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The extended x-ray absorption fine structure is a consequence of the modification of the photoelectron

final state due to scattering by the surrounding atoms. We present a theory of the absorption fine

structure starting from theoretically obtained electron-atom scattering phase shifts. The electron

scattering is treated using a spherical wave expansion which takes into account the finite size of the

atoms. Multiple-scattering effects are included by classifying multiple-scattering paths by their total path

lengths. Their effects are quite large but appear to make quantitative but not qualitative changes on the

single-scattering contribution. The exceptional case is the fourth shell in fcc or bcc structure, where it

is shadowed by the first-shell atom and is profoundly affected by forward scattering due to the first

shell. This may account for the anomaly observed experimentally at the fourth-shell radius in metals. A

detailed numerical calculation is carried out for copper and is shown to agree quite well with

experiment.

I. INTRODUCTION

It has been known for over 40 years that the x-
ray absorption coefficient in matter exhibits oscil-
lations as a function of energy above threshold. '
A typical such spectrum is shown in Fig. 1 for
copper. Recent)y there has been a renewal of in-
terest in the subject after the work of Sayers,
Stern, and I ytle, ' who pointed out that such ex-
tended x-ray absorption fine structure (EXAFS)
can be used to obtain structural information of sol-
ids. Their suggestion is first to examine the func-
tion ll(to) obtained by isolating the purely oscillatory
part of the absorption coefficient in Fig. 1 and
normalizing it with respect to the smooth back-
ground. The next step is to plot y versus the pho-
toelectrons wave vector k, which is defined as

kk = {2m[k(td —to, ) + E,P 72,

where +~ is the threshold frequency and Eo is the
Fermi energy. Since we are interested in an en-
ergy range of 50 to 2000 eV above threshold, k is
not very sensitive to the choice of ED. According
to the theory of Sayers et al. y(k) is a superposi-
tion of terms of the form sin(2kR&), where Rt mea-
sures the distance to the neighbors surrounding
the excited atom. The Fourier transform

(i. 2)

should peak at the distances r =R& and should pro-
vide information on the structure of the solid.
Since this technique is particularly sensitive to the
local environment of atoms and does not require
the use of single crystals, it is especially useful

in the study of disordered systems and complex
materials, such as catalysts. ' Unlike conventional
x-ray diffraction the surroundings of each constit-
uent atom can be separately studied by looking at
the respective absorption edge.

The phenomenon of EXAFS is sufficiently com-
plex that one would like to gain some understanding
of EXAFS in crystalline materials where the struc-
ture is well known before one can apply the tech-
nique to complex materials with confidence. Re-
cent work4 has already shown that even in crystals
there are observations that cannot be explained in
terms of the simple theory discussed in Ref. 2.
As an example we show in Figs. 2 and 3 the Fou-
rier transforms of the absorption rates for crystal-
line Ge and Cu. It is expected that such transforms
should peak at distances corresponding to the shell
distances as marked by the arrows. While this
description works very well for Ge, for Cu it is
found that the fourth shell appears to have turned
upside down. ' This kind of phase reversal has been
observed for a variety of metals. It is the object
of this paper to perform a calculation of the EXAFS
spectrum starting from the atomic phase shifts.
Our calculation will relax several of the assump-
tions made by the theory in Ref. 2. Since the most
interesting and extensive data are available for Cu
we have carried through the calculation for crys-
talline copper. It is our hope that our work will
throw some light on the observed difference be-
tween metals and semiconductors, and serve to
indicate under what circumstances a more accurate
theory is called for.

The experimentally measured quantity is the
contribution to the x-ray absorption coefficient due

2795



2796 P. A. LEE AND J. B. P ENDRY

0.75-

0.65-

0,55-

045—
X

0.55-

0.25-

Q.I5-
0.05

-IOO l00 500 500 700 900 I IOO iMO

ENERGY (eV)

O
L

4 5

Rr.V V

FIG. 1. k-shell absorption coefficient UX of copper
vs the x-ray photon energy. The zero of energy is chosen
at the K edge.
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to the excitation of a deep core level. This can be
related in a straightforward manner to the transi-
tion rate per unit photon flux v ' which in the dipole
approximation is given by the Golden Rule:

—=—'P
~
&f

~

e & r
~
f) ~'V(E, + ri(u —E,),

where g is the polarization vector of the electric
field. The initial state is the core state plus a
Fermi sea whereas the final state consists of a
core hole and an excited electron. For simplicity
we assume that the core state is an s state so that
the final electron state must have p symmetry. If
the atom were isolated then the final electron state
is simply an outgoing wave, and v-' should be a

FIG. 3. Imaginary part of the Fourier transform of
Xck) plotted vs ~ for Cu.

smooth function of the photon energy above thresh-
old. In a solid the atom is surrounded by other
atoms and the outgoing wave function will be dif-
fracted by the neighboring atoms, resulting in in-
coming waves which modify the final state. Based
on these physical ideas Sayers, Stern, and Lytle'
have written down the following expression for the
normalized oscillatory part of the absorption rate
X(k):

X(k)=~ '/ro —1

=-P ~S(k) sin[2kR, +25I(k)]e~'~" e ""&,1 N r a 42

f

(1.4)
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FIG. 2. Imaginary part of the Fourier transform of
X(k) plotted vs x for crystalline Ge.

where To is the smooth background absorption rate
corresponding to the isolated atom, The function
S(k) is the backscattering amplitude from each of
the Nf neighboring atoms in the jth shell located at
a distance Rf away from the central excited atom.
The factor e-2&)~ is a Debye-%aller factor to take22.
into account thermal vibration or the atomic posi-
tion and e-'"f describes the decay of the photoelec-
tron. The phase 5', (k) is the l =1 phase shift of the
photoelectron caused by the potential of the absorb-
ing atom. . The basic assumptions in the derivation
of Eq. (1.4) are as follows: (i) The outgoing wave
can be approximated by ( —fe' +"~f'/kr) Yq (A.). The
factor of -i which is responsible for the sin instead
of cos in Ecl. (1.4) is needed for a proper definition
of the phase shift so that the phase shift is zero in
the absence of a potential [see Eq. (A10)]. (ii) A

small-atom approximation has been employed in
the sense that the atomic radius is small enough
for the curvature of the incident wave to be ne-
glected. The incident wave on the neighboring
atom is then approximated by a plane wave. (iii)
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Only single scattering by the surrounding atoms is
included.

Within these assumptions the sin(2kR&+25&) fac
tor simply arises from the phase-change experience
by the wave function on its outward and return
trips, plus the phase shift 5', (k) due to the central
atom. What Sayers et al. observed is that if one
makes the additional assumption (iv) that 5q(k) is a
linear function of k, i.e. ,

5', (k) = nk+ 50, (1.5)

then the Fourier transform of y(k) will be sharply
peaked about 2(R&+ n). The Fourier transform
then provides information on the relative position
of the shells. It is further argued that if Eq. (1.5)
is correct and n depends only on the central atom,
then n can be determined from a crystalline sample
and then the absolute shell distances can be ob-
tained for unknown structures, of amorphous sam-
ples as well as compounds involving other types of
neighboring atoms.

In the present work we relax some of the as-.
sumptions made in Ref. 2. However, we shall
stay within a single-particle description and make
the muffin-tin approximation for the atomic poten-
tial. Many-body effects are included via a self-
energy correction to the Green's function which
gives the electron a finite coherent path length.
However, more subtle many-body effects and band-
structure details are expected to be important near
threshold. Hence we expect our theory to be ap-
plicable beginning roughly 20 or 50 eV above thresh-
old. This coincides with the experimentally in-
teresting region for EXAFS. The muffin-tin
approximation should be adequate for computing
scattering by neighboring atoms, However, to
treat the central atom adequately one mould have
to worry about the time-dependent screening and
relaxation of the core hole. This problem we mill
not deal with here. As discussed in more de-
tail in Sec. II, we have simply calculated the
central-atom phase shift 5I(k) assuming an ion-
ized atom screened by conduction electron. The
approximation of a neutral atom is probably one
of the limiting factors in the accuracy of the
theory.

The plan of the paper is as follows. In Sec. II
we will discuss the calculation of the atomic phase
shift. The phase shift will then be used to calcu-
late the absorption rate, including only a single
backscattering by a neighboring atom. This cal-
culation then relaxes assumptions (i) and (ii) and
within our rather crude treatment of the central
atom also serves to check assumption (iv). In
Sec. III we will extend the calculation to include
multiple scattering by the surrounding atoms.
Section IV is the conclusion.

OO

f(e) =
k g (2&+ 1) e'"sin5, P, (cos 8).

1=0
(2. 1)

&lots of If(&) ~ for several energies are shown in
Fig. 5.

II. SINGLE-SCATTERING THEORY

The scattering of electrons by atoms with elec-
tron energy up to about 500 eV has received con-
siderable attention recently, most of the work
being connected with the theory of low-energy-
electron diffraction (LEED). Since EXAFS can be
thought of as a kind of spherical LEED with an
electron gun and a phase-sensitive detector buried
deep in a solid, it is natural to apply some of the
knowledge gained in LEED studies to the present
problem. In particular, several groups have cal-
culated the phase shift of electrons scattered by
atoms treated in the muffin-tin approximation. We
will be using the program developed by Pendry in
which the input are the core state wave functions
obtained from Herman and Skillman. The con-
duction electrons are treated in one of two ways:
(i) The Herman Skillman wave functions are trun-
cated at the muffin-tin radius and the wave func-
tions are normalized inside so that the correct
number of conduction electrons per atom is ob-
tained or (ii) the conduction electrons are simply
represented by a uniform distribution of charge
density within the muffin-tin sphere. While both of
these approximations are crude by band-calcula-
tion standards, they should work reasonably well
in the high-energy range of interest. In practice
it is found that either method gives roughly the
sa.me phase shift. The important thing is to main-
tain the charge neutrality of the atom. The pro-
gram by Pendry then calculates self-consistently
within the Hartree-Fock approximation, the wave
function and hence the phase shift of the electron
being scattered including interaction with the at-
omic wave functions. Figure 4 shows some of the
phase shifts for copper plotted as a function of
electron wave number k expressed in atomic units
(k = m = e = 1). It is seen that the phase shifts are
generally large (indeed by Levinson's theorem the
l=0, 1, 2 phase shifts must go through m n, times,
where n, is the number of bound states with angular
momentum I) and the Born approximation is not
valid even at the highest energy. We also find that
the number of phase shifts required to describe the
scattering tusing roughly the criterion (2l+ 1)5,
& I] increases with increasing energy and at 1000
eV we use 14 phase shifts. This is because a
large / is required to describe the strong peaking
in the forward direction of the scattering amplitude
as the energy is increased. The scattering ampli-
tude f(8) is given by the formula
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FIG. 4. Phase shift of
electron scattering by
copper atom for E=l, 2,
3, 4, 6 as a function of
electron momentum k.

0,=-15 ev (2.2)

So much for scattering by the ion cores. The
photoelectron also distorts the conduction and va-
lence wave functions resulting in a correlation
self-energy correction, Since the photoelectron
can also excite plasma modes this self-energy has
an imaginary component which reproduces the de-
cay of the elastic (coherent) part of the photoelec-
tron wave function. LEED studies' have shown

that the self-energy can be represented to a good
approximation by a complex constant Vo which for
copper takes the value

expression which is valid for Ir -B&I & IR&l:

$0(r) = Q B," "g,"(0
~

r —H)i)F, " ~ (A(r —lt, )),
S "m"

(2. 6)
h

im r'~'

x F, (A(R,.)} F,„F,,„,F... „„de,„
(2. 6)

Equation (2. 6) can be simplified by defining a ma-
trix

V(); ———q, = —4 eV. (2.3)

Both real and imaginary pa,rts depend on the ener-
gy of the photoelectron but above the plasmon ex-
citation threshold the energy dependence seems
weak and we neglect it. We emphasize that it is
only the inelastic scattering contribution that should

be included in the damping of the photoelectron.
Since we are basically dealing with interference
phenomenon waves elastically scattered by other
atoms should be viewed as multiple-scattering
events which could enhance as well as reduce the
wave functions a,rriving at a. given atomic site.
Such scattering will be treated in Sec. DI. Here
we only wish to stress that it is incorrect to ap-
proximate such multiple-scattering effects by an
additional damping coefficient.

Our next step is to use the pha. se shifts to cal-
culate the modification of the final state. The un-

perturbed final state is an outgoing spherica, l wave

described by

x F)mFq. ~sF," ~„dQ~ (2. 7)

and a vector

v, ...(K, ) =h,'."(m, )F,. ..&&(K,)) .
Then the vector 8," ~ is given by the matrix prod-
uct

y, (r) =g A,.h,"' (ar) F,.A(r)). (2. 4)

We would like to describe the scattering of this
wave by an atom located at RJ. We first expand go

in spherical harmonics about R~ using the following

0.5 m

8 (radion}

PIG. 5. Scattering amplitude f(e) for energy E =2, 8,
15,25 hartree 0. hartree=27. 2 eV).
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B=QR' v(R;)A(„ (2. 9)

pter

@ted
CI,"„"= v(-R&)S TB

=+v(- Rq)S """TBl™v(R,)A, . (2. 14)
Note that the matrix R is independent of the atomic
coordinates and can be computed once and for all.

Once $0 is expressed as spherical waves about
the atom at R&, the scattered wave g', emanating
from R& is obtained simply in terms of the t ma-
trix, which is in turn given by the phase shifts

L&l

where
2f', 6gTl ~ ( ~ ~ cccc c —5g( c ~ 5((ccc~ ~ 2(e —1) (2. 11)

FggFJ ~ Fg ~@@ dQ,

Then C~"„- is given by the matrix product

We note that the matrix T is related to the more
standard f matrix by t=i T/k. Now g,'(r) is an out-
going wave from the atomic position 8& and can be
expanded about the origin using Eq. (2. 5) and (2. 6)
again,

$', (r) = 2 C~. „"2j~"(kr)F~"„"(A(r)),
(2. 12)

where we note that a factor of 2 has been introduced
into the definition. This is because it is convenient
to think of Eq. (2. 12) as consisting of an incoming
and an outgoing part and 2j~ = h',"+h', '. The co-
efficient C~„can be written in terms of Si,' and e
as defined in Eqs. (2. 7) and (2. 8). However, for
computational purposes it is more convenient to
group the indices in a slightly different wa. y and
introduce the matrix

[
l ''8"

] 2&fI L' I' c

(
1)M'+M--''

t

Finally summing over all atoms at R& g 0, we can
write

Cc"e"——P Zc")t" (~A(~,
ltn

where we have introduced the matrix Z,

(2. 15)

Q (Eottlo
I
e6 r

I
bB)e (z( ( e

7
0

c(V . '~ cc. F~), ,) ~ c.c) C(E~ I —E,),.
(2. 17)

Dividing Eq. (2. 17) by v, we obtain

Z~„„„( =Qv(-RJ)S ' "' TR' v(R, ). (2. 16)

The matrix Z contains all the information we
need to compute the EXAFS spectrum using the
Golden Rule, Eq. (1.3). We can thinkof Eq. (2. 16)
for Z as the modification of the final state due to
a single backscattering by each of the surrounding
atoms. More generally we can think of a core elec-
tron in the state lorno making a transition to an out-
going wave of quantum number /'m' via the dipole
matrix element (l'm' Ir I lotvo). The outgoing wave
is scattered by the surrounding atoms resulting in
an incoming wave with quantum number lm about
the original atom. The amplitude or this incoming
wave is given by Z, , . .. This incoming wave is
coupled back to the core state by the matrix element
(lomo I r ilomo). Furthermore the photoelectron
suffers a phase shift of e"i'on its outgoing trip
and a factor of e' r on its incoming trip. Adding
the complex conjugate of the above process the
adsorption rate is then given by

2Re ( KmoZ(~( ~ P(()~o, (~Z(~ ( ~ P( ~ (oboe

Z ~ Z (Decoy (ccc I

(2. 18)

where P, , is the dipole matrix element be-'o 0'
tween the core state lomo and the conduction state
with /m symmetry. In Appendix A we indicate how
Eq. (2. 18) can be derived using a Green's-function
expansion. It can also be obtained using the mul-
tiple-scattering formalism of Beebye and of Lloyd
and Smith. '

For our numerical work we would like to special-
ize to the case of an s core level. For a cubic
system it can be shown that Z, , ~ is diagonal.
More generally for unpolarized x-rays we show in

y(k) =—Q 2 Re(Z, , e'"(). (2, 19)

This is the equation we shall use and in the rest of
the paper we shall concentrate on calculating the
matrix Z. We find that Z can be given in terms of
a, multiple-scattering expansion [Eq. (A23)], the
first term of which is the single-scattering contri-

Appendix 8 that we shouM average over the diago-
nal elements of Z, , ~, and Eq. (2. 18) then sim-
plifies to



2800 P. A. LEE AND J. B, P ENDRY

bution given by Eq. (2. 16).
To make contact with previous theory we shall

make approximations in two steps.
(i) We assume that the atomic radius is small so

that the curvature of the incident wave front can be
neglected. Then instead of expanding the outgoing
wave Y, h,"'(kr) about Ri we can approximate it by
a plane wave 4g(r) that has the same amplitude and
phase at R, . Noting that h'i i(kr) is of the form
P(kr)e"", where P(kr) is a polynomial in (kr) ',
we can write

~ i2kR)x, f(ii). (2. 28)

For s core states and unpolarized x rays we use
Eq. (2. 19) to obta. in

The sum over l' is then precisely the form for the
backscattering amplitude f(8 = ii) and Eq. (2. 26)
simplifies to

~ l"-lZ, , = —i2iii Y,„., (- Ri) Y,„(Ri)

4f(r) = Y,„(R,)I "'(kR, )e'" '"-"i',

where

(2.20) y (k) = Q '2 sln[2kR, + 2 6,' (k)+ g (k)] lf(ii)
l
e 'si',

(2. 29)

e'"'~=4iig i' j,.(kr)Y, ~ ~ (k)Y, (r), (2.22)

the scattered wave can easily be computed in the
same way as in the derivation of Eq. (2. 10) and
we obtain

4', (r) =Q h', )'(kl r -R, l) Yi. ~ (fl(r -R,»
l 'm'

x~ (e ' i' —1)4vi Yi (R;) Yi+ ~ (R,) hi (kR;).

(2. 23)

Aga, in C ', (r) can be approximated by a plane wave

with the same amplitude and phase at the origin
propagating in the direction —Si',, ,

C'p (r) =ei (r =0) e "~ . (2. 24)

Using Eq. (2. 22), C'. i, (r) is expanded as spherical
harmonics and the coefficient of that expansion
identified with the matrix Z:

(2.21)

and Aiis a unit vector in the Hi direction. Using
the expansion

where we have written

«~) = lf(6') I"' (2. 30)

As discussed earlier we have included damping by
adding a small imaginary part g to the photoelec-
tron energy E. We have further expanded for
small damping

k = [2 (E+ iq)]'~ ~ (2E ) ~ + i@/(2E )' ~ (2, 31)

and identified z as i)/(2E)'~~. A Debye-Wailer
factor can be introduced as being due to thermal
smearing of the atomic position. Comparison with

Eq. (2.4) indicates that our approximate form is in
substantial agreement with the result of Sayers
et al. , apart from an additional phase factor from
the scattering amplitude. We have also introduced
an energy-dependent decay factor. In our numeri-
cal work for copper we have used g =4 eV, which
is a number obtained from LEED experiment.

In order to examine the effect of these approxi-
mations we have calculated on a computer the unap-
proximated expression for Z given by Eq. (2. 16).
Since we expect Z to be oscillatory we have de-
fined

4 -„(r)= Z', , 2j, (kr) Y,- - (r).
l"m"

(2. 25) Al ~

Q Zim, i ~m
m

(2. 32)

After some simplification using the addition theo-
rem for spherical harmonics we obtain

Zi" , i =2ii i"Yi- "( Ri)h'i" (kR;)

xg P, .(costi) 2
(ea'"'- 1) h',"(kR, ) (2.26). .

y„(l) ( y
~ -1 f, (P-lm'/2) (2. 27)

This approximate form requires only a single l

sum and is considerably simpler than the more ac-
curate expression given by Eq. (2. 16).

(ii) The next level of approximation we can make

is that kR; » 1 for all R&. Then h,"' (he) can be
replaced by its asymptotic form

which is a smooth function of k. For the purpose
of illustration we show in Figs. 6 and 7 the ampli-
tude I Zl and phase 4 for Z for the first and third
shells. Also shown in Fig. 6 is I Zl calculated
using the approximate expression given by Eq.
(2. 26). It can be seen that the approximate ex-
pression works very well for the amplitude k&3
or E&100 eV. The next level of approximation
in terms of the scattering amplitude, i.e. , Eq.
(2. 29), essentially agrees with Eq. (2. 26) over
the entire range and has not been plotted. In Fig.
7 we show the phase 4 calculated using all three
expressions. The dotted line is that given by Eq.
(2. 29) and is of course independent of shell radius.
It differs substantially from the spherical-wave
expression and the plane-wave approximation given
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FIG. 6. Amplitude of the function Z [from which the
EXAFS oscillation can be obtained using Eq. (2. 35)] for
the scattering of the photoelectron by the first and the
third shell. Solid lines are the spherical-wave theory
computed using Eq. (2. 16) and dashed lines are the
small-atom approximation using Eq. (2.26).

X (~) =Q 21+i I
cos(2kr;+ 4, + 25,'). (2. 34)

EXAFS oscillations around the same energy. Fur-
thermore while the phase 4 shows quite a variation
over the entire energy range, it is relatively slow-
ly varying in the region when I Zl is at a maximum.
This may indicate that at least for copper the k
dependence in the phase of Z is dominated by the
central-atom phase shift. Whether this is true
for other elements remains to be investigated.

We next compute the central-atom phase shift
This is done by removing one electron from

the 1s core state and spreading the charge uniform-
ly within the Wigner-Seitz sphere. This is a very
crude description of a screened excited atom and
is probably the most unreliable portion of this
work. The result of the computation is shown in
Fig. 8 and we can see that it is remarkably linear
in k. In the range k = 3 to 5 we have approximate-
ly &, = —0.4k. This implies a shift of the radial
distances determined from EXAFS from the true
distances by roughly 0.4 a. u. , or 0. 2 A. The
experimentally observed shift is more like 0. 34 A.

It is straightforward to obtain from Z the EXAFS
oscillation X (k) using Egs. (2. 19) and (2, 32),

by Eq. (2. 24) lies somewhere in between. We see
that in the present situation where kR& 5 there re-
mains a sizable difference between the last two
approximate forms for the phase 8 even though
they agree for the amplitude I ZI. Furthermore,
both of these approximations differ considerably
from the spherical-wave expression. In particu-
lar, even though the plane-wave approximation
shows some difference between the two shells, the
difference is not nearly as dramatic as that given
by the more accurate expression. This is because
the spherical-wave expression takes into account
the finite size of the atom. If we take the crude
model that f(v) is the radius of the region of the
atomic potential which contributes to the back-
scattering, then the plane-wave wave front has
a, phase difference at the edge of this region from
the spherical-wave wave front given by

(2. 33)

The criterion for the validity of the plane-wave or
small-atom approximation is then that 54 «1.
The expression given by Eq. (2. 33) is not too
small at low energy and decreases only gradually
for large k. Thus for the relatively small values
of R; we are studying the small-atom approxima-
tion is accurate only at relatively high energy.
However, the main correction for backscattering
appears to be in the phase and not the amplitude.

The amplitude I ZI shows a broad maximum a
around k=4 or E-200 eV'. This agrees quite well
with the experimentally observed peaking of the

0

—I.O

I I I I I

2.0 3.0 4.0 5.0 6.0
k (atomi c unit)

I I

7.0 8.0 9.0

FIG. 7. Phase 4 of the function Z for the first and
third shell. Solid lines refer to the spherical-wave the-
ory [Eq. (2. 16)], l.ong-dashed lines refer to the small-
atom approximation [Eq. (2. 26)], and short-dashed line
is the large-kR limit [Eq. (2. 29)] which is independent
of shell radii.

The result is plotted vs electron energy in Fig.
9 (c). We have included a Debye-Wailer factor'~
with 2o' = 0.022 for comparison with experiment
performed at 77'. The experimental X (E) is
shown in Fig. 9(a). The first five prominent peaks
occur at the following theoretical (experimental)
values in eV: 57 (47); 105 (95); 172 (157);
218 (201); 250 (235). The choice of an Eo of 15 eV
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FIG. 8. E =1 phase shift in radians for the screened
excited central atom.

FIG. 10. Imaginary part of the Fourier transform of
X(k) including single scattering only.

matches the last three peaks rather nicely and we
have shifted the experimental plot by this amount.
The relatively large shift and the fact that it de-
pends on the photoelectron energy is a consequence
of our uncertainty about the central-atom phase
shift and also uncertainty in the experimentally de-
fined threshold. The absolute value of y(E) and
the shape of the envelope compares quite favorably
with the experimental observation. The situation
improves somewhat when we include multiple
scattering in Sec. III, the result of which is shown
in Fig. 9(b).

We next perform the Fourier transform.

0.2 e (alar (-y)2m' (2. 35)

O. I

X 0.0

-O. I

THEORY

, ~i ai kl „M
Vg )Vg

-0,2
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E(eY)
600 800

0.2
I r I I I I I

SINGLE SCATTERING

O. I THEORY

U tt-O. I—

-0.2
0 200 400

F (eY)

I

600 800

FIG. 9. EXAFS oscillation X plotted vs photoelectron
energy. (a) Experimental curve. The energy has been
measured from the threshold plus a correction of 15 eV.
(b) Theoretical curve including multiple-scattering ef-
fects. (c) Theoretical curve including single backscat-
tering from surrounding atoms only.

Owing to our uncertainty concerning the lower en-
ergy range the k integration begins at 0=1.9. A

similar cutoff has been used by the experimental-
ists. We have performed the Fourier-transform
calculation at zero temperature; i.e. , we have
removed the Debye-Wailer factor from X (k}. For
the single-scattering contribution the Debye-Wailer
factor simply changes the absolute magnitude of
F (r). Multiple-scattering effects, however, are
reduced relative to the single scattering peaks
by temperature. In Fig. 10 we show the imagi-
nary part of V'(r}. (The'real part looks very simi-
lar except for a shift in phase. ) It clearly shows
peaks at the shell distances but shifted uniformly
downward by approximately 0. 24 A. As we would
expect the shells are all in phase with each other
and Fig. 10 does not show the inversion in the
fourth shell that is observed experimentally. Thus
while the single-scattering theory can account for
various qualitative features of EXAFS, some seri-
ous difficulties remain. In order to explain the
discrepancy we will neec; to include multiple-scat-
tering effects.
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III. MULTIPLE SCATTERING

In Sec. II we have included corrections to the
final state by considering only backscattering from
neighboring atoms. Clearly there are additional
corrections if the electron is scattered by several
atoms before returning to the central atom.
Whereas the amplitude of the scattered wave be-
comes smaller the number of possible paths in-
creases. and it is not obvious that such multiple-
scattering effects are small. Indeed in the case of
LEED it is known that it is important to take into
account multiple scattering to all orders to get
agreement with experiment. Typically this is done

by constructing the scattering matrix for each
atomic layer and then adding up all possible propa-
gation from layer to layer. 6'~ In the case of
EXAFS the planar geometry is replaced by a
spherical one. An analogous procedure would be
to compute the scattering matrix for each shell
in terms of a spherical-wave expansion. However,
unlike the planar case the symmetry of the atomic
position within each shell differs significantly from
shell to shell. Such a procedure will be rather
cumbersome and in practice will probably be bmit-
ed to a few shells. Ashley and Doniach" have
carried out calculations in which they included the
effect of multiple scattering exactly for the first
two shells. The scattering has been assumed to
be s wave only. In view of the increasing impor-
tance of higher-order phase shifts at increasing
energy, their calculation is probably limited in
applicability to relatively low energy, & 100 eV.
Since the EXAFS spectrum peaks around 200 eV
we are more interested in the effect of multiple
scattering at energy & 50 eV. In this sense our
approach is complementary to that of Ashley and
Doniach.

Another possible approach for including multi-
ple-scattering effects, at least for crystalline
materials, is to calculate the band structure. Ex-
cept for the excited atom at the origin the crystal
still has translational symmetry and it should be
possible to construct Bloch wave solutions which
include all multiple-scattering effects and treat
the central atom as a perturbation in the end. This
line of reasoning is quite similar to that of
Kronig, ' who argued that EXAFS can be understood
from the position of the band gape. The difficulty
with this approach has been analyzed recently by
Stern. " As he pointed out it is clear from Eq.
(2. l) that EXAFS comes from modification of the
final state and in terms of a band calculation it is
a matrix-element effect. Such effects are linear
in the pseudopotential 6 whereas corrections due
to the existence of band gaps, i.e. , density-of-
states effects, are second order in A. The reason
is that while the band gap is of order 4, the region

in k space in which it is an important correction is
also linear in ~. Thus density-of-states correc-
tions constitute a higher-order effect. Hence in an
energy-band-type calculation one will have to focus
one's attention on matrix-element effects. As we
will see this is in a sense what we are trying to
accomplish.

From the above discussion it is clear that a cal-
culation that includes all multiple-scattering ef-
fects will be very difficult. However, in the pres-
ent problem there is one important simplifying
factor. Since we are ultimately interested in Fou-
rier transforming the absorption coefficient to ob-
tain oscillations in position space, at a given ra-
dial distance we can ask ourselves what are the
multiple-scattering effects that will contribute to
the Fourier transform at that particular radius.
This leads us to classify the multiple-scattering
contribution in terms of path length. If the elec-
tron propagates from the origin to an atom at 8„
where it is scattered and propagated to an atom
at B~, where it is scattered back to the origin, one
expects the modification of the final state will be
proportional to

X (g) ~f(B )f (B ) ~ ikRi e ikl%1-%31 e ikR3

where f(B) is the scattering amplitude and B» B2

are the scattering angles. By comparison with the
single-scattering formula, Eil. (2. 2), we see that
we can define an effective radius

i'sf & & (R 1+
I
Ri —R.

I
+ R &) (S.2)

for each multiple-scattering path and the Fourier
transform of its contribution to the absorption co-
efficient will peak at x,«. Provided that its trans-
form is not too spread out in ~ space we need to
consider only a finite number of paths if we are
interested in the structure within a finite radius
around the central atom. This procedure is a
convergent one in the sense that the "tail"
from paths with large ~,«will not add up to give a
large contribution at a given radius. This is
because we have an exponential damping term that
goes like e '""' multiplying each contribution.

In Table I we list all the possible paths up to
the fifth-shell radius together with the number of
independent paths for each r,«. We use the label
1-3-1 to indicate a path which goes from the ori-
gin to atom 4, which is on the first shell, and then
to another first-shell atom, B, where the distance
between A. and B is that corresponding to a third
shell. We then have ~,ff Q (R, +R, +R,), where
Rg and 83 are the distances to the first and third
shells, respectively. For a given r,« there may
of course be more than one type of scattering cor-
responding to the different orders in which the
electron is scattered by the neighboring atoms.
One has to be careful to add up all these contribu-
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TABLE I. Characterization. of shell radius and effec-
tive shell radius for copper in the fcc lattice.

Shell

1
2
1-1-1
1-2-1
3
1-3-1
4
1-1-4
1-1-1-1
1-2-3
1-3-3
5

Radius (r&~) (A)

2. 55
3.61
3„83
4. 36
4.43
4. 77
5.11
5.11
5.11
5.30
5. 61
5. 72

No. of paths

12
6

48
72
24

144
12
36

144
]44

24

tot
~LL -~ &LL'+ ~ ~Lr,' +'

j&0 jlk80
(3.3}

where Z"'j describe the scattering of the photo-
electron by atoms at R,, R„, and finally R,. Its
propagation is described by the matrix E and the

expansion about the original atom by the matrix

Q as follows:

Z =Q(R() TK(R) —Rk) T ~ ~ TK(R~)& (3.4)

where

Kl, ~. (0) QRI, .~ vt, (R), —
Lg

(s. 5}

QLL' (R) = Q VI(- 5) SL L' , y
1 1

1

(3.8)

and v, R, S, and T have been defined in Sec. II.
It is also straightforward to generalize the

tions. We note here that for the distances con-
sidered we can restrict ourselves to double scat-
tering with the exception of the 1-4-1 paths, which
will be discussed later.

It is a straightforward matter to extend the sin-
gle-scattering calculation presented in Sec. III,
to include multiple scattering. We simply expand.
the outgoing wave after it has been scattered by the
first a,tom about the second a.toms and then reex-
pand the scattered wave about the origin. The
only difficulty is that the size of the matrices goes
up rapidly as the number of phase shifts increases
and for our numerical work we are restricted to
a maximum of seven phase shifts. This is clearly
ina, dequa, te at high energy and we will return to
this point later. The formalism for multiple scat-
tering and the appropriate expansion is given in
Appendix A. The result can be summarized as a
correction to the matrix Z. Adopting the short-
hand notation that I. is equivalent to l, m we ob-
tain from Eqs. (A23) and (A24)

small-atom approximation as discussed in Sec. II.
Again we replace the wave front at each atom by
a, plane wave. %'e obtain the following:

(i) Plane-wave approximation:

Zlnl l ~ nl' g( Rkp Rk Rg)g(Rk RJy Rg)

x2m(-i)' Y,* (R„) Y,. ~ (R, ) k,'. ' (kR, ),

where (3. f)

Z (rkff) e g P Zlm, tm y

3 yath m
(s. lo)

where the first sum is over all paths with the same
v f f In Figs. 11 and 12 we show the amplitude
and phase of Z for various ~,«calculated using
Eqs. (3.3} and (3.4), including seven phase shifts.
Except for the 1-4-1 case we see that multiple-
scattering effects generally have a peak value of
1'fo. This is much smaller than the contribution
of single scattering from the first and third shell
for instance, but quite comparable to some of the
weaker shells. On the other hand, the multiple-
scattering contribution is somewhat more rapidly
varying in. k space and hence tends to spread out
more in ~ space. Over all, we find for copper
that they contribute to a quantiative change in the
Fourier transform, but do not affect the single-
scattering peaks sufficiently severely to give quali-
tative change. The exception is the 1-1-4 path.
In fcc structure the fourth shell consists of the
12 atoms at the corner of the faces; i.e. , when
viewed from the central atom they are shadowed

by the first-shell atoms. The outgoing wave reach-

g (Rp, R~) = g (2&+ 1)P, (cos 8) i '
—,
' (e "'r - 1) k',"(kR ),

l

(s. 8)

where 8 is the angle between R& and R,. Equations
(3. 7) and (3.8) have the advantage that only one
sum over l' is required. Hence the computation
is straightforward and one could include as many
phase shifts as is necessary.

(ii) We can next take the limit kR&» 1. The
function g then becomes proportional to the scat-
tering amplitude f (8) and we have

Z', , , =f(8a)f (8&) 2mi (-i)" Yi„(Rk) Y,. ~ (R;)

~i k(Ry+I ~k Rjl+%j )

k Rj RklRj —RkI

where 8~ is the angle between R; and R, —0;, and

8, that between Rk -R~ and -R,. Equation (3.9)
corresponds to what we obtained based on intuitive
arguments in Eq. (3.1).

In the case of unpolarized x-ray source and

polycrystalline samples all the relevant informa-
tion is contained in Z defined in analogy with Eq.
(2. 32). For each r,«we have
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FIG. 11. Absolute val. ue of Z for several paths using
the spherical-wave theory Eq. (3.4). 4 4 4.6 4.8 5.0
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ing the fourth shell will clearly be strongly affected
by forward scattering due to the first-shell atoms.
We see from Fig. 5 that the forward-scattering
amplitude increases with energy and is quite large

I I.O

IO.O

FIG. 13. Imaginary part of the Fourier transform of

year)

in the region near the fourth-shell radius. The long-
dashed line includes single scattering only while the solid
line includes multiple scattering. The short-dashed 1,ine
is a calculation in which the forward scattering by the
first shell is calculated in the smal. l-atom approximation.
This approximation enables us to include more phase shift
and is probably a better description of the forward scat-
tering.
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FIG. 12. Phase 4 of Z for several paths using Eq.
(3.4).

in magnitude. In fact, at the fourth shell the
amplitude of the scattered wave due to the first
shell can be larger than that of the unscattered
wave. In this particular case multiple scattering
will affect the results qualitatively. This can be
seen from the large magnitude of I Z I shown in
Fig. 11. Since the forward-scattering amplitude
is so large, in our calculations we have also in-
cluded the possibility of the electron being scatter-
ed in both its outgoing and incoming trips. We
have neglected, however, other triple scattering
of the same r,«, i.e. , when the electron bounces
around three atoms all in the first shell. These
are finite™angle scattering and are expected to
be small. Multiple-scattering effects then domi-
nate over the single-scattering contribution of
the fourth shell. In particular, forward scattering
introduces additional phase shifts and in the Fou-
rier transform the fourth shell can be expected
to behave quite differently from the other shells.
In Fig. 13 we show the Fourier transform ImE(r)
in an expanded scale around the fourth shell, com-
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TABLE II. Comparison of the theoretical shift in shell
radius, eth, with the experimental value, n,~t.

Shell

1
2
3
4a

5

Rq {A)

2. 55
3.61
4.43
5. 11
5. 72

Rth

2. 31
3.36
4. 18
4. 79
5.49

o'th = Rth- Ry

—0.24
—0.25
—0.25
—0. 32
—0.23

& exyt

—0.34
—0. 37
—0.32
—0. 35
—0.31

~For the fourth shell the distances refer to the inverted
peak.

that the "inversion" of the fourth peak is more pro-
nounced and the result compares more favorably
with experiment. On the other hand, for the other
paths the approximate formula does not do so well,
particularly in view of the success we had for the
single-scattering case shown earlier in Fig. 6.
There we found that for backscattering the small-
atom approximation overestimates t Z I at small k.
The reason is that in the backward directions f (8)
is at a local maximum. Since the spherical-wave
theory takes into account the finite size of the atoms,
in a crude sense we can argue that this is analogous
to some averaging of f(8) near 180' and hence gives
rise to a smaller result. On the other hand the
multiple-scattering paths such as 1-1-3 involve fi-
nite scattering angle, where f (8) may be near a lo-
cal minimum. In such cases the plane-wave ap-
proximation will underestimate the result. Fur-
thermore, a minimum of f(8) means that there is
large cancellation between contributions from dif-
ferent angular momenta in the sum given by Eq.
(2. 1). Hence the approximate treatment of the par-
tial waves done in the small-atom approximation
may lead to a rather j.naccurate answer. Of course
the error is compounded as the number of scatter-
ings increases. Thus we see that the small-atom
approximation approaches that of the spherical-
wave theory only for a relatively large value of k
a5. For forward scattering, however, contribu-
tions from various partial waves add and the small-
atom approximation works relatively well. We
should also mention that the small-atom approxi-
mation indicates that paths apart from 1-1-4 are
not too sensitive to the number of phase shifts in-
cluded beyond the first six or seven. Apparently
a large number of phase shifts are required to de-
scribe the strong peaking of the scattering ampli-
tude in the forward direction, whereas in the other
directions they are not as crucial.

The phase of Z shown in Fig. 16 for the small-
atom approximation appears to be very different
from that in Fig. 12, with the exception of the 1-1-4
path. This is not as disturbing as it first appears
because 4 is defined only modulo 2m and the region
of rapidly varying 4 coincides with the region of

small IZI. Thus we can conclude that the small-
atom approximation is a reasonably good approxi-
mation for 4 & 5, and that except for forward scat-
tering, a description in terms of seven phase shifts
is probably adequate for all k. For future appli-
cations, a hybrid scheme, whereby one treats the
high-energy forward scattering by Egs. (3.7) and

(3.8) and the other scattering paths by Eqs. (3.3)
and (3.4) using six or seven phase shifts, should
provide an accurate description of the situation.

IV. CONCLUSION

We have performed a calculation of the x-ray
absorption coefficient and its Fourier transform
F(r) starting from atomic scattering phase shifts
obtai. ned from the Herman-Skillman wave functions.
We relax the small-atom approximation made in
previous treatments of EXAFS and include multi-
ple-scattering effects. We also calculated the cen-
tral-atom phase shift by assuming a screened ion-
ized atom. The result is found to be a remarkably
linear function of k, an assumption which is cen-
tral to the theory of Sayers ef, g/. To compare with
experiment we list in Table II the theoretical and
experimental peak positions in ImF(r). On com-
parison with the known crystallographic distances
we obtained an average shift of —0.24 A from the
theory vs —0.34 A from the experiment. The
fourth shell cannot be analyzed in terms of such
shifts and in fact in the experiment appears to be
180' out of phase from the predicted position. We
can account for this difficulty qualitatively by show-
ing that shadowing of the fourth shell by the first-
shell atom introduces a large multiple-scattering
correction. We would also like to point out that for
the bcc structure the fourth shell is shadowed by
the first shell in exactly the same way and hence
is expected to show large phase shifts. This has
been verified for iron and other bcc metals. The
experimental situation for hcp metals is inconclu-
sive because the shell structure is very complicat-
ed for an hcp structure with c/a ratio that does not
correspond to perfect close packing. We believe
that the shadowing effect explains the observed dif-
ference between the EXAFS structure of metals
and semiconductors. In the diamond structure the
first shell that is shadowed is the eight shell, which
is beyond the present experimental resolution. Fur-
thermore, in this case the eighth shell radius is
three times that of the nearest™neighbor spacing.
Owing to the 1/r decay of the scattered wave the
forward-scattering effect is not expected to domi-
nate over the single-scattering path. On the other
hand, the diamond structure is considerably more
open and multiple scattering may contribute to ad-
ditional observable structures in between known
shell distances. Such a possibility is currently be-
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ing explored.
In conclusion, we believe that multiple-scatter-

ing effects in EXAFS can be understood in a fairly
straightforward manner. Except for the shadow ing
effect we discussed the effect of multiple scattering
is generally smaller than the major structure due

to single scattering. With care and experience it
should be possible to extract information on shell
radii from these single-scattering peaks.
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APPENDIX A

n = (o)/c) & "((o), (Al)

where & is given in the dipole approximation as
I

,
r" (tr)=drr Im( — drdr I(r ~ r)(r r )2'

xG(r, r', r)G „(r,r, r —m))

and E is the polarization vector of the x-ray elec-
tric field. The core-state Green's function is giv-
en in terms of the core wave function Qz (r) with

angular momentum Lo (= lo, v1o) and binding energy

e, and lifetime g, ,
~I

(-, ,-,)
4zo(r )Azo(r) (A S)

«c

The Green's function G(r, r, )I) in Eq. (A2) is that

for the excited electron moving in the muffin-tin

potentials g; v;(r —R, ) of the atoms. In our model

all the atoms except the central excited atom are
described by the same potential. The Green's
function can be expanded in terms of the free elec-
tron Go(r, r') as

G(r, r') = Go(rI r1)&(r1r r2}GO(r2r r } (A4}

In this appendix we outline a calculation of the
x-ray absorption coefficient g using Green's-func-
tion technique. We will obtain the result in the
form of a multiple-scattering expansion correspond-
ing to scattering of the excited electrons by the
neighboring atoms. The absorption coeff icient g
is given by

t(r, r ) = v(r)5(r —r')+ v(r)Go(r —r )v(r )

~I
+ v(r)Go(r —r, )v(r1)Go(r1 r )v(r ) +

(A6)

Equation (A5) can be interpreted as multiple scat-
tering of the electron by successive atoms and the
sum is under the restriction that there should be
no successive scatterings by the same atom.

For the present problem we are interested in
~f

G(r, r, v) where r and r are within the central-
atom muffin. .in. This is because the core wave
function in Eq. (AS) is highly localized. Further-
more, we assume that the central photoexcited
atom can be represented by a different potential
vo and a t matrix to. Then it is convenient to
solve the scattering problem of the electron by
the central atom exactly and introduce the Green's
function G, ,

G,(r, r') = Go(r, r')+Go(r, r1)to(r, )Go(r1

(A())
~g

For r, r inside the muffin-tin radius yMT, we have

G(r, r'}= G, (r, r')+Q G, (r, r,)t(r, —R, , r, —R,)

xG, (r„r')+QG, (r, r, )t (r, —R, , r, —R;)

~f
x Go(ro —r2)t (r2 —R, , r4 —R&)G, (r4 —r )+ ~ ~ ~,

(A8}
where the sum is further restricted so that the

first and last t matrix should not refer to the cen-
tral atom. The Green's function G, can be con-
structed from the solution of the muffin-tin poten-
tial vo, which is most conveniently obta, ined by a
spherical-harmonics expansion. Including only

states a.bove the Fermi surface, we obtain

Here we have adopted a. notation that repeated in-

dices are to be integrated over. It has been shown

that T can be expressed a.s a series expansion in

terms of t(r, r ), which is the t matrix for scatter- where

~l
Az. 2(r)4z ..(r )

"—4:2+ t'}G
(A 9)
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er, s(~) =

{I/M)'"kf 'I;, (II)[k'."(kr) e"~'+k".'(k~) e "~ )
(A10)

The eigenfunction outside the muffin-tin radius is
the stationary solution appropriate for a free elec-
tron with energy e„=k /2m normalized within a
large radius R. The phase shifts 5,. are deter-
mined by matching with the solution Pz,. ~ inside
the muffin-tin sphere. We have also introduced
the lifetime q, of the electron due to inelastic
scattering by plasmon excitation.

It is instructive to first consider the zeroth-or-
der approximation. Using Eqs. (AS) and (A10) we
obtain from Eq. (A2)

(A11)

PJ J, = dr ~~r q r L r (A12)

We have used the form of the Green's function giv-
en by Eq. (A10) that is appropriate for x, x'& r r
because the core wave function Pro is localized.
The matrix element P implies the selection rule
I lo —I I

= l. In the limit of q„q,- 0, Eq. (All)
reduces to the Golden-. Rule result

eo (ur) —4m e Q ~Pr, r ~
p(u)+e, ),

J pal
(A13)

where the electron density of state p is evaluated
at the final-state energy ++ q, . More generally the
5 function is replaced by a Lorentzian with a width

given by q, +g, . We note here that in this work we
have assumed that the electrons interact with a
static poten~" al v(r) at each atomic site. We have
included th act that the central atom has been ex-
cited only ~e extent that its muffin-tin potential,
and there~ its phase shifts, are assumed to be
different from the other atoms. In reality there
are relaxation effects due to the screening of the
central ions by the valence electrons. We assume
that such screening is accomplished in a time 7.

which may be of the order of the inverse of the
plasma frequency. Qn the other hand, our pertur-
bation theory takes place over a time scale of order
(ri, +q, ) . Hence if the inequality

which is of the order of 4 eV. Equation (A14) is
then marginally satisfied.

Next we consider the contribution to the absorp-
tion coefficient including single scattering, i.e. ,
first order in t. This can be obtained by a straight-
forward calculation of the first-order correction to
the Green's function,

&r (r, r') = G, (r, r&) t (r& —R» r2 Rg) ~g (r2y r )

(AI5)
and inserting the result into Eq. (A2). In perform-
ing the integrals in Eq. (A15) we note that rr and

ra refer to the t matrix of a neighboring atom and

should be outside the muffin-tin radius of the cen-
tral atom. Thus we use Eq. {2.5) to expand the
wave function C r, ~(r) for r& r„r given in Eq.
(A10). Since the computation is straightforward
but rather lengthy, it will not be presented here.
The details are available from the authors. We
would simply give the result and also point out that
the expression for the Green's function propagating
from one center to another has been given by
Lloyd and Smith. ' Application of this expression
to the multiple-scattering formalism for the pres-
ent problem has been performed by Schaich and

Ashley and Doniach~ yielding the same result.
What we find is that the first-order Green's func-
tion G~ can be expressed in terms of the matrix Z
given by Eq. (2. 16). Inserting Gr into Eq. (A2)
and upon comparison with the zeroth-order term
we obtain

2«[X 0&rv&ro, r(Ey~rr, r;) J'r:,r, e'"'"'&'J

g „,gr l J'r
0 r i

'

k=v 2[~+i(g, +q, )] r

If the x ray is unpolarized, then we have to aver-
age over the polarization vector, the details of
which are worked out in Appendix B. In particu-
lar, if the core level is an s state then /= $'= 1 and

X(~) simply becomes

+rJ && (d j (AI4)
(A18)

is satisfied we may use the approximation of rep-
resenting the central ion by a static screened po-
tential, For copper the core decay rate q, is neg-
ligible compared with q, due to plasmon excitation,

Equation (A16) is the result we shall use in this pa-
per. Here we would only point out that if the core
state is not an s state then Eq. (A16) would have
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and TLL have been defined in E(l. (2. 11). A similar
expression is obtained for higher-order terms and
it is clear that the expression (A16) for y(~) will
be valid if g,. ZI'L, is generalized to

tot ~~ g ~~ agZJ LI —~ ZLLl + ~ ZLLl + ~ ZLLl +

&WAN

jAyA&l

w'here
(A23)

FIG. 17. Illustration. of a double scattering by atoms
at R& a~d 8&.

~LL' QI.I:- (ss)JTL"iI: i --I:-Lii ( '4 -.I)
LII L Ill

where

X TI i Li KL ~ Li (RI) (A20)

interesting cross terms coming from the fact that
the outgoing wave and the component of the incom-
ing scattered wave may have different l values.
This point will be expanded upon in a future pub-
lication.

The above result can easily be generalized to in-
clude higher-order multiple-scattering terms.
The electron may be scattered first by an atom at
R& and then an atom at R„. This is illustrated in
Fig. 1V. The corresponding correction to the
Green's function is

G", (r, r ') = G.(r, r, ) t (r, —R„r,—R,)

x Go(r2, rs) t(rs —Rl, r4 —RI)GO(r4, r') .
(A19)

We note that the intermediate Green's function

Go(rz, rs) is a Green's function for free space and

can be expanded about R& in spherical harmonics.
Then we expand the variable r, about R, and per-
form the integrations as in the single-scattering
case. Similarly we expand r~ and r2 about R~ and

integrate. This results in an expression for y((d)
of the same form as E(l. (A16) except that Zl is
replaced by

x= cos8= —g Y,~ (QI)Y, (Q„), (Bl)

where 0, and A„refer to the angle made by & and
x with respect to some axis. For polycrystalline
samples w'e perform an average over Q~ and the
choice of quantization axis is then arbitrary. For
crystalline samples, and a given direction of the
x-ray beam, however, we should average only over
the azimuthal angle P because the pole. rization vec-
tor has to be normal to the beam axis. In that case
we should choose the beam axis as the quantization
axis. Thus a definite direction is picked out and
even with unpolarized x ray it is still possible to
observe anisotropic effects. In what follows we
shall work out the polycrystalline case, but the
same result holds for the crystalline case provided
the quantization axis is chosen as indicated. From
E(l. (2. 17) we write the averaged absorption rate as

2 2

2Rel dn, Q Q e'(4)'4)'

x( ~( ~ss&s„, (s'~S
( I, s(z&s,. i ss, ))

(»)
where I 1.) is the initial core state, which is coupled
to the state I I ), which in turn is scattered by the
surrounding atoms to the state I f.). Using E(l.
(Bl) we can write

2
—Re d~& F,* 0 Y, 0

mpm 2

Z' '= Q(RI) TK(RI —R),) T ' ' ' TK(R;) . (A24)

Again the restriction on the sum is such that the
initial and final atomic coordinate should exclude
the central atom. Furthermore, the central atom
should be described by a different T matrix in
terms of 5,'.

APPENDIX B

In the appendix we examine the effect of aver-
aging over polarization vector and crystal orienta-
tion. The only dependence on the polarization vec-
tor is via the factor c ~ r in the matrix element. It
is convenient to write

KLL (R, ) = QRL,L, I&L,(R,),
Lg

QLI,".(Rs) = ~ I)LI(—R)s)SLIL." s

Ly

(A21)

(A22)

x e'"~"&' Lo xY, Q„L
moLL'

xs„,. (s ~,s...(s,)~s, )s(s,.s -s)). (ss)
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Using the orthogonality of the F, me obtain

2

Re e'"'"~' Io xY, ~
~„L

T 35 mg moL I

xt ~ (1,'(vF, ,(A,)(I,)ll(Z;+K+-Zi)) . (B4)

The case when [ I,o) is an s wave is particularly
simple. Then both I 1.) and l l. ) are /= i states and

we obtain simply

4~8 f25 ™Re & & ~Z
T 3S fn

Hence the averaged absorption rate is simply given
by the average of the diagonal matrix element of Z.
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