phase of g

Cell
no.

Value
of X~

Neglecting
Exact polarization WEB Exact

Neglecting
polarization WKB Z ener

10
12
14
16
18
20
22
24
26

28
30
32
34
36
38
40
42
44

46
48
50
52

56
58
60
62

64
66
68
70
72
73
74
75
76
77
78

0.00
2.00
4.00
6.00
8.00

10.00
12.00
16.00

20.00
24.00
28.00
32.00
36.00
40.QO

44.00
48.00
52.QO

56.00
60.00
64.00
68.00
72.00
76.00
80.00
84.00
88.00

92.00
96.00

100.00
104.00
108.00
112.00
116.00
120.00
124.00

128.00
132.00
136.00
140.00
144.00
146.00
148.00
150.00
152.00
154.00
156.00

0.4449
0.4347
0.4263
0.4195
p.4141
o.41oo
0.4069
0.4030

0.4000
0.3973
0.3970
0.3985
0.3981
o.4ooo
p.4024
0.4035
0.4077

0.4091
0.4139
0.4162
0.4209
p.4255
0.4288
Q.4350
O.44O8

0.4455

0.4514
0.4590
0.4674
0.4760
0.4852
0.4952
0.5059
0.5166
0.5451

0.8005
0.6651
0.7506
0.9663
0.7483
0.9728
1.1309
1.0620
0.9527
1.0429
1.3307

0 4467
0.4359
0.4272
O.42O3

0.4150
0.4111
0.4083
0.4042

0.3999
0.3966
0.3976
0.3986
0.3971
0.4OO4

0.4019
0.4032
0.4075

0.4084
0.4136
p.4158
0.4200
0.4256
O.42VV

0.4342
0.4408
0.4447

0.4500
0.4577
0.4665
0.4754
0.4863
O.4966
0.5074
0.5171
0.5221

0.5251
O. 54V8

0.5954
0.6090
p. 6445
0.6597
0.7151
0.7662
0.8005
o.8488
0.9447

Q. 7057
0.5481
p.4945
0.4657
0.4475
0.4350
0.4261
0.4144

o.4ovv
0.4039
0.4019
0.4011
0.4013
0.4023
0.4038
0.4057
0.4081

0.4109
0.4141
0.4176
0.4214
0.4256
O.43O2
0.4351
0.4405
0.4463

0.4526
0.4595
0.4670
0.4752
0.4844
0.4945
p. 5059
0.5187
0.5335

0.5507
0.5712
0.5962
0.6280
0.6707
0.6987
0.7338
0.7799
0.8457
P.9540
1.2151

-98.57
-95.61
-92.68
—89.77
-86.88
-84.01
-81.17
-75.54

-70.01
-64.56
-59.20
-53.93
-48.75
-43.67
-38.66
-33.76
-28.94

-24.22
-19.59
-15.07
-10.63
-6.30
-2.07

2.05
6.07
9.97

13.77
17.45
21.01
24 44
27.75
30.92
33.96
36.83
39.45

42.16
44.56
46.51
48.73
50.52
51.44
52.01
52 ' 54
53.19
53.87
54.35

-98.80
-95.83
-92.90
-89.98
-87.08
-84.21
-81.36
-75.72

-70.17
-64.72
-59.35
-54.07
-48.88
-43.78
-38.76
-33.85
-29.02

-24.29
-19.65
-15.11
-10.66
-6.32
-2.08

2.06
6.09

10.01

13.82
17.51
21.09
24.54
27.85
31.04
34.10
37.02
39.79

42.38
44.77
47.03
49.12
50.90
51.76
52.54
53.19
53.78
54.32
54.78

-100.13
-97.00
-93.94
-90.93
-87.96
-85.03
-82.12
-76.40

-70.77
-65.25
-59.82
-54.49
-49.25
-44,10
-39.05
-34.09
-29.22

-24.45
-19.78
-15.21
-10.73
-6.36
-2.09

2.07
6.12

10.06

13.88
1V.58
21.16
24.62
27.94
31.12
34.16
37.04
39.77

42.82
44.69
46.85
48.80
50.49
51.23
51.89
52.45
52.91
53.23
53.33

-99.16
-96.11
-93.12
-90.15
-87,22
—84.32
-81.45
-75.78

—70.20
-64.73
-59.35
-54.06
-48.86
-43.75
-38.74
-33.82
-28.99

-24.26
-19.63
-15.09
-10.65
-6.31
-2.08

2.05
6.07
9.99

13.79
17.47
21.03
24.47
27.78
30.96
34.00
36.90
39.64

42.23
44.64
46.86
48.89
50.69
51.49
52.23
52.89
53.47
53.94
54.28

exponential functions which appear when polar-
ization is neglected.

B. A varying period

Both a linearly varying period, introduced via
Eq. (42) with

a(x) =a, + &a cos(Cx), X(x) =0 (62)

were considered. Because the top of the band

a(x) = a, + xb,a, &(x) =0

and a sinusoidally varying period, introduced via
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changes quite rapidly with the period, the number
of cells through which the Schrodinger equation
can be integrated before arriving at the band edge
varies considerably with energy in the linear
case. For this reason, only data for the sinu-
soidally varying period, which are believed to give
a better picture of the way the accuracy of the
approximation changes with energy, are presented.
Table II presents data for an energy near the top
edge of the band, and Table III presents data for

an energy in the middle of the band. Table IV
lists the root-mean-square fractional error 6 in
magnitude and in phase as a function of energy
for three different choices of the parameters C
tdetermined by n; see Eq. (64)] and 4z. It is
defined by

where x& is the exact value at the end of the ith

TABLE II. Comparison for a sinusoidally varying
period with Aa=0. 2 A, n =20, and E=3.55 eV.

TABLE III. Comparison for a sinusoidally varying
period with Aa =0.2 A, n =20, and E=0.5 eV.

Magnitude of g Phase of P
Magnitude of P Phase of P

Cell Value
no. of X~ Exact WKB Exact WKB Z ener

Cell Value
no. of XN Exact WKB Exact WKB Zener

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

QQ

31
32
33
34
35
36
37
38
39
4{}

0.00
2.20
4.37
6.50
8.57

10.58
12.53
14.43
16.28
18.10

19.90
21.70
23.52
25.37
27.27
29.22
31.23
33.30
35.43
37.60

39.80
42.00
44.17
46.30
48.37
50.38
52.33
54.23
56.08
57.90

59.70
61.50
63.32
65.17
67.06
69.01
71.03
73.10
75.23
77.40
79.6{}

0.7363
0.7313
0.6905
0.5721
0.3659
0.2903
0.5518
0.7103
0.5526
0.2687

0.5542
0.7170
0.5109
0.2761
Q.5314
0.7342
0.7662
0.7027
0.6233
0.5689

0.5449
0.5370
(}.5222
0.4776
0.4016
0.3624
0.4412
0.5223
0.4V19
0.3663

0.4441
0.5301
0.4602
0.3V24
0.4425
0.5400
0.5755
0.5716
0.5684
(}.5873
0.6285

0.7363
0.6323
0.5334
0.4855
0.4626
0.4512
0.4453
0.4421
0.4404
0.4396

0 ~ 4393
0.4396
0.4404
{}.4421

4453
0 ~ 4512
0.4626
0.4855
0.5334
0.6323

0.7363
0.6323
0.5334
0.4855
0.4626
0.4512
0.4453
0.4421
P 4404
0.4396

0.4393
0.4396
p 44p4
0.4421
p 4453
0.4512
0.4626
0.4855
P.5334
P.6323
Q. 7363

0.00
3.03
6.04
8.98

11.69
13.55
15.90
18.72
21.51
23.45

25.33
28.11
30.86
32.73
34.82
37.66
40.61
43.59
46.55
49.50

52.44
55.36
58.27
61.10
63.76
66.1.3
68.48
71.04
73.61
75.82

77.91
80.40
82.93
85.17
87.43
90.06
92.86
95.72
98.62

101.55
104.53

0.00
3.04
6.05
8.96

11.74
14.40
16.95
19.41
21.79
24.14

26.45
28.77
31.10
33.48
35.91
38.42
41.02
43.v1
46.49
49.35

52.29
55.33
58.34
61.25
64.03
66.68
69.23
71.69
74.08
76.42

78.74
81.05
83.39
85.76
88.20
90.71
93.31
96.00
98.78

101.64
104.57

0.00
3.01
5.95
8.78

11.51
14.13
16,66
19.11
21.49
23.83

26.14
28.46
30.80
33.18
35.63
38.15
40.78
43.50
46.34
49.27

52.29
55.30
58.23
61.07
63.80
66.42
68.95
71.39
73.78
76.11

78.43
80.75
83.08
85.47
87.91
9(}.44
93.06
95.79
98.62

101.56
104.57

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

30
31
32
33

35
36
37
38
39
40

0.00
2.20
4.37
6.50
8.57

10.58
12.53
14.43
16.28
18.1Q

19.90
21.70
23.52
25.37
27.27
29.22
31.23
33.30
35.43
37.60

39.80
42.00
44.17
46.30
48.37
50.38
52.33
54.23
56 p8
57.90

59.70
61.50
63.32
65.17
67.06
69.01
71.03
73.10
75.23
vv. 40
79.60

0.8771
0.8753
0.8696
0.8694
0.8683
0.8667
0.8695
0.8672
0.8708
0.8687

0.8720
0.8703
0.8733
0.8725
0.8748
0.8762
0.8765
0.8806
0.8790
0.8796

0.8786
0.8726
0.8714
0.8695
0.8666
0.8692
0.8668
0.8697
0.8686
0.8706

0.8704
0.8717
0.8724
0.8729
0.8753
0.8747
0.8791
0.8781
0.8801
0.8808
{}.8760

0.8771
0.8766
0.8754
0.8740
0.8728
0.8719
0.8713
0.8710
0.8708
0.8708

0.8708
0.8708
0.8708
0.8710
0.8713
Q.8719
0.8728
0.8740
0.8754
(}.8766

0.8771
0.8766
0.8754
0.8740
0.8728
0.8719
0.8713
P.871(}
0.8708
0.8708

0.8708
0.8708
0.8708
0.8710
0.8713
0.8719
0.8728
0.8740
0.8754
0.8766
0.8771

0.00
2.04
4.04
6.00
7.90
9.73

11.51
13.23
14.91
16.56

18.20
19.84
21.50
23.19
24.92
26.72
28.57
30.49
32.47
34.49

36.53
38.57
40.57
42.53
44.43
46.26
48.04
49.76
51.44
53.09

54 74
56.37
58.03
59.72
61.46
63.25
65.10
67.03
69.00
71.02
73.07

0.00
2.04
4.05
6.01
7.92
9.76

11.54
13.26
14.94
16.59

18.23
19.87
21.53
23.21
24.95
26.74
28.59
30.50
32.48
34.49

36.53
38.57
40.58
42.54
44.45
46.29
48.0 v

49.79
51.47
53.12

54.76
56.40
58.06
59.75
61.48
63.27
65.12
67.03
69.01
71.02
73.06

0.00
2.04
4.05
6.02
7.93
9.77

11.56
13.29
14.97
16.63

18.27
19.90
21.56
23.25
24.97
26.76
28.60
30.51
32.48
34.49

36.53
38.57
40,58
42.55
44.46
46.30
48.09
49.82
51.50
53.16

54.80
56.44
58.09
59.78
61.51
63.29
65.14
67.04
69.01
71.{}2
73.06
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cell and y& is the value calculated from the "WKB"
or "Zener" approximations. In all cases the
Schrodinger equation was integrated for two
periods of the periodic perturbation (for a distance
4v/C).

The parameter C was chosen to have values
given by

2 v[s2 (gs)2] -1/2 n
-I (64)

C. Comments and conclusions

Examination of the data shows that the approx-
imation is best in the middle of the band, as

where n is an integer; this is done so that one
period of the perturbation would correspond to n

of the original cells [Eq. (64) is obtained by putting
x=y =2m/C and z =n in Eq. (42)]. With n an inte-
ger, the perturbed potential is then periodic with
the "superperiod" 2v/C. The presence of this
superperiod implies the existence of additional
gaps (minigaps) in the spectrum. These minigaps
show up in our exact solutions. The accuracy of
our approximation method is unaffected by the
presence of the minigaps.

Examination of Tables 0 and III shows that the
approximate "WKB" magnitude is periodic with
the superperiod while the exact solution is not.
This is a consequence of the initial conditions,
which correspond to a wave traveling to the right
in "8'KB"aPPxoximation. The exact solution for
these initial conditions contains an admixture of
left-traveling wave, which spoils the periodicity
of the exact magnitude.

should be expected from the fact that the approx-
imation neglects the reflections which become
increasingly important as the band edge is ap-
proached. The simple "Zener" approximation to
the phase is clearly superior when the perturba-
tion is a constant external field; the "Zener" and
"WKB" approximations to the phase are of com-
parable accuracy when the perturbation is a vary-
ing period. The derivative P', for which the data
were omitted, is approximated with about the
same accuracy as P.

IV. TURNING-POINT PROBLEMS AND EXTENSION

TO THREE DIMENSIONS

At a band edge, the solutions g, (x; X) and P (x; A. )
defined by Eq. (5) and (6) are no longer linearly
independent and their Wronskian D(X) [defined by
(12)] vanishes. As a consequence, the approxi-
mation (20) fails. This failure is due to the fact
that the band edge is a turning point. Unfortunate-
ly, there is no comparison equation which can be
used to solve the turning-point problem in the way
that Airy's equation is used to solve the problem
of an isolated turning point in ordinary WKB
theory.

Several possible methods of handling the turning-
point problem are currently under investigation
and will be discussed quantitatively in a subse-
quent publication. One method is to take the next
term in the analog of the Bremmer series and
sum up all the once-reflected waves. This has
been shown to be an effective alternative to the
use of Airy's equation in ordinary WKB theory. "

TABLE IV. Comparison for a sinusoidally varying period. Root-mean-square deviation of the magnitude and phase
of the wave function.

Aa =0.2 A, n =20

Phase

Aa =1.0 A, n =20

Phase

Aa =1.0 A, n =100

Phase
(eV) Magnitude WEB Z ener Magnitude Zener Magnitude WEB Zener

3.55
3.50
3.00
2.50
2.00
1.50
1.00
0.50

—0.10
-0.50
—1.00
-1.50
—2.00
—2.45
-2.50
-2.55

1.6215
1.3759
p.8551
0.3032
0.0927
0.0553
0.0367
0.0257
P.0181
0.0144
P.0113
0.0090
0.0076
0.0297
0.0625
0.4390

0.1266
0.1152
0.0623
0.0396
0.0265
0.0181
0.0121
0.0076
0.0036
0.0019
0.0033
0.0072
0.0154
0.0597
0.0859
0.1667

0.0903
0.0801
0.0438
0.0304
0.0232
0.0186
0.0154
0.0130
0.0180
0.0097
0.0086
0.0076
0.0066
0.0152
0.0297
0.0945

2.9923
0.7606
0.2288
0.1109
0.0679
0.5021

0.1751
0.0676
0.0340
0.0377
0.0858
0.3384

0.2062
0.1205
0.0914
0.0726
0.0592
0.1304

2.5090
0.1755
0.0569
0.0333
0.0219
0.0285

0.0634
0.0282
0.0103
0.0148
0.0377
0.1366

0.0848
0.0571
0.0421
0.0337
0.0288
0.0300
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A second possibility is to tx'y to go Rround the
turning point in the complex plane. This approach
reproduces the usual connection formulas for an
isolated turning point in ordinary %KB theory";
it can be expected to work if the necessary ana-
lyticity can be established and if there are no
more than three Stokes lines emanating from the
turning point. A third possibility is based on the
observation that the two Bloch solutions e'"u, (x)
and e '""u

~ (x) are no longer linearly independent
at the band edge. It may be possible to get through
the band edge by taking linear combinations (with
slowly varying coefficients) which remain linearly
independent at the band edge and reduce to the
Bloch solutions well away from the band edge.
The slowly varying coefficients could presumably
be chosen to be solutions of a suitably averaged
Schrodinger equation which still has the turning
point, but whose potential has had the fluctuating
periodic variations averaged out.

The extension to three dimensions also remains
to be carried out. The essential difficulty in ex-
tending the Bremmer series approach to three
dimensions is that it is necessary to consider sur-
faces of discontinuity rather than points of dis-
continuity in the potential. P and its normal der-
ivative must then be matched along a whole sur-
face, not just at a point. Doing this requires
introducing, in addition to the traveling-wave
Bloch solutions, the exponentially increasing and

decreasing solutions which are normally rejected.
g need not have —and in general will not have —the
same analytic form on either side of the dis-
continuity; for this reason those solutions which
decx'ease expoIlentiRlly R8 oQ6 moves away froIQ
the discontinuity become admissable, just as in
the theory of surface states.

1 g(x„,) P,(x„,)
P'(x„,) y,'(x„,)

(A3)

4,(x. ,) 4(x. ,)
W

(Al(x.—,) 0'(x. ,),
where W is the Wronskian

(A4)

(A6)

1
T„(x„,x„,) =—

4, (x„) y,'{x„,)
1 y, (x„) y, (x„,)

fi y

y, (x„) y, (x„,)

(A7)

(A8)

(A9)

(A10)

gr 41( tl I) -42( tl-1)
(A5)

y,'(x„,) y,'(x„,)
Because Q, and Q, are linearly independent, Wis
not zero. It can be easily shown from Schro-
dinger'8 equation that the value of 8'is independent
of the particular point x„,at which (A5) is eval-
uated. The solutions (A3) and (A4) can be inserted
back in (A1) and (A2) to give the values of g and g'
at any point x. In particular, the values of g and
g' at the point x„are given by

(((x.) 3 T ( 0(x. ,)
+n r +n-y

where the, transfer mghix T(x„,x„,) has the ele-
ments

APPENDIX: EXACT SOLUTIONS FOR A PERTURBED

KRONIG-PENNEY MODEL

P(x) =c,P, (x) + c,P, (x),

with the derivative given by

y'(x) = c,g', (x) + c,P,'(x)

(Al)

(A2)

where c, and c, are constants. If P and g' are
given at some point x„„then (Al) and (A2) can
be solved for c, and c, to obtain

Solutions to the Schrodinger equation for a se-
quence of (not necessarily identical) cells can be
obtained with the aid of a transfer matrix. Sup-
pose P, (x) and P, (x) are two linearly independent
solutions of a one-dimensional Schrodinger equa-
tion. The general solution then has the form

It is easy to show that the elements T&(x„,x„,) do
not depend on which pair of linearly independent
solutions P„Q, of the given Schrodinger equation
is used to compute them, and that

T(x„„,x„,) = T(x„„,x„)T(x„,x„,) . (A11)

If the transfer matrix T which transfers P and g'
across a single cell can be calculated for each
member of a sequence of cells, the transfer ma-
trix which transfers g and P' across the whole
sequence of cells can be constructed by multiply-
iQg together the trRnsfex' matrices fox' 6Rch cell in
accordance with the rule (A11). If all the cells are
the same, this matrix multiplication can be easily
carried out by diagonalizing the single-cell trans-
fer matrix. Even if the cells are different, so
that the single-cell transfer matrices cannot be
simultaneously diagonalized, the matrix multipli-
cation can still be easily carried out on a com-
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puter. The transfer matrix method outlined above
is equivalent to the one introduced by Kerner"
from a somewhat different point of view.

The potential for the (perturbed or unperturbed)
Kronig-Penney model is a piecewise continuous
function. A transfer matrix for each subinterval
in which the potential is continuous is easily con-
structed. In particular, the transfer matrix for
an interval of length a in which the potential has
the constant value U, is

( cos(Ka) & ' sin(za) )Tx+ ax =

\ i& sin(za) cos(va)

where

K = [2mb '(E —U,)]'" (A13)

with E the energy. The transfer matrix for an
interval from x„,to x„ in which the potential is
U, —eSx is

( m[Ai(y„)Bi'(y„,)-Bi(y„)Ai'(y„,)] ~o. '[Ai(y„) Bi(y„,)-Bi(y„)Ai(y„,)] )
T x„,x„

( -mo. [Ai'(y„) Bi'(y„,)-Bi'(y„)Ai '(y„,)] -m[Ai'(y„) Bi(y„,)-Bi '(y„)Ai (y„,)] f
(A14)

where o = (2meS/K')"', y~ =a][(U, —&)/eh] -&~]
and Ai and Bi are the Airy functions as defined by
Magnus, Oberhettinger, and Soni" and by
Abramowitz and Stegun. "

The transfer matrix (A14) was used to calculate
the exact results (including polarization) for a
constant external field in Table I. The transfer
matrix (A13) was used to calculate the results for
a constant external field neglecting polarization
in Table I and the exact results for a varying

period in Tables II-IV. Because the polarization
is small for physically realistic field strengths,
transfer matrices for nonconstant external fields,
which can no longer be constructed from Airy
functions, can be readily calculated to any desired
accuracy by treating the variation in potential
due to the external field across a single cell as a
perturbation and applying standard perturbation
methods.

*Work done in partial fulfillment of the requirements
for the M.S. degree.
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