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We present nonlinear self-consistent calculations of the charge density induced by isolated Li+, K+,
Mg++, Al+++, and Ca++ ions when placed in an electron gas of the appropriate metallic density. By
comparison with linear-response theory we show that in the first. four metals nonlinear efFects in the
response of the conduction electrons to the ionic perturbations play an important role in determining
the charge density and the interionic potential. However as in the case of Na studied in the previous

paper these nonlinear efFects can be simulated by using a suitably adjusted model potential. The
calculated phonon dispersion curves for Li, K, and Al agree very well with experiment. Nonlinear
efFects are also very likely to be important in Ca but further work is necessary before conclusions can
be drawn.

I. INTRODUCTION

In the preceding paper, ' referred to as I, the
problem of calculating interionic potentials in sim-
ple metals is discussed. There it is pointed out
that the solution of a closely related problem, that
of the charge density induced by an isolated me-
tallic ion in an electron gas, can be used as a
guide to calculating a reliable interionic potential
via standard pseudopotential theory. Briefly the
procedure is as follows. First the charge density
induced by an isolated ion, represented by a full
ionic potential, in an electron gas is calculated.
Next the equivalent linear-response solution, us-
ing a pseudopotential to represent the ion, is con-
structed. The pseudopotential parameters are
then adjusted so that the linear-response-charge
density agrees very well with the nonlinear result
for all r values outside the ionic core region.
Finally the same pseudopotential parameters are
used to calculate the interionic potential.

The need for invoking a procedure such as the
above one arises from the fact that nonlinear ef-
fects turn out to be important in all the systems
that we have studied. This fact is illustrated in

the numerical example considered in I. The non-

linear charge density was taken from the Dagens
(referred to as II) calculation for an isolated Na'

ion in an electron gas. A model potential was
constructed to give the same phase shifts (by solv-
ing the Schrodinger equation) as the Na' ionic po-
tential. This model potential, used in the linear-
response approximation, not only gave rise to a
charge density differing somewhat from the non-

linear calculation but also to phonon frequencies
which were generally about 10' higher than the

experimental ones. However, by following the
procedure described above the phonon frequencies
turned out to agree very well with experiment.
Hence it was concluded that (i) nonlinear effects
are important even in Na and (ii) these effects
could be taken into account by using a model po-
tential adjusted to generate, via linear-response
theory, the correct nonlinear charge density.

In this paper we extend the calculations of I and
II to a number of other simple metal systems,
i, e. , I i', K', Mg", Al"', and Ca", with two
objectives in mind. These are (i) to present non-
linear self-consistent calculations of the charge
density induced by each of these ions when placed
in an electron gas of the appropriate metallic
density and (ii) to use these calculations in con-
junction with the equivalent linear- response re-
sults in order to analyze and correct for non-
linear effects in the response of electrons to ionic
perturbations. The nonlinear charge densities
were obtained by solving the Hartree-Fock equa-
tions employing the usual Gaspar-Kohn-Sham
(GKS) p exchange approximation as well as the
Hartree approximation. The procedure was es-
sentially the same as given in II, some details of
which are given in Sec. II of this paper. The
metallic charge density is then given quite accu-
rately by a superposition of these isolated ion
densities. -~

For the linear-response calculations we used in
each case an energy-independent nonlocal model
potential of similar form to that introduced by
Heine and Abarenkov. ' With the exception of Ca
an energy-independent model potential is a good
approximation in the materials we are considering,
but for most of them nonlocal effects are known
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to be important. In our case we found it essential
to use nonlocal model potentials for two reasons.
First, in attempting to elucidate precisely the ef-
fect of nonlinearity it is necessary to construct a
model potential which is formally equivalent to the
ionic potential used for the nonlinear calculations.
This can be achieved by requiring the model po-
tential to give the same phase shifts over a wide
range of x and, with the possible exception of K,
a nonlocal model potential is required. In Al,
e, g. the use of a local model potential which
best reproduced the full ionic phase shifts, gave
fair agreement with the nonlinea. r charge density.
The error, however, was very much reduced when
a nonlocal one (giving the same phase shifts as
the full ionic potential for a wide range of x) was
used instead. Secondly, we found in practice that
when adjusting the model-potential parameters to
include nonlinear effects, an accurate main peak
and the long-range oscillations in the charge den-
sity could only be obtained, in all cases, with a
nonlocal model potential. This is particularly
true in Li where a local "fit" to the charge density
gives errors of & 50% in the amplitude of the long-
range oscillations. ' When one observes that even
the near-neighbor region of an interionic potential
is strongly influenced by the charge-density oscil-
lations it becomes increasingly clear that non-
locality must be taken into account.

In Sec. II we summarize the theoretical basis
for the calculations which are presented in Sec.
III. There we show that for K, Al, Li, and Mg
nonlinear effects are significant but can be cor-
rected for by the procedure of adjusting the model
potential to the charge density just as in I. In
each case the effect of nonlinearity is to shift the
main peak of the charge density towards the origin
and to lower the calculated phonon frequencies.
The results and conclusions are summa, rized in
Sec. Dt.

II. THEORETICAL BASIS

In this section we outline briefly the theoretical
basis behind the calculations which are presented
in Sec. III. First we describe the neutral atom
model for the charge distribution in a metal and
also the nonlinear self-consistent (NLSC) procedure
used to calculate it„Then we describe the pro-
cedure used to generate the linear-response charge
density which is to be compared with the self-con-
sistent result.

A. Neutral atom model

The self-consistent valence density p„, (r) of a
simple metal can be calculated accurately by means
of the neutral atom model. This theory assumes
that p„, (r) can be written with little error as a
sum over the metal ions of rigid neutral atom den-

sities n (r —R) centered on the various ion positions
R. ' The important fact is that n(x) is structure
independent and depends only upon the mean va-
lence density pp, the ionic potential V,', and the
assumed valence-vaLence exchange and correlation
potential p. „,. The neutral atom method allows a
direct calculation of e(x) by solving an auxiliary
impurity problem, which amounts to the self-con-
sistent calculation of the nonlinear screening of an
isolated neutral impurity potential, embedded in
the neutralized electron gas which represents the
zero-order metal valence density, This impurity
potential V'p is simply related to the ionic potential
Vf On Its express ion is

where V„„ is the one-particle ionic potential to be
described later, and v(x) a spherical charge den-
sity which represents intuitively that part of the
unperturbed valence density p, which neutralizes
the corresponding ion. The form of v(r) is rather
arbitrary. It must be chosen such that the sum of
v((r —R[) over the atomic sites R approximates
the unperturbed valence density pp as closely as
possible, for the physically significant structures.
Ball' uses a uniform auxiliary screening density
(p, =- po inside the ionic Wigner-Seitz sphere and
zero outside). We use in the present work the
trapezoidal form described by Dagens which leads
to significantly smaller po —g„„, v for most metal
structures.

The calculation of n(r) proceeds as follows. Vo

is embedded in the neutralized electron gas; of
uniform density po, and the self-consistent dis-
placed charge n'(z) is calculated numerically as
described in II. This auxiliary neutral density n'

differs from n(x) by the quantity n" (x) which re-
presents the effect of the nonphysical compensat-
ing charge v(x). More precisely, g„„,n repre-
sents the charge density displaced by the potential

g, , V, when all multiple scattering terms are
neglected. This potential includes the unphysical
contribution bu(oe~/, r) (gv —po) which induces a
spurious displaced density which we write as pp
—g n" [see II, Eq. (11)]and which must be sub-
tracted from po+gn'. Now, b.uo is very small,
and we neglect aga. in all the multiple-scattering
terms involving Duo and any Vo. po —gn" is then
given by the standard linear-response theory, and
n" (x) is found to be the Fourier transform of

n" (r) is obtained by numerical Fourier transform
and added to n'(r) to make the rigid neutral atom
density n(x) =n'(x)+n"(x) [II, Eqs. (11),(12)].

The main assumption of the neutial atom theory
ls that Vp is a weak scatterer, such that all multi-
ple-scattering terms involving at least two differ-
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ent scatterers are indeed negligible. It is not
necessary to assume that V„„ is small, and an ex-
act (one-particle) ionic potential may be used.
n(r) includes thus all nonlinear contributions which
originate from repeated scattering on a given ion,
but not, of course, the nonlinearity associated to
the scattering over two or more distinct ions.

Three kinds of ionic potentials have been con-
sidered in the present work, in order to appreci-
ate how much the screening charge n(r) is sensi-
tive to the choice of a specific ionic potential. The
first one is the Hartree-Fock-Slater GKS ionic
potential previously used2 with the p' 3 Gaspar-
Kohn-Sham exchange potential. The second one
is a semiempirical potential fitted to observed
atomic term values. Such potentials are available

This potential is local and is expected to simulate
accurately the Hartree-Fock plus correlation ionic
potential. The last potential which has been used
is the nonlocal Hartree-Fock potential (HF ionic
potential VP ). U'P~ has been taken equal to the
ionic part of the HF self-consistent potential of
the corresponding isolated atom. The neutral
atom computing program previously used, ' has
been modified in order to deal with such a nonlocal
potential'2 and applied to Li, Na, and Al.

We comment here briefly the results of these
calculations. We have compared, for a few metals
(Li, Na, K, and Al) the neutral atom densities ob-
tained for the three ionic potentials (GKS, empiri-
cal, and HF), using the same valence-valence
GKS exchange potential. We have found that the
computed neutral atom density is very little depen-
dent upon the specific ionic potential. More pre-
cisely, the corresponding variation 4pxa I4n 1 of
the radial neutral atom density 4v r2 n(r) has been
always found to be less than l. 5% of the largest
maximum of 4g z2e. Such a difference is of little
significance in the present context, and only the
results relative to the empirical ionic potentials
will be presented in latter parts of this work.

We discuss now the valence-valence indirect in-
teraction potential. It is taken as a simple func-
tion p„,(p„,) of the valence density, The Hartree
or random-phase-approximation (RPA) screening
is obtained when p. „,—= 0. The p' 3 Gaspar-Kohn-
Sham approximation is used for the exchange part.
The Nozieres-Pines (NP) formula

ing and only RPA and GKS results will be compared
with the corresponding linear screening densities.

&. Linear response

To calculate the linear-response results we
proceed in the same manner as in I. To make a
meaningful comparison with the NLSC results it
is necessary to construct a pseudopotential which
is formally equivalent to the ionic potential used
to generate them. In each case we have used a
model potenti. al of the form

'V~ = Q (A, e(R, —r) —(Ze'/r)e(r R,-))P, ,

TABLE I. Model-potential parameters used for the
calculations in this paper. The Ml parameters have
been adjusted to reproduce the ionic-potential phase shifts
and the M2 parameters to reproduce the NLSC charge
densities. The valises f A i are in By and Ri in a u

Ao Ay

where e(x) is the usual step function and P, is the
angular momentum projection operator. For l
values greater than or equal to a value Eo, we have
taken Ai =A. , and~i =Bi ~ In Ll Eo=-1 and ln
all other cases lo= 2. The parameters were then
adjusted to reproduce the phase shifts of the ionic
potential for r) Rz, (the largest of the values of
R o) at the Fermi energy. The fit obtained was in
each case similar to that obtained for Na in I.
The phase shifts were also calculated at other
energies where for all materials except Ca they
agreed very well with the ionic phase shifts. Thus,
as is well known (e. g. , Ref. 6) an energy-indepen-
dent model potential was found to be satisfactory
for Li, K, Mg, and Al but not for Ca. The pa-
rameters for these model potentials, referred to
as Ml, are given in Table I.

The NLSC charge densities were calculated
using both the Hartree approximation and the
GKS exchange approximation. In the limit of lin-
ear response the corresponding screening func-
tions are, respectively, ' the RPA or Hartree
screening and the exchange screening given by

ll, (q)
l —pe ' ll, (q) /k r2

ilo(q) is the RPA result. These then are the
screening functions that were used to generate in

P, (P) = P, (Po) —0. 005&7» P(r)/Po

has been used for the correlation pari in a few cal-
culations. We have found that the effect of this
correlation potential upon the density n(r) is rather
small. The corresponding correction 4m x2 4n
for Li is found to be less in magnitude than about
2'%%uo of the maximum of 4n r2n, for example. The
correlation part will thus be omitted in the follow-

Ml —0.454 2. 07
M2 —0. 70 2. 38

Ml —0. 377 3, 002
M2 —0.32 2 ~ 65

Mg Ml —1.235 1, 82
M2 —1 ~ 235 l. 72

Al Ml —2, 22 l. 515
M2 —2. 22 1.45

CR Ml —1, 00 2. 577

—1.435
—1.32

—0. 377
—0. 32

—1.235
—1,235

—2. 22
—2. 22

—l. 00

2. 07
2, 38

3.32
3.08

l. 66
1, 50

1.38
1.31

2. 69

—l. 435
—1.32

—l. 17
—1, 80

—3. 80
—3.80

—6. 70
—6. 70

—3, 085

2. 07
2, 38

3.32
3, 08

l. 66
1, 50

l. 38
1.31

2. 69
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each case the appropriate linear-response charge
density. The formula for this quantity, describing
the screening of a nonlocal pseudopotential, is
given by Eq. (39) of I.

It is a simple matter (see I) to extend the theory
for the charge density to the problem of calculating
phonon dispersion curves in the solid assuming the
validity of the neutral atom model discussed ear-
lier in this section. Essentially this is nothing
more than the problem of calculating the energy
of a system corresponding to the charge density
already computed. Hence a theory giving rise to
an accurate charge density should also give rise to
accurate phonon dispersion curves within the limits
of the neutral atom model. Conversely, errors
in the charge density will be reflected in these
quantities. Thus by comparing the computed
phonon dispersion curves with experiment we are
able to assess the significance of any errors in
the linear- response charge densities. With this
in mind we have computed both phonon dispersion
curves and interionic potentials using Eq. (43) of
I for the energy-wave-number characteristic. In
this case, however, since we are comparing with
experimental quantities we have used the Geldart
and Taylor'3 approximation to the electron gas
screening function since this quantity contains
correlations as well as exchange and goes beyond
the first gradient term.

The only numerical example considered in I was
Na. There it was found that although the linear-
response charge density agreed quite well with the
NLSC result, the errors arising from the omis-
sion of the nonlinear terms were significant. How-
ever by adjusting the model potential parameters
so that the linear-response charge density co-
incided with the NLSC density for z Rz it was
found that the corresponding phonon dispersion
curves, which previously were in error by about
10%, agreed very well with experiment. Thus it
was concluded that the effect of nonlinearity could
be simulated by a suitably adjusted linear term.
Hence for some of the calculations described in
Sec. III we have made similar adjustments to the
model potential parameters and we shall refer to
these by the symbol M2. The values chosen for
the M2 parameters are also listed in Table I.

III. RESULTS AND DISCUSSION

Before discussing each metal separately we
make some general comments about the charge
densities presented in Figs. 1, 4, 7, ].0, and 12.
In each case the NLSC result, both with and with-
out exchange, contains one or more oscillations at
small x. These are due to the need for the wave
function to be orthogonal to the tightly bound ionic
core electrons. These oscillations are of course
not present in the model potential results due to

Q4-

O

O, I

r (a.u. )

FIG. 1. Charge densities induced by an isolated K'
ion in an electron. gas. For clarity the GKS exchange re-
sults are displaced upwards by 0. 1 a. u. (0.01 a. u. in. the
inset) relative to the Hartree results; solid line, non-
linear self-consistent calculations; dashed, linear-response
calculation with model potential M1; dotted, linear-re-
sponse calculation with model potential M2.

the absence of core electrons. ' The oscillations
at large x are the well-known Friedel oscillations
which are a manifestation of the well-defined Fermi
surface. These oscillations are also present in
the interionic potentials shown in Figs. 3, 6, 8 and
11. It is clear from these figures that even the
near-neighbor region is strongly influenced by the
Friedel oscillations, and hence it is important to
obtain the right amplitude for the oscillations in
order to produce a reliable interionic potential.

Potassium

In Fig. 1 are displayed the charge densities
calculated using the Hartree and GKS exchange
approximations. The NLSC results are indicated
by a solid line and the corresponding linear-re-
sponse results (model potential Ml) by a dashed
line. The agreement between the two is quite good,
being similar to that obtained in I for Na. The
calculations for model potential M2 are indicated
by a dotted line. Several points are worth com-
menting on. In Na and Li, Al, and Mg (see be-
low) the I = 2 parameter of the model potential has
a negligible effect. In K, however, its effect is
larger and probably reflects a small effect of the
low-lying unfilled d states. Although these can
introduce only a slight energy dependence in the
l=-2 parameter of K, they have a much greater
effect in C a., where they lie just above the Fermi
level, giving rise to model-potential parameters
which are strongly energy dependent. 6 Also (see
Fig. 1) adjustment for nonlinear effects, done so
that the exchange density is best reproduced, re-
sults in some error in the Hartree density and
again could reflect the slight effect of energy de-
pendence in the model potential. Since the ex-
change density more closely approximates the
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(q, o,o)
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IO.O

{RPA)

0

0.2 0.6 1.0 0,8 0.6 0.4 0.2 0 0.2 0.4
0/AVE VECTOR q(2'/a)

FIG. 2. Phonon dispersion curves at O'K for K. The
experimental, points which are taken from Cowley et aE.
(Ref. 14) are indicated by & for longitudinal branches
and c) and ~ for transverse branches. Dashed line,
M1 model potential; solid, M2 model potential.

true metallic density, the appropriate pair poten-
tial was constructed via that density.

An examination of the calculated phonon disper-
sion curves in Fig. 2 shows that, just as in the
case of sodium, by adjusting the model-potential
parameters to correct for the nonlinear terms in
the charge density, the errors in the phonon fre-
quencies are almost completely removed.

The interionic potentials resulting from the Ml
and M2 model potentials are shown in Fig„3,
where it can be seen that as in the sodium case
the effect of the nonlinear corrections is to deepen
the first well and to shift the phase of the oscilla-
tlons towards the origin,

The charge densities calculated using both the
Hartree and the GKS exchange approximations are
displayed in Fig. 4. Here the agreement between

FIG. 4. Charge densities induced by an isolated AV'+

ion in. an electron gas. For clarity the GKS exchange re-
sults are displaced upwards by 1.0 a. u. (0, 1 a. u. in the
inset) relative to the Hartree results. The notation. is the
same as for Fig. l.

both the NLSC and the linear-response (3ijl) results
is remarkably good. It appears therefore that in-
creasing the number of valence electrons does not
decrease the validity of linear-response theory.

Nevertheless the small differences between the
two charge densities are still significant, as can
be seen by examining the phonon dispersion curves
shown in Fig. 5. The frequencies calculated using
the Ml model potential are typically about lolo too
high, And just as in Na and K the M2 model poten-
tial, which in this case fits both the NLSC exchange
and Hartree results, generates very good agree-
ment with the experimental phonon frequencies.
At first sight it might seem svrprising that such
a small difference in the charge densities should
be reflected in such a large discrepancy in the
phonon curves. However Vosko et a/, ' have
pointed out that in Al the screening effect of the
electron gas cancels the pure Coulomb repulsion
between the ions to a much greater degree than

0.04-

0.02-

0.01—

I

I

I

I

I

'I

K

rs = 4.869
0 = 5.255

-0.01-

-0.02—

-0.05-
0.7 0.8 0,9 1.0 l, i 1,2 1.3 1.4 1.5 1.6 1.7 1,8 1.9

rfa

FIG. 3, Interionic potential for K calculated using the
M1 (dashed line) and M2 (solid line) model potentlaj. s.

FIG, 5. Phonon. dispersion. curves at 90'K for Al. The
experimental points are taken. from Stedman. and Nilsson.
{H,ef. 15) and the notation lS the same RS that fol Fig. 2.



. CHARGE DENSITIES AND INTERIONIC. . . 2731

in the alkali metals. Hence the calculated phonon
frequencies of Al will be far more sensitive to
small errors in the electron-ion interaction and
we are forced to conclude that also in this system
nonlinear effects are important. However, as in
Na and K, they can be simulated to a large degree
by a suitably adjusted linear-response term.

It should be pointed out that Al, having a Fermi
surface which is strongly distorted by the zone
boundary, will show extra structure in the phonon
dispersion arising f rom the presence of Kohn anom-
alies, " their positions and strength being dic-
tated by the true distorted Fermi surface. (Ex-
perimentally the Kohn anomalies have been mea-
sured very accurately in Al. )" These obviously
are nonlinear effects not corrected for by our
approach, hence, our Kohn anomalies do not ap-
pear at the same points as the experimental ones
and a comparison is not very meaningful. How-
ever, since our interest is in constructing inter-
ionic potentials (to be used, e, g. , in liquid met-
als, etc. ) these effects are of no relevance to
this work.

The interionic potentials resulting from the M1
and M2 model potentials are compared in Fig. 6
where it can be seen that the principal effect of
nonlinearity is in the first-neighbor region. The
unusual appearance of the interionic potential in
this region, i. e. , large and positive, is due to
the choice of electron gas screening, not to the
choice of model potential. '

Lithium

The calculated charge densities are displayed in
Fig. 7. The NLSC results computed using the
GKS exchange approximation differ somewhat from
the calculations reported in II. This is due to the
fact that the trapezoidal form of the neutralizing
spherical charge density v(r) [Eq. (1)]was used
rather than the Gaussian form. This leads to a

0,06-

0.05-

0.04-

0,03-

0.02-

~ 001-

-0.01-

-0.0& I I I I I I I I I I I I

0.6 0.7 0.8 0,9 1.0 I. I 1.2 1.3 1.4 1.5 1.6 1.7 1.8
f'/Q

FIG. 6. Interionic potential for Al calculated using the
Ml (dashed line) and M2 (solid line) model potentials.

—04

CO

CU

g 0.2

r (a.u, )

FIG. 7. Charge densities induced by an isolated Li'
ion in an electron gas. For clarity the GKS exchange re-
sults are displaced upwards by 0. 2 a. u. relative to the
Hartree results. The notation is the same as for Fig. 1.

significantly smaller potential ~zo. In principle,
this should not affect the calculations, but due to
the fact that Duo is treated via linear-response
theory, the use of the trapezoidal form of v(v)
leads to the more accurate results that are shown
in Fig. 7.

When considering Li from the pseudopotential
point of view it is useful to note that although a
weak pseudopotential can be constructed to repro-
duce the s-phase shifts correctly, this is not the
case for the p-phase shifts. This is due to the
absence of p-electrons in the core, which means
that the p-components of the conduction electrons
see the full ionic potential and the equivalent pseu-
dopotential must therefore be a strong potential.
Thus Li is not only extremely nonlocal but should
also be more nonlinear than the other systems we
have considered. This certainly seems to be the
case when we compare the M1 linear-response
charge densities with NLSC results in Fig. 7.
There is somewhat greater discrepancy here than
in the other systems. This is reflected in greater
errors (15/o-20/o) in the phonon dispersion curves
shown in Fig. 8. Following our procedure of con-
structing model potential M2 to give the same
charge density as the NLSC calculation (in this
case exchange only as in K) we see that there is
considerable improvement in the phonon dispersion
curves but there still remain errors of order 5/o.

There are quite a few possible reasons for the
remaining errors in the phonon frequencies. It
is likely that in view of the fact that Li is strongly
nonlinear, we are not justified in expecting that
all the nonlinear effects can be simulated by a
linear term. Hence it could be that because Li
is such a strong scatterer, three- and four-body
forces play a larger role in the lattice dynamics
and that our use of the neutral atom model is not
as well justified. Another possible effect is that
of anharmonicity. Li is a very light ion and there
may well be important anharmonic effects even at
liquid-nitrogen temperature. If the trends are
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FIG. 11. Interionic potential for Mg calculated using
the Ml(dashed line) and M2 (solid line) model potentials.
Note that the parameter a in this case has been chosen
for convenience to be the cube edge of a fcc lattice of
the same density as the true hcp lattice.

independent model potential is invalid. The Ca
phase shifts, are then well represented only near
the Fermi energy by the M1 model potential.
Therefore before any conclusions can be drawn
about the effect of nonlinearity in Ca the energy
dependence of the model-potential parameters
must be taken into account. It seems likely that
the poor results for the M1 long-range oscillations
as well as the unusual positioning of the main
charge-density peak are largely due to the omis-
sion of energy-dependence. It mould be interesting
to investigate this point further.

We have not attempted to fit an energy-indepen-
dent model to the Ca charge density nor have we
calculated an interionic potential since clearly
these results would have little or no physical sig-
nif icance.

IV. SUMMARY AND CONCLUSIONS

calculated using the M1 and M2 model potentials.
As in the other materials the values of x are given
in terms of a parameter a, which requires some
explanation since Mg metal forms a hexagonal
close-packed structure. For reasons of com-
putational convenience a was chosen to be the
cube edge of a face-centered cubic lattice with
the same density as Mg metal. Hence the first-
neighbor distance is at x= 0. 707a. Thus, the
Mg interionic potential is quite conventional
looking with the first well positioned in the near-

: neighbor region. The effect of nonlinearity is to
shift the phase of the potential oscillations towards
small x so that the bottom of this well is right at
the first-neighbor site.

Calcium

The calcium charge densities calculated with
both Hartree and GKS exchange approximations
are displayed in Fig. 12. It is interesting to note
that the amplitude of the NI SC long-range oscil-
lations is considerably larger than in Mg, suggest-
ing that Ca is quite a strong scatterer and that
nonlinear effects could be very important. Al-
though the Ml linear-response calculations seem
to agree quite well in the region of the main peak,
it is clear that the amplitude and phase of the long-
range oscillations are very poor. Also in contrast
to the other materials, the main peak of Ml charge
density is shifted, relative to the NLSC result,
towards the origin rather than the other way around.

A very important feature of Ca that has been
ignored in the linear-response calculation is the
presence of unfilled d states situated just above
the Fermi level. It is well known (see, e. g. ,
Ref. 6) that when such a situation occurs the f = 2

component of the pseudopotential becomes strongly
energy dependent. Hence our use of an energy-

l,p
D
0
L-

0,5
N

r (a.u. )

12.5

FIG. 12. Charge densities induced by an isolated Ca"
ion in an electron gas. For clarity the GKS exchange
results are displaced upwards by 0. 5 a. u. relative to the
Hartree results. The notation is the same as for Fig. 1.

In this paper we have presented nonlinear self-
consistent calculations of the charge density in-
duced by isolated I i', K', Mg", Al"', and Ca"
ions placed in an electron gas of the same density
as the corresponding metal. The metallic density
can then be generated, within the framework of
the neutral atom model, by a linear superposition
of the isolated ion densities. We have also cal-
culated the charge densities generated by linear-
response theory using in each case a model po-
tential (Ml) which is formally equivalent to the
full ionic potential used in the nonlinear calculation.
Generally speaking, although the agreement be-
tween the two calculations seemed to be quite good,
the differences or nonlinear effects turned out to
be important. By adjusting the model potential pa-
rameters (M2) to fit the NLSC charge densities
we found that in K, Al, and I.i the calculated pho-
non frequencies gave much better agreement with
experiment. Just as for Na, reported in I, the
phonon frequencies generated by the Ml model po-
tential were too high mhereas the M2 frequencies
gave very good agreement with experiment in K
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and Al and considerably improved agreement in
Li. The fact that the density plays such a central
role in cohesive energy calculations and the suc-
cess of the above procedure in the calculation of
phonon frequencies strongly suggests that the re-
sulting interionic potentials should be consider-
ably more reliable.

We have not calculated the Mg phonon dispersion
curves but we have no reason to doubt that the
same effects will occur there too. Hence, the M2
interionic potential should be just as reliable as
the others.

Due to the fact that the energy dependence of a
model potential for Ca is a very important effect
we have not proceeded further than the energy-in-
dependent linear-response calculations illustrated

in Fig. 12. It seems very likely that nonlinearities
will be of similar importance in this system, but
before any definite conclusions can be drawn the
energy dependence of the model potential must be
taken into account.

Finally we comment that due to space restric-
tions we are not able to publish listings of the in-
terionic potentials. But these including . Na, ,
tabulated for more than one density, are available
as a Harwell report.
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