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Numerical simulation of electrical conductivity in microscopically inhomogeneous materials
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The electrical transport properties of some microscopically inhomogeneous disordered materials were

simulated by numerical calculations of the conductivity of cubic resistor networks with correlated bonds,
both above and below the percolation threshold. The major effect of increasingly strong correlation
among the metallic bonds is to shift the percolation threshold to lower values of the allowed metallic
volume fraction, resulting in C* = 0, 15 ~ 0.02 for the continuous-percolation limit. The numerical data
were utilized for a quantitative fit of the electrical-conductivity data of metal-ammonia solutions and of
alkali-tungsten bronzes, which undergo a continuous metal-nonmetal transition via the inhomogeneous
transport regime.

I. INTRODUCTION

The physical picture for continuous metal-non-
metal transitions in some disordered materials~
rests on the notion that, as a consequence of fluc-
tuations, the material becomes microscopically
inhomogeneous with regard to electron transport.
Provided that the Debye short correlation length
5 for fluctuations is long compared to the phase
coherence length for the conduction electrons and
that tunneling corrections can be disregarded,
semiclassical transport theory is applicable. The
problem then reduces to that of percolation of
classical particles in a random potential. The
material is viewed as consisting of a random sub-
microscopic mixture of metallic and nonmetallic
regions. Let C be the fraction of the total volume
which is allowed (or metallic) at the Fermi energy.
When C is sufficiently large, continuous metallic
paths extend throughout the material, so that elec-
trons at the Fermi energy are in extended states.
When C decreases to some critical value C*, the
percolation threshold, extended metallic paths
cease to exist, whereupon the condition for local-
ization in the disordered system is C= C*.

Classical percolation theory has to be extended
in two directions before it can be applied to the
study of transport properties in the inhomogeneous
regime. First, one has to consider the continu-
ous-percolation problem in addition to discrete-
lattice models. In this context, Scher and Zalleni4
have proposed that for all three-dimensional lat-
tices C~ =fp„where f is the packing fraction and

P, is the critical site concentration for that lattice.
These considerations led to the value of C*=O.15
in the continuous-percolation problem. Numerical
studies by Skal et al. of the percolation prob-
ability P(c) for a particular random potential in a
cubic lattice, with site correlation extending up

o(c) =o, c& c* (1.la)

g(C) =g(C —C*)", C* & C&0.4, y= 1.6 (1.1b)

o(C)=o(1)(-,'C--,'), O. 4&C;
EMT gives

o(c) =o, c&-.'

o(C)=~(1)(-,'C--,'); C&-,' .

(1.lc)

Thus the EMT overestimates the value of the per-
colation threshold for x= 0, and can, in general,
be expected to result in too low values of o(C) for
C & 0.4 and x4 0.

The failure of the EMT near the percolation
threshold precludes its quantitative application to
the problem of electron transport in the vicinity of
the metal-nonmetal transition. It is apparent that

the third nearest neighbors, resulted in the asymp-
totic value of C* = 0.17. Second, a proper semi-
classical theory of the transport properties has to
be developed. It was demonstrated by three ele-
gant table-top experiments, that transport
properties, such as the electrical conductivity
o(C), cannot be directly related to P(C). Kirk-
patrick~7 has carried out extensive numerical
studies of the conductivity of a simple-cubic re-
sistor network, in which each nearest-neighbor
bond was randomly assigned a conductance o'(1)
with the probability C and o(0) with the probabil-
ity 1 —C. He found that the effective-medium
theory (EMT)~~ 2~ was accurate for 0.4 & C& 1 for
all values of the conductivity ratio x= o(0)/a(1).
However, serious deviations from the EMT oc-
curred for C&0.4 for small values of x (&0.01).
In the limit of x= 0, the current flow within the
resistor network reduces to a bond percolation
problem, for which the percolation threshold is
C~ =0.25 and where numerical calculation results
in"
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either an improved formal theory has to be devel-
oped for C&0.4 and x&0.01 or that one has to re-
ly on the results of numerical simulations. Yone-
zawa and Hori 7' have recently advanced a for-
mal treatment for a sc lattice which improves the
EMT. The extension of this procedure to other
lattices is straightforward. It is, however, not
clear whether this theory is applicable for the
continuous-percolation problem. Concerning nu-
merical simulations, one can utilize Kirkpatriek's
scaling law, '7 Eq. (1.lb), with the value C" = 0.17
to estimate 0 above the percolation threshold for
low values of x (&10 4). A quantitative fit of the
transport data of inhomogeneous materials re-
quires, however, detailed information concerning
o(C) both above and below C*. In simulating the
electrical transport properties of a microscopical-
ly inhomogeneous material, we. are dealing with a
continuous-site-percolation problem, in which any

portion of the material can be randomly metallic
- or nonmetallic. Such a continuous-percolation
problem has to be regarded as the limit of either
site or bond percolation on any lattice as the max-
imum allowed bond length increases relative to
nearest-neighbor separation. Alternatively, one
can impose correlations on neighboring bonds, so
that if a bond is of one type all its neighbors out to
a given correlation distance must be of the same
type This. correlation distance should be taken to
be equal to b. As the latter procedure closely re-
sembles what occurs in disordered materials, we

have undertaken a numerical study of the conduc-
tivity of a simple-cubic resistor network with cor-
related bonds. The major effect of these correla-
tions is to shift the percolation threshold from
C*=0.25 to 0.15+0.02, in accord with the previ-
ous numerical simulations of P(C) for continuous

percolation. ~4'~6 For low x (& 10 4) values the

scaling law (1.lb) with y = 1.6 + 0.2 is retained,
while for C & 0. 5 for all x, the data are found to
faithfully reproduce the EMT results. These fea-
tures confirm Kirkpatrick's conclusions~~ under
more general circumstances. A study of the con-
ductivity data in the rang~ 0 & C & C* results in the
relation o'= o(0)/(1 —o, C), where o = 1/C" (within

an uncertainty range of 0.02). This last result is
of interest for the elucidation of the transport prop-
erties in the pseudosemiconducting regime. Our

numerical results yield detailed information con-
cerning o(C) for small values of C (0& C&0. 5) and

of x (0&x &0.05) which will be useful for the quan-

titative analysis of transport properties in inhomo-

geneous materials. We shaQ discuss briefly the
applications of our numerical results for the anal-
ysis of the conductivity of two systems, metal-
ammonia solutions and alkali-tungsten bronzes,
which exhibit continuous metal-nonmetal transi-
tion via the inhomogeneous-transport regime.

II. CORRELATED RESISTOR NETWORK MODELS

j(r) = c(r)E(r) . (2.1)

This equation may be solved using a finite differ-
ence approximation. Introducing a regula. r cubic
mesh of points (r;$ with spacing 5r, one obtains a
system of linear equations

Q ggq(V; —Vq) = 0,

where

g& ——5ro( —,(r +r&)) .

(2. 2)

(2 2)

V; is the potential at r=r, . Equation (2.2) holds

for all r& not at the surface and i and j correspond
to neighboring sites in the mesh. Kirkpatrick~ '

has pointed out that Eq. (2. 2) is equivalent to the
Kirehoff current law for a regular network of ran-
dom values conductances g&&. Following Kirk-
patrick, * ' we have considered a three-dimen-
sional se array of resistors. The electrodes are
parallel to two faces of the cube. For the other
faces cyclic boundary conditions are imposed by
connecting pairs of points on the opposite faces
through random eonductances. In the original

orkite, i2, fv the fractions C and 1 —C of the bonds

are randomly assigned the values g&&
= 1 and g&&

= x,
respectively. This was accomplished by assign-
ing to each bond a random number 0 &r &1. Then
all bonds for which r falls within a preselected
interval are given the value g&& =x while the others
are characterized by g&& =1. We have used a mod-
ification of Kirkpatrick's original program, which

improved convergence and incorporated bond cor-
relation.

The set of N equations (2.2) was solved by the
Gauss-Seidel relaxation procedure

(n) & n-1&
ggf Vj + gj&~ fjg

Zgay
(2.4)

where n specifies the number of the iteration and

j &i implies that the equation for V; precedes the
one for V& in the loop over the sites. After the re-
laxation procedure converges, the current in the
direction of the average field is evaluated. Assign-
ing the value of unity to the potential differences
between the electrodes, the current is equal to the
numerical value of o(C). The solution converges
rapidly for C above the transition region, but

many iterations are required around and below C .
When correlations between the locations of high

Provided that the Debye short correlation length

for fluctuations exceeds both the internuclear spac-
ing and the phase coherence length of the conduc-
tion electrons, a local conductivity c(r) can be

defined, relating the microscopic current den-

sity I(r ) to the microscopic electric field E(r):
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FIG. 1. Concentration of metallic bonds plotted
against the prescribed number xo. (a) noncorrelated net-
work; (b) nearest-bond correlated network; (c) second-
order correlated network.

and low conductivity bonds are incorporated, an
over-relaxation procedure improved the conver-
gence by an order of magnitude. The over-re-
laxed~~ equations can be recast in the form

I/(n) (I g) y(n-1)

(n)
f Zg«g(/I/g +Z/&«uI'/

Z)& )

values of 0 between 1.6 and 1.9 proved to be ef-
fective.

To explore the consequences of bond correla-
tion effects on ()(C) we have considered three dif-
ferent models which involve increasingly strong
correlations among the bonds.

Model A: ¹arest-neighbor bond correlation.
This was constructed by assigning a random num-
ber r to each bond. Then the six bond numbers
associated with each vertex were averaged re-
sulting in a new set of numbers r'. All bonds
leading to a vertex were assigned the value r' for
that vertex, unless values of ~' were previously
assigned from vertices considered earlier. The
value of g&&

= 1 was then assigned to the conduc-
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FIG. 3. Numerical results for IT in the transition re-
gion for model B obtained using different sets for ran-
dom numbers.

tance of all the bonds for which r' & ra, where
0&so&1 was a preassigned number. For those
bonds where r'&ro, we tookg&&=x. For the un-
correlated random distribution (r}, the probabil-
ity P(r) is constant in the range 0 &)"& l and thus
C=1-xo, as is evident for the numerical data in
Fig. l. The correlated distribution (r'} results
in a symmetrical distribution function P(r') which
peaks about r'=0. 5. In this case, as demon-
strated by the numerical data in Fig. 1, C 1 -xo.
The concentration of metallic bonds is identified
with the metallic volume fraction C.

Model B: Hjgh conductance clusters. Random
numbers (r}are assigned to each vertex If a.
site is characterized by a value of x &xo with xo
being a preassigned value, all the previously un-
assigned bonds leading to it were all given the val-
ue g&&=1, whereas g~&=x was given when r &xo.
The concentration of metallic bonds was again de-
termined as in model A.

Model C: Second-order bond correlation. The
averaging procedure in model A was iterated once
more on the first-order correlated set fr'} re-
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suiting in a new set of correlated random numbers
fr") We .then assigned the values g&&

= 1 for r"
&no, or g&&=x for x''& ro, with 0&so&1. The dis-
tribution function P(r") peaks again at about r"
=0.5, and, as is apparent from Fig. 1, Ct1 -ro.
The counting procedure for the concentration (i.e. ,
the volume fraction C) of metallic bonds was per-
formed as for model A. This second averaging
process results in a spatial propagation of the
bond correlation.

To demonstrate the effects of the various bond
correlation schemes on the distribution of metal-
lic bonds, we have defined a certain configuration
of z bonds around each vertex in the lattice and
counted the number N(n) of sites for which n out
of the z bonds are metallic. Thus g'„.ON(n) is
equal to the total number of sites in the lattice.
For the uncorrelated system N(n) =(„')C"(1—C)'
The histograms portrayed in Fig. 2 for z = 22
clearly illustrate the increase of the contribution
of higher-n values, which is due to the effect of in-
creasingly strong correlation among the bonds.

The numerical studic- reported below were per-
formed for an 18&18&18 network. %'e have stud-
ied the effect of the finite sample size on the stat-

C

FIG. 7. Comparison of 0.(C)™with the numerical
values of obtained for model A.

istical fluctuations in the conductivity data by us-
ing different sets of random numbers. The effects
of statistical fluctuations (see Fig. 3) are more
pronounced near the percolation threshold for low-
x (& 10 ) values. As expected, the statistical fluc-
tuations in the transition range mere somewhat
la.rger for the doubly correlated samples (model
C) than for models A and B. We also note that
changing the sample size from 15&15&&15 to 18
&&18&18 has practically no effect on the numerical
results.

III. NUMERICAL STUDIES

Conductivity data for the three bond correlated
models are presented in Figs. 4-6. Several
features of these results will be now considered.
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determination of A and p in the power law cr(c) =A(C —C*)~
near threshold. The values of A and of p are summa-
rized in Table I.
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TABLE I. Fit of the numerical conductivity data for
cubic networks in the region C*& C & 0.4 to the power law
~(c)/~(1) =A (c —c+)'.

Two-parameter fit Fitwithp=1. 6

TABLE II. Analysis of conductivity data for low-C
(& C*) values for correlated cubic networks. Values of
G. , presented herein, were obtained from the best fits
to the numerical results (see Fig. 9) according to Eq.
3.1).

Network

Noncorrelated

Nearest-bonds
correlation
(model A)

Clusters
(model B)

1.7

1 5

C* A C* A

0.25 2. 9 0.25

0 18 2 3 0 184 2 0

0. 18 1.3 0. 183 1.6

Network

Noncor related

Nearest bond
correlation (model A)

Clusters (model 8)

Second or der
correlation (model C)

0. 25

0. 20

0. 18

0, 16

+=10"
0.25

0. 21
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FIG. 9. Fit of numerical values of cr at 1.ow C (& 0. 15)
to the relation 0(c) =0(0)/(1 —nC). The best values of

are summarized in Table II.

As i.s evident from Fig. 7, the EMT is accurate
for all values of x for high C (&0.5) and over the
whole C range for high x (&0.05). We thus con-
firm Kirkpatrick's conclusions concerning the
range of validity of the EMT, but now under more
general circumstances.

In the transition region 0. 1 & C &0.4 the results
, for x &0.05 exhibit a systematic trend towards
higher conductivity with increasing degree of cor-
relation. This can be most readily understood by
referring to the limit x-0, the strict percolation
problem. Approaching continuous percolation, by
increasing the degree of bond correlation, the per-
colation threshold decreases from C* = 0. 25 for
the uncorrelated case to a lower value. Ne have

adopted two methods to determine the percolation
threshold from the numerical conductivity data at
low x (= 10 5). First, a fit to Kirkpatrick's scaling
law~ o(C) =A(c —C*)" was performed taking for
the "best" value for the exponent y= 1.6. Second,
a two-parameter fit was performed. Figure 8 dis-
plays a log-log plot of the conductivity vs C- C*
for several choices of C~. The best estimate of
C* is taken for that value where the power-law de-
pendence holds over the range C=0.2-0.4. From
the data summarized in Table I, we conclude that
the percolation threshold for the conductivity in
bond correlated networks is C* = 0.17 + 0.01 for
models A and J3, slightly decreasing to C~ =0.145
a 0.02 with extending the correlation ra, nge in
model C. The uncertainties in these estimates
originates from statistical fluctuations of the data
in the transition range. Our data result in the val-
ue C* = 0.15+ 0.02 for the continuous-percolation
limit. This value of C~, obtained from the con-
ductivity data, practically coincides with the esti-
mate' C~ =0.15 and with the numerical result 6

C* = 0. 17 obtained for the percolation threshold in
the limit of continuous percolation. Our data ap-
pear sufficiently reliable to rule out any discrep-
ancy larger than 0.02 between C values for o(C)
and for P(C). Thus, in analogy to the case of site
percolation, the continuous -bond-per colation
problem should be characterized by a relation of
the form o'(C) =P(C)E(c), where F(c)=0 for C& C*.

For low-C (&0.1) values, the EMT results in
the asymptotic formula

(3.1)

where n = 3. Thus n = 1/C* since C* =
& in the EMT.

If we reinterpret Eq. (3.1) by replacing the EMT val-
ue of o, = 3 by the actual value n = (C") ~ for the cor-
related networks, a good fit of the numerical data
is obtained in the low-C range. The best fits ob-
tained using Eg. (3.1), displayed in Fig. 9 and in
Table II, demonstrate that in all cases ~ ~ = C*
within the uncertainty range 0.02 for C* estimated
from the conductivity threshold.
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IV. ANALYSIS OF CONDUCTIVITY DATA IN SOME

MICROSCOPICALLY INHOMOGENEOUS MATERIALS

We now apply the conductivity data obtained
herein from numerical simulations to (i) metal-
ammonia solutions2~ and (ii) alkali-tungsten
bronzes which undergo a continuous metal-non-
metal transition via the inhomogeneous transport
regime. Cohen and Jortner ' have recently proposed
that in I.i-NH3 solutions the metallic propagation
regime is separated from a nonmetallic regime
by a microscopically inhomogeneous regime w'here

the metal concentration fluctuates locally about
either of two mell-defined values Mo and Mz where
Mo &M~, the local concentration remaining near Mo
or M~ over radii which are approximately equal to
the Debye short correlation length for concentra-
tion fluctuations. This physical picture is strongly
supported by concentration-fluctuation determina-
tions based on chemical-potential measurements
in I i and Na, solutions ' ~ and by small-angle x-
ray and neutron-scattering ' data in Li solutions.
The limits of the inhomogeneous regime were de-
termined by a combination of concentration-fluc-
tuation measurements, electrical-conductivity,
Hall-effect, andparamagnetic susceptibility data
resultinginMO—- 9 mole percent metal (MPM)andM&
= 2. 3 MPM for both I i-NH, at 223 'K and Na-NH,
at 240 'K, from the experimental data x=1.2
&&10 for I i-NH~ at 223 'K, resulting in the C

iO-I-

I02-
b

b io&-

I I I I I I ~ I

0.2 0.4 0.6 0.8 I.O

C

FIG. 11. Analysis of conductivity data of alkali-tung-
sten bronzes at 300 K. Experimental data (Refs. 37 and

38) are normalized to 0(1)=7X104 (0cm) . The solid
curve represents results of numerical simulation for
model A with X=10 3 for C & 0.2.

scale, C= (SM-7)/20. We have compared in Fig.
10 the experimental conductivity data of Li-NH,
solutions with the results of the various numerical
simulations. We note that when the correlation
length is increased, so that the continuum-perco-
lation limit is approached, the fit is satisfactory
over three orders of magnitude of variation in o.
The fit of the experimental data for C &0. 5 to the
traditional EMT is reasonable, but exhibits a sys-
tematic overestimate of a'(C)/o'(1) which a.mounts
to 20% at C=0. 5. The discrepancy is due to bound-
ary scattering effects. ' Gn the basis of this anal-
ysis, there should be little doubt now as to the
existence of the inhomogeneous transport regime
in this system.

Alkali-tungsten bronzes, MxWO3, are nonstoi-
chiometric compounds, where the alkali metal M
at atomic concentration 0 &X& 1 occupies a simple-
cubic sublattice. The electrical conductivity,
the Hall effect, and the optical data 0' indicate
the occurrence of an onset of pseudometallic prop-
erties for X=0.17+0.02. A site-percolation
model for this system has been advanced by Ma.c--
intosh4 and by Fuchs. Fuchs has concluded on
the basis of paramagnetic susceptibility data that
C=X. - The site-percolation threshold for a sc
lattice is C*=0.33, which is incompatible with the
o. data. I,ightsey has demonstrated the applica-
bility of Kirkpatrick's power law, Eq. (3. l), with
C* = 0.17, suggesting that incorporating second-
and third-nearest neighbors characterizes a site-
percolation problem with an effective coordina-
tion number of z,«=14. It is our view that the
metal-nonmetal transition in this system proceeds
via an inhomogeneous transport regime, so that
electronic transport can be specified in terms of
a continuum-percolation pro™ess. This proposal
which involves a nonrandom distribution of the
interstitial alkali atoms on the sc sublattice, is
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supported by independent experimental evidence
from magnetic data ' that the metal atoms tend
to form preferably into metallic regions. The C
scale was established from paramagnetic suscep-
tibility data, taking C=X. We note in passing that
identifying C with X implies that all the alkali
atoms are tied up in metallic clusters. In Fig. 11
the experimental data at 300 'K are compared with
the numerical curve of o(C) for a bond correlated
lattice. As conductivity data are not available for
C&0. 2, we have relied on a single point at X= C
=0.098 which indicates that o(0)/a(l) ~ 10 '. We
have accordingly chosen o(0)/o(1) = 10 '. The over-
all fit is satisfactory, providing a vast improve-
ment over previous transport theories for this
system. The systematic overestimate of 0' exhib-
ited in this system originates again from scatter-
ing effects from the boundaries of the metallic
regions. At lower values of C, our results make
contact with Lightsey's use of Kirkpatrick's
power law with C* = 0.17, and our picture of suf-
ficient alkali-metal correlation, 5 & a (the cube edge),
for continuum percolation to hold provides a
natural explanation of Lightsey' s observation.

It should be recognized that once the limits of
the inhomogeneous regime are established from
magnetic, thermodynamic, or any other indepen-
dent data the theoretical curves are fixed to the
experimental conductivity data at the C= 0 and
C= 1 end points of the inhomogeneous range and
that otherwise there are no adjustable parameters
in the theory (we have ignored boundary scattering
corrections ' in this context) ~ The numerical
simulations of reported herein should be regarded
as a useful tool for establishing the validity of the
inhomogeneous transport picture in some dis-
ordered materials.
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