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Charge densities and interionic potentials in simple metals: Nonlinear effects. I
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Starting from the Hohenberg-Kohn-Sham equations, expressions are derived for the linear-response

charge density induced by a nonlocal pseudopotential embedded in an electron gas and for the

corresponding interionic pair potential. It is emphasized that an accurate calculation of the charge

density is an essential prerequisite for the generation of a reliable potential. This point is illustrated by
making a comparison with Dagens s self-consistent calculations of the charge density induced by an

isolated Na+ ion, It is shown that nonlinear effects in both the density and the potential cannot be

ignored. However by adjusting the pseudopotential parameters to fit the self-consistent charge density

and thus simulate the nonlinear terms, a reliable and useful interionic potential is generated. Thus the

essential simplicity of the pseudopotential perturbation approach to the theory of metals can be retained

and nonlinear effects can be incorporated into it in a straightforward manner.

I. INTRODUCTION

In this work we wish to examine the problem of
constructing reliable interionic pair potentials to
be used in the study of disordered simple metals,
i.e. , liquids, defect systems, disoxdered alloys,
etc. By simple metals we mean those for which the
ionic core electrons are tightly bound, giving rise
to no significant overlap with nearest neighbors,
e. g. , Al, Na, etc. This problem is usually handled

by examining the cohesive energy of the system.
The full ionic potential is replaced by a pseudopo-
tential and the cohesive energy is expanded in. a per-
turbation series to second order in the pseudopoten-
tial, Conduction- electron exchange and correlation
effects are accounted fox by use of a dielectric
function. The second-order term can then be writ-
ten as the sum of overlapping intex"ionic pair poten-
tials centered on each ion site. Now it is highly
desirable to terminate the perturbation expansion
at this point since the treatment of the disordered
system becomes virtually intractable if highex-or-
der terms are included (see, e.g. , Wiser and
Greenfield'). This of course requires that the con-
duction-electron charge density be a I/near function
of the external potential, an approximation which is
by no means completely justified and which is in-
vestigated in this paper.

Before proceeding any further let us emphasize
one important point. If we know the charge density
as a function of position in a disordered system,
then Hohenberg-Kohn-Sham (HKS) theory tells us
that we can, at least in principle, calculate the co-
hesive energy; i. e. , the charge density plays a
central role in the problem, a fact which we feel
should be and ean be exploited to gxeat advantage

when calculating pair potentials. Of course without
any definite knowledge of the charge density we are
no further ahead, but the calculations of Dagens'
for Na and Li provide just the information that is
needed. Briefly, Dagens calculated the charge
density induced by a full ionic potential embedded
in an electron gas using the HKS self-consistent
equations. The calculation is precisely equivalent
to summing the corresponding pseudopotential per-
turbation approach to all orders (neglecting core
sffects).

Let us now outline the procedure described in
the following sections of this paper. First the full
ionic potential for the metal in question is con-
verted to a pseudopotential. In general this gives
rise to a nonlocal pseudopotential (e. g. , see Rasolt
and Taylor~). In Sec. II A using the HKS equations
we derive an expression for the linear-response
charge density induced by a nonlocal pseudopoten-
tial placed in an electron gas with exchange and
relation effects included. Although this expression
is much more complicated to evaluate numerically
than for a local pseudopotential, it is by no means
intractable. Numerical procedures are given in
Sec. III. The calculated linear-response charge
density with nonlocal effects included can then be
compared with Dagens' self-consistent calculations.
In every system considered so far we have found
significant differences between the two calculations
indicating that nonlinear effects can be quite im-
portant. To include the nonlinear terms in the cal-
culation we simply adjust the pseudopotential pa-
rameters so as to reproduce accurately the self-
consistent charge densiiy for x values outside the
ionic core region. With these pseudopotentials we
assume that we can then extend the calculation of



the charge densities further, to a random array of
ions. The corresponding interionic pair potentials
are then derived in Secs IIB and IIC. By this pro-
cedure we have thus corrected for nonlinear effects
and yet maintained the simplicity of writing the co-
hesive energy as a sum of pair potentials.

In Sec. IV using Na as an example we calculate
the isolated ion charge density, the phonon disper-
sion curves, and the pair potential. Without any
correction for nonlinear effects the phonon disper-

' sion curves differ from experiment by about 5% to
10%, these errors being almost entirely removed
by invoking the above procedure. Concluding re-
marks are given in Sec. V. Calculations have been
performed on other simple metals giving similar
results and these will be reported in a later publica-
tion.

II. BASIC FORMULATION

A. Charge distribution around an isolated ion embedded in a
homogeneous electron gas

The charge density induced by an isolated ion
embedded in an electron gas can be calculated in
several ways, A particularly interesting method
is the solution of the HKS equations in the presence
of the fuH. ionic potential. This method is in prin-
ciple exact if the precise form of the exchange and
correlation potential I g„,(t) =5E„,(n)/5n] is known.
But even given the knowledge of g„, the procedure
is quite difficult and, most importantly, cannot be
applied to a random array of ions.

An alternative approach is to convert the full
ionic potential to a formally equivalent pseudopo-
tential and use perturbation theory to solve for the
charge density. By a formally equivalent pseudo-
potential we mean one which reproduces, exactly,
the phase shifts of the full potential in the region
of interest. Such a pseudopotential can be con-
structed, for example, by using the variable phase
method. ' Not surprisingly, it turns out that in
many materials nonlocal effects are quite impor-
tant and a simple local theory of the charge density
is inadequate. Hence in this section we describe
the derivation of the charge density induced by a
nonlocal pseudopotential. We shall restrict our-
selves to energy- independent pseudopotentials and

we shall retain only the first-order term (the linear.
response term), using the pseudopotential as an
ordering parameter, in the perturbation expansion.
This latter approximation is consistent with the
conventional use of pseudopotential theory, the va-
lidity of which will be discussed later.

We start with the HKS equation

(1 P) le.-&=E.-I~.-&. (1)

(Note that the
I P i & are not single particle states),

where in r space
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(3)
and vi, (r, r') is the nonlocal pseudopotential formally
equivalent to the ionic potential. The induced
pseudodensity is given by

n(r) =g (0;Ir)(rIAf&e'(k)

=g 4-(r)4 -(r)e'(k), (4)

where e (k) is 1 for k~k~ and 0 otherwise.
Before we proceed any further we should make

two comments about the validity of Eq. (3), First
let us note that the use of the variable-phase method
enables us to construct g~(r, r') by a direct trans-
formation from a full loca/ ionic potential, Thus
there is no inconsistency in applying the HKS
scheme to such a nonlocal pseudopotential. If the
ionic potential were nonlocal, then the whole con-
cept of energy being a functional of the density
would break down. Secondly, let us note that a
variable phase pseudopotential consists, for each
angular momentum l value, of a square well of
constant depth Ag for '+&pal and fol f'& Qg lt ls pl e-
cisely the ionic potential. Now if the electron po-
tential I i. e. , the last two terms of Eq. (3)]were
constant for ~& R~ (the largest R, ), the pseudoden-
sity obtained by solving Eqs. (1)-(4) would be iden-
tical to the full ionic density for t & Rz. Since the
electron potential is slowly varying for small x, it
is desirable to choose R~ to be as small as possible
in order to enhance the validity of Eq. (3) as well
as to enlarge the region for which n(i) is meaning-
ful, On the other hind, it must be remembered
that the smaller is B~, the larger is the magnitude
of the pseudopotential and thus the less valid is lin-
ear response.

To solve Eqs. (1)-(4) for the density to linear or-
der in V (or equivalently to linear order in g&) is
not difficult. lP f& can be written

Iy;&= Ik&+g G"„-., Ik+q&,

where (r tk& = 0 '~2e'"', 0 is the volume of the
system

(k+ ql VIE&
k+ 0

k+g,

From Eqs. (4) and (5) we obtain to linear order in f'

5n(q)= ~6n(r)e "'dr
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=2K (G",-*,- G„-„-)8'(k), (7
k

where 5n(r) = n(r) —no and n, is the density of the
uniform electron gas. Now by expanding v„,(n) to
linear order in 6n(r), i. e. , by writing

E( ). g e&(k)
e

(
5n(r )5n(~)

d d )

2-. Ir —r'
I

v„,(r)5n(r)dr+ E„,(n)

+-.'( )' Z
m~m m m

(16)

v„,(n) =- F(n, ) + F'(n„r —r')5n(r') d r',

we can combine Eqs. (3) and (6) to obtain

(", (k+ ql q, lk) [4&e'/q'+ F'(n(), q)]an(q)
k4q q~ q~ w

k k+q Q(e- —e.--k k+q

where (e. g. , see Geldart et af. ')

1 1

H() H() ' (9)

II(q) is the electron-gas screening function related
to the dielectric function by

e(q)= I+ II(q) .

5n(q) = —H, (q)y (q) /rr(, (q), (10)

IIO(q) is the corresponding function for the nonin-

teracting electron gas. Combining Eqs. (7)-(9) we
find that

The last term is the bare Coulomb interaction be-
tween the ions of charge Ze. The second and third
terms have to be subtracted because the electron-
electron energy has been counted twice in the first
term. Strictly speaking, Eq. (16) should be eval-
uated using the full ionic density for 5n(r). How-

ever, we assert that no significant error is incurred
by using the pseudodensity generated by replacing
the ionic potential by a pseudopotential. That this
is satisfactory for simple metals (specifically the
part depending on the structure of the random sys-
tem; see Eq. (24) below] is strongly suggested by
the works of Pick and Sarma' and Vosko. ' We
expand Fk to second order in V~, i. e. ,

) g

l(klan

lk+q) l

~k ~k+q

This of course is consistent with calculating 5n(r)
to first order in V~. We note that

where

( ) g (k+qlvplk& &(-)
E'k-Ck q

(k+qlv, lk&=(k+ql I lk&s(q),

where, using Eqs. (6) and (6)-(11),

(16)

and

( )
II(q)

I+ (4ve'/q')11(q)
' (12)

()(()— ( )Il~o q

(19)

For completeness we note that

4 p e&(k)
0 E'k —E'

k

mk~ ~ 4k' —q q+ 2'
w @ 8k~q q-2k~

B. Cohesive energy of an arbitrary array of ions embedded in a
homogeneous electron gas

For an arbitrary array of ions Eq. (1) becomes

(T I;)l~;&=Efl~;&,
with the density given by Eq. (4):

(rl V~ lr') =g vp(r —R, r' —R )

e', -" „,ar" +v,.(n))5(r —r'), (&5). Ir-r" I

where the positions of the ions are denoted by R
The energy of the system can be written as

In this case

6n(q) = —H, (q) bI(q)/11, (q)]S(q) . (20)

$(q) =g e "'"~ is the usual geometric structure
factor. Using Eqs. (17)-(19) and neglecting terms
independent of the relative positions of the ions we
get

where

( ) g l(k+ ql vp lk& l2
&p)Hzq= —4 k

k k k+q

(21)

(22)

The electron-electron energy E„which is minus
the second and third terms of Eq. (16) can be
written

z., = —„Z ( ~ +s"(n„q))arP(q) .
e

Inserting Eqs. (9) and (20) into (23) and then insert-
ing the resulting expression along with Eq. (21) into
Eq. (16) we find that



where Eo is independent of the relative position of
the ions. The interionic potential V'11(I ) is given
by

(2'6)' («)' "&(q) „;.pd-
27/ q

and the energy-wave-number characteristic E(q)
ls given by

Qq2 ' H'(q) y(q)
47/(ze)2 2 q QII (q) II (q)

(26)
Tile fllIlcilolls Hl(q), H2(q'), and g(q) Rx'6 defllled

by Eqs. (11), (22), and (12), respectively. All of
the exchange and correlation effects are contained
in y(q), and it is only necessary to choose an ap-
propriate II(q) to take these into account.

C. The cohesive energy of a twowomponent system

Finally we note that the energy of a two-compo-
nent system with components I2 and p can easily be
written down using the same techniques as in the
previous Sec. IIA. Starting from the appropriate
equation equivalent to Eq. (16) and noting that in
this case

«qlI', lk&=«qlI" lk&~"(q)+(k+qlI 'lk»'(q),
(27)

it is straightforward to derive the result

E"(s)=& +-,2 v;;(l%„"-R„;l)+-' g I 22

nfn
'

x(lR2. - R'. , l)+g I/„2(lR„-R'. l). (26)

fusing through a host lattice which can be treated
using a potential derived from Eqs. (29)-(31).

III. REDUCTION TO A FORM SUITABLE FOR NUMERICAL
COMPUTATION

One of the ma]or difficulties encountered when

using formulas such as those derived in Sec. II,
is the evaluation of sums or integrals of the form
appearing in Eq. (11)„ In this section we use a
technique employed by Geldart and Taylor'~ to re-
duce these integrals to a relatively simple form,
We then rewrite Eqs. (10), (26), (30) in terms of
the simplified integrals.

First we note that

(r lI/~ l
r'& = I(2(r, r') = I/2(Rr, XFr') = I/~(r', r),

the last relation being a consequence of specializ-
ing I/~ to being real and Hermitian (H = rotation plus
inversion), Keeping in mind these properties of D~
we take the following approach. We rewrite H, (q)
[Eq. (11)] in integral form

( )
4II 2m '(k+qlI/plk&d-8((-) )( -)I 'q

(2 )2 g2 (k )2 P2 +q

where 8~(k) = 1 —8 (k). By symmetry all contribu-
tions to H, (q) for lk+ ql & /'Iz sum to zero so that the
introduction of 8 (k+ q) is a matter of convenience.
Now the pseudopotential g~ can be split into a local
part and a. nonlocal part. We can therefore write

(k+ql~, lk&= „,[~,(q)+~„,(k+q, k)] (32)
Qqa

4gZe2 4Z
H, (q) = —,112(q)/IfL (q) + Z, (q),

mao

I,.~„,(k+q, E)e'(k)e'(k+q)-

Vll" and V1212 have identical form to Eq. (25) with

I/~ rePlaced by &2 (S~) and Z rePlaced by Z (2'2).
V'»" takes the form

We symmetrize the integrand by the transforma-
tion k-k =k-q/2 and k+q-k, =k+q/2, use q as
a polar axis, and write k - q = kqx so that

Z Z'62 Z Z262 "F '(q)v„(~)=- —, , e "'dq,
2'll & g

(29)

2( )
IIq' 'H 2( )

Hl(q)HI(q) 1 x(q)
4vs Z'82 ' q nil, (q) 11,{q)

(30)

g (k+qlI/2 il'2&(/'2lI/2 lk+q)
k+ q,

and H~I(q), H2(q) are given by Eq. (11) with I/I, re-
placed by vg(I/22). In Eqs. (29)-(31) we have all the
information necessary to calculate the interionic
potentials for an alloy system. A particularly in-
teresting case is that of the isolated impurity dif-

(34)

q2(~2 1) I/2
k=(s ——,')qx ~ k (( ~

4k~

We now use the results of Geldart and Taylor'~
who have shown that, when the restrictions on the
available pllRse spRce llllposed by 'tile 8 functions
are allowed for, this integral takes the following
form for

(i) q~2k~

Z, (q)= —, dx t ds/~„, (k k).,,"o &o
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and (ii) q~ 2k/,

( )
xx )(' (

q'(x' —1))'"dx

1

x '

dskMNz, (k„k ), (36)
p

with

These integrals can easily be evaluated-numerically.
Thus combining Eqs. (10) and (33) we find
'that

6n(q) = — M (q) y(q) — d' (q), (3~)
q zzap

'
Ilp q

and

qx q2(~2 1) 1/2
k= —+ (2s —1)k 1+

2 4k~
(3'7)

(38)

with J((q) defined by Eqs. (34)-(38).
To evaluate the energy-wave-number charac-

teristic E(q) [Eq. (26)] we need to reduce H2(q)

[Eq. (22)] to a suitable form. Using (32) and the

same technique as described above, this is easily
done. The result is

4~@~2 2 32Z2~2 k~ 8Z~
fiII, (q) =, M„(q) 11,(q)+, -d((q)M, (q)+, Z2(q),

q ao 2~ 'lTQ p

where for (i) q ~ 2k+,

4~ "' 1

J,(q) = — dx ds k[M„(k„k )]
"o o

with k given by Eq. (35). And (ii) q ~ 2k+,

(4o)

(41)

X p

(42)

with k and I(M given by Eqs. (33) and (38), respectively. Finally, inserting Eqs. (33) and (40) into (26), we

obtain

F(q) 2 X(q)Mz, (q)+ F1(q)Mz, (q)ll ( )
+q 16 4 211 ( )

I
( )

~

4me', 8 X(q) 2 4 apxI2(q) ~1(q) X(q)

The corresponding result for the two-component system is

F"(q)=, If(q)M,"(q)M2(q)+ [Z;(q)M2(q)+Z', (q)M;(q)] ~ q

p 1I() q

, 2 4 ', d2'(q) dz(q)d((q) 1 X(q)
a zz „16 4(ze2II, (q) II,(q)

(43)

(44)

where 422(q) takes the same form as Eqs. (41) and

(42), with [M„L(k., k )]' replaced by Mg„(k. , k )
M NL(k„k ).

In the Appendix we list formulas for Mz, (q) and

Mz(z, (k', k)using three different forms of znodel

pseudopotential.
Finally, we would like to add a practical comment

concerning the use of E(q) and F 2(q) when they are
inserted into Eqs. (25) and (29), respectively. It
is well known that these functions generally tend to
zero slowly as q tends to infinity, rendering the
calculation of pair potentials rather tedious. A

typical example is illustrated in Fig. 1 where it
can be seen that E(q) tends to oscillate for large q
as it goes asymptotically to zero. The minima for
these oscillations are small and positive, though
for a local pseudopotential they would be zero. We
have found in practice that if the range of integra-

tion is terminated at one of these minima beyond

q= 2k~ no significant error occurs in the calculated
pair potential. Using Al as an exan. pie truncation
of E(q) at the first minimum beyond q= 2k+ gives
an error in V«(zz) (xz is the first-neighbor distance)
of about 3&& 10"5 Ry. and at the second minimum less
than 10 ' Ry. For the alkali metals we have found

the errors to be considerably smaller. They also
appear to be roughly independent of choice of
screening or pseudopotential. Hence the long- range
oscillations in E(q) have no significant influence on
the pair potential in the range of physical interest
and can be safely ignored particularly if E(q) is
truncated at the second minimum beyond q= 2k~.

IV. NUMERICAL APPLICATION TO SODIUM

In an earlier paper' we used a local pseudopo-
tential to calculate the charge densities induced
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FIG. 1. A typical example of the large-q behavior of
F (q) calculated using a nonlocal model potential for Al.
Points where F(q) may be truncated are indicated by ar-
I'ows.
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FIG. 2. Charge densities induced by an isolated Na'
ion in an electron gas. For clarity the GKS exchange re-
sults are displaced upwards by 0. 1 a. u. relative to the
Hartree results; solid line, Dagens' (1972) self-consis-
tent calculations; dashed line, linear-response calcula-
tion. with model potential Ml; dotted line, linear-response
calculation with model potential M2.

by isolated Na' and Li' ions and compared them
with Dagens" self-consistent results. In the Na
case the agreement between the two calculations
seemed to be quite satisfactory and we concluded
that nonlinear effects were not significant. How-

ever, later calculations have proven that this is not
the case, and hence we feel that it is instructive to
reexamine the Na case in detail using a nonlocal
pseudopotential. The Li situation is not so straight-
forward as Na and will be discussed in a later
paper.

For our calculations we have chosen a nonlocal
model potential of the form of Eq. (A6) in the Ap-
pendix. Choosing the parameters A0 = —0. 439 Ry. ,
A, = —1.40 By. , Si!0=2.21 a. u. , and A, =2. 26 a. u. ,

which we shall refer to as model potential M1, we
have evaluated the phase shifts as functions of z at
the Fermi energy. These are listed in Table I
from which it can be seen that the M1 model poten-
tial gives phase shifts agreeing very well with those
generated by the Prokofjew' Na' potential for z

2 ~ 0
2. 2

2. 4
2, 6
2. 8
3.0
3.2
3, 4
3, 6
3.8
4. 0

0. 000
0. 000
0. 111
0. 261
0.437
0. 621
0. 790
0. 928
1.032
1.105
1, 152

0, 000
0. 000
0. 003
0. 008
0. 013
0. 020
0, 028
0, 037
0. 046
0. 054
0. 062

0. 0001
0. 0001
0.0002
0, 0003
0. 0004
0. 0005
0. 0007
0. 0009
0. 0011
0. 0013
0, 0015

—0, 114
—0. 027

0.093
0.248
0.430
0.618
0. 788
0. 927
l. 032
1.105
1.153

—0. 005
—0 ~ 002

0. 002
0. 007
0, 013
0. 020
0. 028
0. 037
0. 045
0. 054
0, 062

0. 0001
0. 0001
0.0002
0. 0003
0. 0004
0, 0005
0. 0007
0. 0009
0. 0011
0. 0013
0. 0015

TABLE I. Comparison of the Na phase shifts, calcu-
lated using model potential Ml, wi. th ionic-potential phase
shifts at the Fermi energy.

Model Potential Ionic Potential
y'

&a. u, )

&2. 2 a. u. This model potential then is formally
equivalent to the Prokofjew potential in that region.

In order to make a, comparison with Dagens' re-
sults it is necessary to know which approximation
to II(q) is appropriate to insert into Eqs. (12) and

(39). Dagens performed two calculations, one using
just a Hartree self-consistent field and the other
including Gasper-Kohn-Sham (GKS) exchange as
well. In the linear-response approximation II,(q)
Eq. (14) is formally eouivalent to the Hartree ap-
proximation, and the following 11(q) is formally
equivalent to the GKS exchange approximation'3

Using both II,(q) and II„(q) we have calculated 5n(q)
[Eq. (39)j and its Fourier transform

(46)

which in each case is compared with Dagens' cal-
culations in Fig. 2. The agreement appears to be
quite good. However, by adjusting the model-po-
tential parameters to the values A0= —0. 439 By. ,

2 1'40 By' 9 ~0 2'08 a'u' ) and ~1 2'00 a'u
which we shall refer to as M2, the 5n(x) curves
can be made to coincide almost exactly with those
of Dagens in both cases for z& 2. 5 a. u. as can be
seen from the figure.

Turning now to the energy-wave-number charac-
teristic E(q) [Eq. (43)], we have used both model
potentials Ml and M2 to calculate this quantity. In
this instance we used the Geldart and Taylor" ver-
sion of II(q), which includes correlations. The
phonon dispersion curves which were generated
from E(q) in each case are compared with the ex-
perimental values of Woods et al. ' in Fig. 3. It
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is quite clear from this figure that the M1 curves
are not at all satisfactory, containing, in some in-
stances, errors ~

10'%%uo, whereas the M2 curves
agree very well indeed. From these results we
are able to draw two important conclusions. First
nonlinear effects are important in Na and therefore
they are most probably important in all metals.

; Second we can correct for these nonlinear effects
in a consistent fashion by suitable adjustments to
the model-potential parameters. Thus we are able
to retain the essential simplicity of the pseudopo-
tential approach and still remain confident that the
calculations are meaningful. It still is necessary
to show that these conclusions can be generalized
to other materials. Preliminary calculations in K
and Al give similar results and these will be re-
ported in a later publication. '

Let us now turn our attention to the actual inter-
ionic potentials generated by M1 and M2. These
are illustrated in Fig. 3. The effect of the nonlin-
ear correction is to deepen the first well of the po-
tential and to move its position in the direction of
smaller z. A characteristic feature of interionic
potentials is the presence of the long-range oscil-
lations which are manifestations of the Friedel
oscillations in the charge density. Since even the
first well is basically a Friedel oscillation, it is
necessary to get the amplitude of the oscillations
right. This of course is easily achieved by fitting
the pseudopotential to the charge density. Fitting
to elastic constants or to phonon dispersion curves
does not give a unique oscillation amplitude as is
well known (e. g. , see Duesbery and Taylor'7). This
serves as another illustration of the main theme

(g,o,o)

/I x
y/0" ~&
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u 03-

O
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(q, q, o)&
/
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FIG. 3. Phonon dispersion curves for Na. The experi-
mental points which are taken from Woods et al. (Ref.
16) are indicated by x for longitudinal branches and by o
and z for transverse branches. Dashed line represents
M1 model potential; solid line M2 model potential.
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FIG. 4. Interionic potential for Na calculated using
the Ml model potential (dashed line) and the M2 model
potential (solid line).

The principal point that we have emphasized in
this paper is that the charge density is of central
importance in calculating the cohesive energy and
thus should be used to guide us in constructing
meaningful interionic potentials. With this in mind
we have used, as a starting point for the formalism
in Sec. II, the HKS equations, which are based on
the fact that the energy can be expressed as a func-
tional of the density. Taking the limit of a vanish-
ingly small potential we have derived the linear-re-
sponse result for the charge density including non-
local effects and exchange and correlation. The
same formalism was then applied to the problem
of the cohesive energy of a random array of ions
from which we extracted the energy-wave-number
characteristics and the interionic potential. The
results are presented in a numerically useful form
in Eqs. (39), (43), and (44).

By making a careful comparison with Dagens' "
Na self-consistent charge-density calculations we
have been able to show that despite the fact that the
linear-response results appear to agree quite well
with them, the nonlinear terms are still very sig-
nificant. However by adjusting the pseudopotential
parameters to bring the linear-response results
into coincidence with the self-consistent charge

of this paper, i. e. , that the charge density plays a
central role in the determination of the dynamic
properties of the lattice.

As a final comment in this section it is interest-
ing to note that in the near-neighbor region the in-
terionic potential generated by model potential M2
agrees very well with that of Basinski et al. ,

' who
used an orthogonalized plane wave model. For
larger values of r (x& 1.2a) the oscillation ampli-
tude of the M2 potential is about 30% less than that
of Basinski et al. In view of the above comments
it seems most likely that the M2 potential is the
more nearly correct one.

V. SUMMARY AND CONCLUSIONS
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density, we are able to simulate the nonlinear ef-
, fects. This fact provides a very good justification
for the standard pseudopotential treatment of the
properties of liquid metals, defect systems, and

perfect crystals. This is an important point since
(e. g. , see Wiser and Greenfield ) the explicit in-
clusion of higher-order terms makes the problem
much more complicated. It also follows that a
necessary and perhaps sufficient prerequisite to
the generation of a reliable interionic potential is
the generation of an accurate charge density.

As we have stated before in this paper our re-
sults do not appear to be an artifact of Na but ap-
pear to be of a general nature, and calculations ex-
tended to other simple metals will be published
later. '
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APPENDIX

In Sec. III we found it convenient to split the ma-
trix element (k+ q I v& I k) into a local and a nonlocal
part. These are defined in Eq. (32), which we re-
write here:

4nZ82
(k+qlv Ik)= [M (q)+M (k+q, k)]. (32)Qq2

The evaluation of 5n(q), E(q), and F '~(q) via Eqs.

Ze' Ze-- + A, + e(R, —~) P„{l=i)
Ze Z8

+ A, + — e(RM —~) P„(l ~2).

(Al)
This is the usual Heine-Abarenkov' model potential
for which

22&M SinqAM A2RMMLyqg=, — —
2 +1 cosqRM,

@~M

M„(k', k) = S'( s ICs(k, k, ic„)

~ Scosk, IC, (k', k, ic )),(A1 —A3)

(A2)

where 8 is the angle between k' and k

X, (k, k, k)=f (k )s,;(k )ks. s
0

and j,(p) is the spherical Bessel function of order l.

(39), (43), and (44), respectively, requires knowl-
edge of both ML and MN~. In this Appendix we list
formulas for these quantities for three different
model potentials, all of which are of the form

;, =g k, e(~, .) "'e(. k, ))~, ,'V

where e(x) is the usual step function and P, is the
angular momentum projection operator.

~ ~ Z8 Z8 Ay

(i) v~ = — — + Ao+ e(RM —r) P(), (f=0)

tcc(k k, is) = 'c, osk'is —,-coskB) (ks —k's), (ks it' )

4k'3 8&4
+ 4 [3 sin2kR —2kR(2+ cos2kR)]+ O(((k k)2), (k' k+ 3,k) (A4)

Z;(k', k, R) =, —„[j,(kR) sink'R- j,(k'R) sinkR], (k~ k')

B . . 2kB —sin2AB 26k
y2 1j(k—R) sinkR+ l ——+ —

4 [- 3 sin2kR+ 2kR(2+ cos2kR) ]+ O((b, k) ),~ ~ 2

4k k 8k

(k' = k+ 4k) (A5)

Z82 Z 82
(11) Vp = + A()+ e(R() ))") Po (f = 0)

Z8 Z8
= —— -+ A, + e(R, -~) P„(f=l)

Z8 Z8
+ A, + e(R, —~) P„(f-2).

This form of model potential follows quite naturally from the variable phase shift approach. In this case

R1A2 sinqB1 R1A2
34L gag =

2
—

2 + 1 cosgB»
e q, e

(A7)
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MNL(k', k) = q ~KO(k', k, Ro) — 2KO(k', k, R,)+ 3 cos8 2 K,(k', k, R,)e

I(k+ k', Ro, Rg) —I( i k —k' I, Ro, R,)
2kk'

where

dp
I(k, R&, R&) = cosp-

"kRp

and Ko and K, are defined by Eqs. (A4) and (A5).

Ze Ze
(iii) ~ = — + W, + e(R, -~) J„(l=o)p p

+ A. , + e(R, -~) I„(I=1)Z8 Z8

(A8)

Z8 (A9)

A particular version of this model potential is that due to Shaw" for which A, = —Ze~/R, . In this case

M, (q)=-1, (A10)

M„„(k',k) = q
'

~ Ko(k', k, Ro) + Jo(k', k, Ro) + 3 cos8 '2 K,(k', k, Rg) + J,(k', k, Ri)Z~2 P» P P & ~ P Ze

where Ko and K, are again given by Eqs. (A4) and (A5) and

J;(k, k, R) = t vj, (k'x)j,(kr) Ch,
dp

u+ u'
J,(k', k, R)=, ln, —, cosp —,(krak')

"lk k'lR p

(A11)

(1—cosp) —1 ——i+—,+ O((&k)'), (k' = k+ 4k)
1 "~~" dp b k& hk (1 —cos2kR)

2k'
p p k ) k 4A

k +k'
J;(k', k, R) =—,[I+kk'R2j, (kR)j,(k'R) —coskR cosk'R]+, J',(k', k, R) .

(A12)

(A13)
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