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Dispersion relations for nonlinear systems of arbitrary degree
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A time-independent causal system is considered, in which the efkct depends nonlinearly in an

n th-degree way on the cause. It is shown that there are Kramers-Kronig-type dispersion relations for

the transform of the response function.

I. INTRODUCTION

Recently dispersion relations for a one-dimen-
sional third-degree nonlinear system were de-
veloped. ' The purpose of the present paper is to
show that the arguments used in the third-degree
problem can be extended to the rsth-degree non-
linear problem and to derive the Kramers-Kronig-
type dispersion relations for that general system.

This paper rests on the previous one (Ref. 1)
and we refer to it for introductory and background
material.

II. DERIVATION

Consider a time-independent nth-degree nonlinear
system where the cause C(t) and the effect E(t) are
related by

E(t)= dt,
~

dt . . . l dt G(t t, , t t, . . . , t —t )

xC(t,)C(t,) ~ .C(t„) . (l)

The integrals extend from minus to plus infinity
and all these quantities are real. The response
function is symmetric with respect to interchange
of any two variables,

G(v„va, r„.. . )=G(wa, v'q, pa, . . . ), etc. (2)

Suppose also that the system is causal so that the

effect at any time depends only on the cause at
earlier times,

G(7, , va, . . . ) =0 if v, &0 . (3)

The transform of the response function is de-
fined by

g (& i ~ & a ~ ~ ~ ~ ~ (on) = da'
vo ~Q

xG(yq, ya, . . . , y~)

xexpt(ar, v, +(uava+ ~ ~ ~ (u„v„) .
(4)

The symmetry of 6 implies the symmetry of g,
g((o„(u„(u„.. . ) =g((o„(o„(o„.. . ), etc. ,

and the reality of G implies a type of crossing
symmetry of g,

(+1t+a~ '' '~+n)=g( +is +a~ ~ ~ ~ ~ &n)

Because of these symmetries, the function g is
completely determined if it is specified in the fun-
damental region

(d y
& (d2 & ~ » & CO

(d I+ (dp + ~ ~ 0 + Q3 & 0

The conditions that describe the fundamental
region suggest an appropriate set of frequency
variables:

Qo= (dy+(d2+ ~ ~ ~ + (d„,

Qy= (dy —(dp ~

+2= (d2 —(d3,

~n-S —n-i —™n'

These are positive throughout the fundamental

region and form a nonorthogonal set of coordinates
for points inside.

A new function may be defined by

g @0~
~l s i ~ ~ ~ ~ tin-s) =g(& s ~ &a ~ ~ ~ ~ ~ 0on) ~

The variable Qo has special significance, as will be
seen below; the dispersion relations involve inte-
grations over Go and the response of a system at
frequency (d,„& to a set of applied frequencies is
governed by g (Q0, Q„.. . , 0„,) evaluated at A0

=(do t ~

In terms of the original response function G, g
is given by

dv„G (~„va, . . ., v„)exP((i/n) (Q0(T, + 70+ ~ ~ ~ + w„)
&0

q. . . O„g(~g+&a+ ~ ~ +~~i)lf) . (8)

r
0 & ~1& ~ ~ s ~ -1) [ d71 d&a ' ' '

~0 0

—IQ +M + ~ ~ ~ (n —l)Q„,j(7'(+7'a+ ~ ~ ~ +v' )+n[&gvg+&a(&g+ &a')
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This result is found by solving for the +'s in terms
of the Q's and substituting into Eq. (4). The in-

- teresting feature of this result is that the coeffi-
cient of ino in the exponent is n (v, + so+ ~ ~ ~ + v„),
which is always positive. Consequently, for fixed
Q~, Qo, . .., Q„,, Eq. (8) serves to define g(no,
Q„.. ., Q„,) as an analytic function of a complex
variable ~o in the upper half-plane.

The functiong(no, Q„,Q„,) does not have
crossing symmetry in the Qo alone. However, one
can find functions that do have the required prop-
erty. Equations (5) and (6) imply

g(l'dg & &do& ~ ~ ~ & &n-1& +n)

-g(&n & &n-s & ~ ~ ~
& ~o & &i)

=g*(- 4&n & &n-i &
~ ~ ~

& &a &

which, upon translating into terms of g and the 0's,
becomes

g(no& 1 &Q2 »''' && o&nn 1)

=g*(- Qo, Q„„n„o,. . . & Qo, Q, ) .
Consequently one defines two new functions by

gi(no& n» Qo»" Qn-o& Qn-i)

—og(no& ng& Q2 & ' ' ' nn o& n»

+ —,'g(no, Q„» Q„o, . . ., Qo, Q,),

go(no, Q» Qo, . . ., Q„o, Q„~)

= o&g(no& n» Qa& ~ ~ ~ & An-o& Qn-i)

——,
' tg(no, Q„» Q„o&. . ., Qo& Qg),

since they have the standard crossing symmetry

g,*(n„n„n„.. . , Q„„n„,)
-g&(- no& n» Qo& ~ ~ & Qn-o& Qn-i) .

The functions g; have crossing symmetry in Ao
and are also analytic functions of complex Qo in
the upper half-plane, for fixed 0„~2, .. ., A

Consequently, assuming no subtractions, one can
write dispersion relations for these functions,

Reg; (Qo, Q„.. ., Q„,)

dnonolmgg(no& Q» .. ., Q„~), (13 )2
m o no -no

img~(no ni ~" Q g)

2 "" dno Reg;(Qo, Q„.. . , Q„„,)
0 ~2 2

g o Qo —Qo
(13b)

These are the standard Kramers-Kronig type of
dispersion relation on the Qo dependence of the
functions gz y the frequency var1ables Q~&. . .& Q„„~
being held constant.

m. D~sCUSsrOX

In cases n = 2 and g = 3, Eqs. (13) specialize to
the results obtained earlier.

The interpretation of g in terms of the response
of the system to a superposition of applied fre-

quenciess

was developed before for the cases n = 2
andn=3. ' For higher n the same type of inter-
pretation applies. For example, a single input
frequency &, with amplitude A, leads to output
frequencies 0, 2+„4&„... , mw, when m is even
and to frequencies &„3&„5~„.. ., m&, when n
is odd, each with amplitude proportional to A,".
The amplitude and phase of the responses deter-
mine the transform function. The complete re-
sult, in this special case, is that the cause

C(t) =A, cos(&u, t —'g, )

implies the effect

Ia fI+(t) nn ~ &2~ ~ »2~ & +ag(&a& +a& ' ~ '
& +a& ~a)+ 2n t ~ I «& ~g(&a& ua& ' ' ' & &a& &a)~

& cos[(n —2x) (u, t —(n —2/r) g, —&((o„a&„.. ., —oo„—e, )]

for ~ even, and the eff ect
(&-&)/2

E(g)-( )= 2n z & j) t )g((da&(da& ~, .&
—

COa&
—fda)( cos[(ll —2K)Cdat (tl —2K) i/a —e(&a& (ga». . ..——(g &

—(ga)]

for n odd. Here the notation is thatg= jg I
O' . In

the time-independent term half the g arguments of
g are (d, and the other half are —~„ in this case
g itself is real. In the terms in the sums on K,
the n arguments of jg ( and 8 are always + +, or

—(d~, the —(d~ occul ring K times. When two fre-
quencies &, and (d~ are applied wi.th amplitudes A,
andA~, all possible sums and differences of ~ fre-
quencies chosen from (d, and (d~ are found in the
output and the amplitude 1s proportionaj. to A~~A~ ~,
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k being the number of ~,'s contributing. The situa-
tion is progressively more involved as more fre-
qUencles are used in the input~ but no qUalltat1vely
new features appear. A general feature, illustrated
in the above equation, is that the response at an
output frequency +,„& always involves g or g eval-

uated at ~o out ~

In this general nth-degree problem, the values
of Beg and Img can be determined separately by
making time averages of the appropriate responses
with the n, th power of the cause, as illustrated for
the n=2 and@=3 cases formerly.
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