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Optical properties of small metal spheres

R. Ruppin
Soreq Nuclear Research Centre, Yavne, Israel
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The classical Mie theory for the scattering and absorption of electromagnetic radiation by a sphere is

extended so as to be applicable to cases in which longitudinal polarization waves can propagate in the
sphere material. The extended Mie theory is applied to the calculation of the optical properties of small

metal spheres, the electronic properties of which are represented by Boltzmann-type dielectric functions.

It is found that the main plasma resonance is shifted from its classical position towards the

high-frequency side, and that a secondary absorption structure appears just above the plasma frequency.
The dependence of these effects on the physical parameters characterizing the sphere and its

surroundings is investigated.

INTRODUCTION

When calculating the optical properties of ma-
terials in which longitudinal polarization waves
can propagate, the possibility of direct optical
excitation of such waves has to be taken into ac-
count. A macroscopic theory, which incorporates
longitudinal polarization waves, and which yields
generalized boundary conditions to be employed in
calculations of optical properties, has been devel-
oped by Melnyk and Harrison. They have pre-
dicted the appearance of a new absorptance struc-
ture, due to the resonant excitation of bulk plas-
mons, in the spectra of very thin metal foils. Sub-
sequently, measurements on silver and potassium'
films have been performed, in which the predicted
structure has indeed been observed.

Resonant excitation of bulk plasmons is also ex-
pected to occur in optical experiments performed
on small metal spheres. In the classical Mie the-
ory for the absorption and scattering properties
of a sphere it is assumed that only transverse
modes of the sphere are excited. ' A brief out-
line of the extension of the Mie theory, which allows
for the excitation of longitudinal polarization waves,
has recently been presented. In Sec. II a more
detailed account of the extended Mie theory is giv-
en. In Sec. III this theory is applied to the cal-
culation of the optical properties of small sodium
spheres. A discussion of previous experimental
and theoretical work on small metal particles and
its relation to the present calculation is presented
in Sec. IV.

II. EXTENDED MIE THEORY

In this section we develop a generalization of
the Mie theory, which applies to the case in which
the sphere material can support propagating plas-
ma waves (i.e. , plasma modes with a nonzero
group velocity). We assume the material to be
isotropic. The longitudinal plasma waves obey

k r ——Er (kr~ (d) &d /c (2)

where «2 is the transverse dielectric function,
which again depends on the frequency and on the
wavevector magnitude. We wish to calculate the
scattering and the absorption by a sphere of radius
R, where the sphere material is characterized by
given dielectric functions e2 and el, .

We introduce the spherical vector-wave func-
tion, '8 in terms of which all the fields will be ex-
panded. There exist two types of transverse func-
tions

M, „(r) = curl [ry,„„(8,P) z„(kr)],
N, „(r)=(1/k) curl M,„„(r),

and one type of longitudinal function

L, „(r)=grad [y, „(8,Q) z„(kr)].
Here the subscript o stands for e (even) or o (odd),
according to whether cosmic or sinm&f& is used
when multiplying by the associated Legendre poly-
nomials P„( coH)sin order to obtain y „(8,Q).
z„(kr), which represents spherical Bessel or
Hankel functions, is chosen as follows: j„(krr)
for transverse electromagnetic waves inside the
sphere, with kr given by Eg. (2); j„(k,r) for longi-
tudinal plasma modes inside the sphere, with k,
given by Eq. (1); j„(kor) for the incident wave and
k„(kor) for the scattered wave, both of which are
defined outside the sphere. In this outer region
the propagation constant ko is given by ko = (e„)~~z
~/c, where &„is the dielectric constant of the

a dispersion law of the form

&, (kg, (u) = 0,

where &I. is the longitudinal dielectric function,
which depends on the frequency z and on the mag-
nitude k& of the wave vector. The equation describ-
ing the propagation of transverse electromagnetic
waves in the sphere material is

2871



2872 HUPPIN

2n+ 1x i", —
)

(M,i„+iN,i„),n(n+1 (7)

where a„, and a,, are unit vectors in the x and y
directions, respectively.

The fields of the scattered wave are expanded
in the form

n(n+ 1 (8)

H, = -(c„)i/ Eo e '"'Qi "',
)
(b"„M,i„+iatN, )i.n(n+ 1

(9)
The fields associated with the transverse electro-
magnetic wave inside the sphere are expanded in
the form

n(n+1

medium surrounding the sphere. In all the ex-
amples treated in Sec. III, E„is assumed to be a
constant. However, the general formulas derived
in this section apply also to the case of a frequen-
cy-dependent E~.

The expansion of the electric and the magnetic
fields of the incident plane wave is given by

n
n (n+1

(8)

H
~

(& )1/2 ~ eikog i~i -(& )i/& E e- ~&

The tangential components of the electric and the
magnetic fields have to be continuous, i.e. ,

a„x(E; + E„)= a„x(E, + E,), (13)

a„x(H;+H„)=a„xH, (14)

(15)

at r=a.
Imposing the boundary conditions (13)-(15)the

following five equations for the five coefficients
an ~n a n ~n n are obtained

a „'j„(krR) —a "„h„(koR)=j„(hoR),

a „'[k, Rj„(k,R)]' —a"„[k,Rh„(k,R)]'

= [ko Rj„(koR)]',

(18)

(17)

--[k,Rj„(k,R)] —b"„[k,Rh„(k,R)]'

a,t r= R, where a.
„

is a unit vector in the radial
direction. Unlike the case of the classical Mie
theory, an additional boundary condition is needed,
because we have allowed for the excitation of a
longitudinal field E, inside the sphere. Melnyk
and Harrison' have shown that the appropriate
boundary condition for media, in which longitudinal
polarization waves can propagate, is the continuity
of the normal displacement current (I/4o )BE/Bt.
In our case, this implies

a„(E,+E„)=a„(E,+E,)

n(n+ 1

(11)

and the electric field associated with the longi-
tudinal plasma modes is

-i~I -n 2n+ 1
Ei =&o e i",

)
ib„I,,n(™+1

—b„'—j„(k,R}= [k,Rj„(k,R)]',
0

n(n+1) .
( )uz

b„'kr j„(krR) —b"„koh„(hoR)= ko j„(koR).

(18)

(19)

(20)

No magnetic field is associated with the longitudi-
nal modes.

The expansion coefficients a"„,5"„,a„',6„', b„'will
be obtained from the boundary conditions at r =R.

Here the primes denote differentiation with re-
spect to the argument of the radial functions. The
solution for the coefficients of the scattered wave
ls

a"„=-(j„(k,R) [ko Rj„(koR)]'-j„(k,R)[k, Rj„(k,R)]')/(j„(k,R) [ko Rh„(koR)]'—h„(koR)[k, Rj„(k,R)]"f

&.j.(koR)+j' (k&R)(&ejn(koR)[kr ~jn(krR)]' ~rjn(krR)[koRjn(koR)1']
e„h„(koR)+j„'(k, R)(e„h„(koR)[k„Rj„(krR)]' —srj„(krR) [ko Rh„(koR)]'}

where

c„=n (n+ 1) [j„(kiR )/k, R ]j„(krR) (6r —f„).

(21)

(22)

We note that the coefficients a„arethe same as the corresponding coefficients of the classical Mie theory.
This reflects the fact that the excitation of the magnetic modes (the modes for which E behaves like a vector
function of type M) is not affected by the longitudinal fields. A simultaneous excitation of the electric
modes (E proportional to N) and the longitudinal modes does, however, occur. Thus, the coefficients b"„

diQer from the corresponding Mie coefficients
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e~j„(koR)[kr Rj. (krR)]' - ~rj. (kr R)[koRj .(koR)l

&„k„(koR)[kr Rj „(krR)]' —ar j„(krR)' [kgk„(kg)]
The generalized coefficients b„reduce to the Mie coefficients when c„=0.This happens when no longitudi-
nal polarization waves can propagate in the sphere material, in which case the imaginary part of 0, be-
comes infinitely large.

The optical properties of the sphere are ex-
pressed in terms of the scattering, absorption,
and extinction cross sections. These three cross
sections are related by

The cross sections are obtained by integrating the
Poynting vector over a large concentric spherical
surface in the usual way. The resulting scatter-
ing and extinction cross sections, in units of the
geometric cross section mR, are

(26)

o, = —(,o g (2n+ 1)Re (a„"+k"„), (27)

where Re denotes the real part.

III. OPTICAL PROPERTIES OF SMALL METAL SPHERES

We now calculate the optical properties of a
small metal sphere using the theory of Sec. II.
For the dielectric functions me will use the expres-
sions derived by Lindhard' for a degenerate elec-
tron gas in a uniform positive background

(dy 3 1+0sr (k~ co) =1 — . & tan a-1
&u(~+i r) 2a a

(28)

electron hole pairs with increasing momentum.
We will therefore use for y the expression

y = y o+ n (kr/4)', (31)

where kF is the Fermi wave number and yo = 0.01,
e =0.05. The dependence of the calculated spectra
on the values of yo and rx will be discussed in the
sequel.

The computed extinction cross section of a so-
dium sphere of radius 15 A is shown in Fig. 1. It
can be seen that, unlike the classical Mie theory,
our calculation predicts the appearance of a series
of absorption peaks just above the plasma frequen-
cy. These peaks are due to the excitation of bulk
plasmons. In our example only the first term,
n = 1, of Eq. (27) contributes to the optical prop-
erties, since the sphere size is much smaller
than the wavelength of the incident beam. Another
effect predicted by the calculation is the shift of
the main absorption peak from its classical fre-
quency of &s,/v3 towards the high-frequency side.
This peak is due to the resonant excitation of a
transverse electromagnetic mode of the sphere.
Since the dispersion curve &u (k, ) of the plasmons
starts from ~& at k& =0 and goes to higher frequen-
cies as k, increases, there exist no plasma modes
with frequencies in the region below cup, . In this
frequency region the longitudinal polarization
fields penetrate the sphere as evanescent maves

IO

where

a' = —k' vo~/((u+ i/~)' (30)

IO

10

~~ is the plasma frequency, ~~ is the Fermi ve-
locity, and w is the relaxation time. We will per-
form calculations for sodium spheres, using the
values &u~ = 8. 65 x10" sec ' and vz =1.07x10o cm/
sec. '" For the damping factor y=l/&u~ 7 a
wave-number-independent value of the order of
10 -10 has usually been employed in related cal-
culations of optical properties. ' ' It is, how-
ever', predicted theoretically ' and also estab-
lished experimentally ' ' that the plasmon damping
increases with the wave number 0,. This reflects
the increasing possibility for plasmon decay into

IO
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FIG. j.. Calculated extinction cross section, in units
of the geometric cross section, of a sodium sphere of
radius 15 A, with yo = 0. Ol and c~= l. Full curve, exact
calculation; broken curve, classical Mie theory.
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FIG. 2. Same as Fig. 1, but vrith the radius increased
to 30 A.

FIG. 4. Same as Fig. 1, but with po = 0.04.

only~ l. 6. ~ they hRve 3Jl essentially lmRglllal y
value of 4&. These evanescent fieMS do, however,
modify the internal electric field, thus causing the
shift of the main resonance from its classical posi-
tion.

We next investigate the dependence of the opti-
cal properties on some of the physical parameters
characterizing the sphere and its surroundings.

A. Sphere radius

The effects of increasing the radius are exem-
plified by Fig. 2, which shows the calculated

, extinction cross section of a sodium sphere of ra-
dius 30 A. As the radius of the sphere is in-
creased the shift of the main resonance from its
clRsslcRl position decl 6Rses. Physically this
follows from the fact that with increasing radius
the slight evanescent penetration of the loogitudi-
nal modes into the sphere has a smaller effect on
the overall fieM distribution inside the sphere.
Another effect caused by increasing the radius is
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FIG. 3. Same as Fig. j., but w'ith ez = 2. 25.

the increase in the number of secondary peaks
above Mq RccoIQpRnled by' R decrease ln their in-
tensity. We have also performed calculations for
other sphere sizes and found that for metal spheres
larger than about 200 A the calculated extincbon
curve deviates very little from the classical curve
of the Mie theory. We note here that the strong
dependence of the secondary structure above cu&

on the particle radius severely limits the experi-
mental prospects of observing the individual peaks.
Complete uniformity of size is practically unattain-
able in experiments performed on a collection of
small metal particles. Due to the size distribu-
tion, which always exists, the absorption structure
above ~& will be smeared out, and one can only
expect a broad weak absorptio~ band to appear
just above ~&.

B. Dielectric properties of the surrounding medium

These properties enter through the dielectric
constant &„,which appears in the equations of
Sec. II. We have calculated the extinction cross
section of a sodium sphere of radius 15 A and
with &~, =2, 25, which is typical for glR8868 which
are sometimes used as an embedding medium in
opt cal expe me ts sm ll metal part l s. ' '"
Comparing the spectrum, which ls Shown in Fig.
3, with that for c„=1 (Fig. 1}, we find that the
secondary structure above ~& is not affected by
the change in e~. The main resonance does, how-
ever, shift towards the low-frequency side with
increasing z„,closely following the similar shift
of the c].assical resonance. The latter resonance,
which for @~=1 appeared at the frequency &u~/W3,

occurs at the frequency u&~/(1+ 2e„}.'~'

C. Plasmon damping

It is naturally expected that an increase of the

plRSIQon dRIQplng will IQake the absorption peaks
smaller Rnd broader. The damping parameter
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y, given by Eq. (31}, can be varied either uniform-

ly by changing the value of yo, or in a wave-num-
ber-dependent way by changing the value of a.
Obviously, the effect of an increase in n will be-
come more and more pronounced as one moves
away from co~ to higher-order peaks. An increase
in yo will affect all the peaks in a roughly uniform
way. As an example we have calculated the ex-
tinction cross section of a sodium sphere of radius
15 A with an increased damping of yo = 0. 04 (and
with n = 0. 05 as before). Comparing the calculated
spectrum (Fig. 4) with that corresponding to

yo =0.01 (Fig. 1), it is found that the main reso-
nance, as well as the subsidiary peaks above ~~,
are aQ broadened, as expected, but their positions
remain unchanged. The dependence of the spec-
trum on the damping again imposes limitations on
the potential experimental detection of the sub-
sidiary structure. In very small metal spheres
the mean free path of the electrons is reduced due
to collisions with the surfaces. " This implies
that the damping parameter of a small sphere will
be larger than that of a bulk sample. Consequently,
the absorption structure above ~~ will be severely
damped. In sodium spheres of radius 15 A, as-
suming that the electronic mean free path is equal
to the sphere diameter, one obtains y0=0. 04, as
in Fig. 4. Taking the electronic mean free path
as equal to the sphere radius mill double this value
to yo =0.08 and the corresponding peaks in the
spectrum above ~& will barely be observable.

We have applied the theory to the cases of so-
dium and potassium spheres since these are the
two most free-electron-like metals, and the use
of Boltzmann-type dielectric functions seems rea-
sonable. Recent calculations by Haque and Klie-
wer have shown that the incorporation of energy-
band-structure effects does, however, modify the
plasmon dispersion curves or, equivalently, the
longitudinal dielectric function, of sodium and
potassium. One of the interesting effects found
was the dependence of the plasmon dispersion on
the direction of propagation. This means that
E& will depend on the wave vector k& and not only
on its magnitude, as assumed in our calculation.
This anisotropy will simply cause a broadening of
the absorption peaks occurring above ~~. This fol-
lows from the random distribution of the spherical
crystallites in experimental situations, which leads to
the excitation of bulk plasmons corresponding to vari-
ous directions of propagation. For practical pur-
poses this broadening is unimportant since the absorp-
tion structure above co~ is smeared out anyway because
of the size distribution effects described above.

IV. DISCUSSION

A related theoretical investigation of the optical
properties of metallic colloids, in which the ex-

citation of longitudinal modes was taken into ac-
count, has been presented by Clanget. ~ He em-
ployed boundary conditions due to Sauter, ' which
differ from those due to Melnyk and Harrison, '
which were used in this paper. According to
Sauter the normal component of the conduction
current is continuous. Melnyk and Harrison~ have
argued that for time dependent fields no distinction
between polarization and conduction currents
should be made, and hence the normal component
of their sum should be continuous. From Max-
well's equations it readily follows that the latter
requirement is equivalent to the condition of con-
tinuity of the normal displacement current, which
has been used in Sec. II. Clanget's calculations
mere the first to predict the appearance of a sec-
ondary absorption structure above ~~ in the spec-
trum of a small metal sphere. The dependence
of this structure on the damping factor yo, as
given by Clanget is, however, completely different
from that obtained in our calculation. Whereas
we find that an increase in yo only leads to the
broadening of the absorption peaks, according to
Clanget's calculation it also causes very substantial
shifts of the absorption peaks, which seems un-
physical. The behavior of the main resonance
has not been discussed by Clanget. In the works
of Melnyk and Harrison~ and Clanget, ' as well as
in our preliminary calculations, a wave-number-
independent plasmon damping term was used.
This gave rise to the unrealistic feature that the
series of secondary peaks above ~~ extended to-
wards the high frequency side without decreasing
in magnitude. Due to our use of a wave-number-
dependent damping, Eg. (31), the calculated peaks
become progressively more damped as one moves
to higher frequencies. We have incorporated the
wave-number-dependent damping term so as to
compensate for the fact the dielectric functions
(28} and (29) are not realistic enough. In doing so
we have been guided by the results of elaborate
calculations of plasmon dispersion curves includ-
ing band structure effects, "which indicate a gen-
eral trend of increased dampin for, increasing
values of the wave vector. Alp ough the present

/calculations might perhaps be 'refined by using
more sophisticated dielectric functions, we expect
that this will not cause any significant modifica-
tions of the two main effects predicted here, i.e. ,
the shif t of the main resonance and the appearance
of a secondary absorption structure.

As regards the possibility of experimental ob-
servation, we discuss separately each of the two
effects predicted by the theory. To observe the
shift of the main resonance from its classical
position it is clearly advantageous to use the
smallest spheres possible. The existence of a
nonuniformity of sphere sizes will cause a broaden-
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ing of the main peak, but this should not preclude
the observation of its shift from the classical val-
ue. Deviations of the particles from spherical
shape should, however, be avoided, since the main
resonance frequency is strongly shape dependent.
The shift of the main resonance has apparently
been detected by Duthler et al, , ' who have ob-
served the resonance scattering of light from so-
dium particles of less than 50-A radius. They
found that the main scattering maximum (which
should appear at the same frequency as the ex-
tinction maximum of our calculation} was shifted
from the classically predicted value of 376 nm
and occurred instead between 310 and 330 nm, the
exact location depending on experimental condi-
tions Duthler et al' ~ have ruled out the possi
bility of a shape effect (i.e. , deviation from
spherical shape) by considering the polarization
and the width of the scattered light. The observed
shQt of the maxn resonance towards the h~gh-fre-
quency side qualitatively agrees with our calcula-
tion, but is somewhat larger than expected. For
sodium spheres of radius 15 A, which is a typical
experimental radius, the calculated maximum ap-

pea, rs at 350 nm. To obtain a, theoretical shift of
the order of the observed one, a radius smaller
than 10 A has to be assumed.

The second effect, i.e. , the appearance of a
series of subsidiary maxima above ~&, also be-
comes more prominent as the radius decreases,
provided that the damping term y is kept constant.
Physically, however, the damping increases with
decreasing radius due to the mean free path effect
mentioned in Sec. III. For large damping the sec-
ondary structure is less pronounced and more dif-
ficult to observe. Thus, one has to compromise
between the hvo requirements of small radius on
the one hand, and small damping on the other
hand. It seems that the optimal sphere radii for
observation of this effect are around 30-60 A. As
already noted in Sec. III the individual peaks wlj.l
not be discernible. Because of the sphere size
distribution, which can hardly be avoided, the
secondary structure will be smeared out so that
only one wide absorption band just above ~~ is ex-
pected. Such a band indeed appears in the scatter-
ing spectra, of small sodium spheres given by
Duthler et al.
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