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Improved cumulant expansion for a renormalization-group treatment of Ising models
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The cumulant expansion of renormalization equations proposed by Niemeijer and van Leeuwen is

reexamined, resulting in a considerably improved version of the calculation of the critical properties of
Ising systems. In particular the thermal and magnetic eigenvalues are determined to within 0.2 and
1.1%, respectively, of the exact values for the square lattice of spins 1/2, from the second-order
calculation in this expansion.

Quite recently Niemeijer and van Leeuwen'2
proposed two methods to approximate certain re-
alizations of nonlinear3 renormalization trans-
formations for Ising systems which avoided the
use of continuous spins and the & expansion, '
viz. , the cumulant expansion and the cluster ex-
pansion. The cluster expansion proved to be
more powerful than the cumulant expansion in the
particular case of the triangular lattice and re-
sulted in a determination of the critical exponents
to within 2/~ precision (in the worst case) for the
seven-cluster approximation. However, the cumu-
lant expansion is an attractive calculational
scheme as it is quite simple to apply and pro-
vides in principle the basis for a systematic and
hopefully convergent determination of critical ex-
ponents within the framework of the renormaliza-
tion group approach to critical phenomena. For
these reasons we have attempted to improve the
cumulant expansion by enlarging the cell size
with the result that by a second-order calculation
for the square Ising lattice of spins —,

' we have
determined the thermal and magnetic eigenvalues
to within 0. 2% and 1.1'//p of their exact values,
respectively. ~ The calculation is extremely
straightforward and simple to perform and can be
carried out on a computer in less than 1 sec.
To begin with, we note that the relatively poor
convergence of the cumulant expansion for the
triangular lattice might be due to the smallness
of the basic cell chosen in Ref. 1, where it con-
sists of a triangle of three spins. The fact that
the number of intercell versus intracell inter-
actions is two versus three in first order is
rather large, suggests that the corresponding
choice of the unperturbed Hamiltonian II maybe
improved, since the coefficients which occur in
the resulting renormalization equations carry little
information, as they are statistical averages of
spin variables using

exp —P

as the density matrix. Hence one might hope that a

better approximation to the renormalization equa-
tions can be obtained by choosing a larger cell
si.ze, with a correspondingly improved IIO, To
test this idea, we considered a square Ising
lattice (which is more suitable for our purpose)
with square cells containing nine spins (see Fig.
1).

We will follow the notation of Ref. 1 to which
the reader is referred for details of our calcula-
tion. A brief summary of the procedure is as
follows. A cell spin $', is associated with each
cell, with

9; = sign 9",.
n=$

where n numbers the sites in the ith cell. For
a given 8,

' the site spins (S $ can still a.ssume 28
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FIG. 1. Cells on the quadratic lattice. The symbols
i, j, k, l label typical cells while the numbers 1, 2, ... , 9
label site spins and correspond to the numbering which
is used in the text.

2699



SHIH-CHIEH HSU, TH. NIEMEIJEH, AND J. D. GUNTON

configurations o;, 4 = 1, . . . , 256. The renor-
malization equations are defined by performing
a partial sum in the exact partition functi. on over
all the internal cell variables iv) compatible with
a given set of cell spin values fs"I. This gener-
ates a new Hamiltonian H ({8))which describes
the interactions between the cell spkns and wIlich

cRn be decomposed Rs

H' =g Z', S', , (2)

s. =II s,

and where a runs over all the subsets of the lattice.
This is of the same form as the most general ver-
sion of the original Hamiltonian, with the cell spin
variables replacing the site spins and the cell in-
teraction parameters E, replacing the site spin
interactions E, . The renormalization equations
Rl 6

x.' =If.' ((z$) .
Tile transformation (3) shollld 11Rve R 11GIL'tx'LvlRl

fixed point R at whichthe linearized transformation

lI =Q 8; V;; + —,'+ SI In go(8,'), (10)

Z, (s,') =Q expH';(8', , o;)
(0~)

and H; is the cell HamiitoniRJL. The site number-
ing as well as the cell labeling of Pig. 1 has been
used. This leads to a first-order renormalization
equation

z''= (2(s')()+ &s')() ) ff

Expression (l) stLII is exact and can be approxi-
mated by evaluating successive terms in the cumu-
lant expansion

(expV), = exp[(V&, +-,' f(V'&, —(V&',) + ."] (8)

for (expV)0 (first term is the first approximation,
first plus second is the second approximation,
etc. ). In first order if one starts withonlynearest-
neighbor interactions of strengths K and magnetic
field A, one obtains for the interaction between two
nearest-neighbor cells and the renormali. zed mag-
netic field h

&v,,&, = Ic(&s', &, (s,'), + (s', ), &s,'), + &s', ), (8,'&,) 8(s,',

(0)

should have only two eigenvalue X~ and X„which are
greater than unity. These are related to the criti-
cRl exponents by

n = 2 —d inl/(InlLr) and a = 1/(d lnl/Ink„- 1),
where d is the dimensionality and 1 is the lattice
spacing of the cells measured in units of the site
spacing. SlIlce j.n oui cRse $ = 3q d= 2~ Rnd we know

that' n=0 and' 5=15, we should have X~=3 and

As it is impossible to calculate the re-
normallzatlon eqllRtiolls Rs gLvell 111 E(l. (3) exactly(,
we must turn to an approximation procedure which
we choose as follows. Split the Hamiltonia, n into

an unperturbed pa, rt II and a perturbation V':

for zero magnetic field. A fixed-point solution of
this equation is g =K=~ and is found by numeri-
cal means to be ~=0.4697. The eigenvalues of
the T matrix, as defined in E(I. (4), were then
found from E(l. (11) and Eq. (10) to be Xr =2. 7689
and X~=8.4566.

Insecond order, one alsogenerates next-nearest-
(I. ) and next-next-nearest-(M ) neighbor interac-
tions even if one starts with just nearest-neighbor
interactions in the initial Hamiltonian. If we con-
sider the nearest-neighbor coupling K as the first-
order quantity, then one sees that I. and M are
second-order terms. Thus to be complete in sec-
ond order, one must also treat the effect of I- »d
M interactions in H and V. The set of renormal-
ization equations that one then finds for zero mag-
netic fieM is

where H contains all interactions inside the cells
and P all interacti. ons between the cells. Vfe then
can write

expp'(S')=(Pexppe(S s)) (sxpp)„',

f~' = &V,,&, ,

I,'=1.(8,'&, (S',&, +2(V,,V„&„,

~'=&V, ,V, , &„,

(12)

(sxpp), =(g sxpp(S', e)sxpp'(S', e))/

g expHO(s', o) .

where it is understood that the cell spin dependence
on the right-hand side is to be suppressed. The
terms (V,I V»&0, and (V;;V»&op are proportional to
E and fugctions of single-spin and two-spin eell-
correlation functions. The explicit form of E(I. (12)
1S
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TABLE I. Eigenvalues and critical temperature for
the square lattice.

Approxl rnatlo n

First, -order
perturbation.

Second-order
perturbation.

Exact

3.0068 7. 9271

7.845

0.4302

0.4407

&'= Ii(2f i+fa)+4Ififa+ 2'(2fifa+fafa),
L'= If i+ 2E. "l ~fi(1+2f4+fa —4f i)

+ 2fifa(fa+fv —2fifa)+f a(fa fa)], -
~'=+'~2f i(f4+fa 2f i)+—4fifa(fa fifa)-

+fa(fa fa)1, -

(13)

fi= &S'&o, fa=&S'&a, f =&S'&o,

fg=(S S &a, fa=(SiSa)a, fa (S'Sa&a, —

f, = &S'S'&„ f, = (S'S'&„ f,= (S'S'&, .
The extension of these equations to the case when

the magnetic field is nonzero is straightforward and
follows the discussion given in Ref. 1. The result-
ing equations are similar to the above but more
compbcated and we do not write them doom here.
%'6 have found by numerical means a fixed-point so-
lution to these equations and the corresponding val-
ues of the coordinates (K", I.*,M*) are (0.36946,
0. OVOV8, —0. 018V5). We find the two relevant ei-
genvalues are X~= 3.007 and X~= "I.92'7 as compared
to the exact values of X~= 3 and XH = 7. 845. . . . We
also obtain the critical temperature to within 2%

accuracy, finding K,=O. 4302 as compared to the

exact value~ of 0. 440V. . . . (See Table 1.)
We summarize by making a few observations

about the present work. To begin with, our values
of Xr and X„ lead to v = ln3/ink. r —0. 998 and 6
= (aa —1) '= 16.3 (where a„=2ln3 /ink. „)as comps, red
to the exact values of 1 and 15, respectively. The
fact that the 1% precision in the determination of X„
does not lead to a corresponding accuracy in 5 fol-
lows from the relation 6 = (a„—1), which implies
that d5/6 = —(6+1)daH/a„. Hence a small error in
the determination of a„results in a (6+ 1) times
la.rger error in determining 5. Fortunately the
situation is different for o.. Secondly, we compare
our results for the square lattice which yield 0. 2k
and l. 1% precision for Xr and X„, respectively, to
the best results for the tri.angular lattice, namely
the seven-clUstel RpproxlDlatlon» fol %'hlch A, g Rnd

Xg were obtained 'to a precision of 1.6% alid 0, 05%
respectively. We see that the second-order cuxnu-
lant expansion does not suffer very badly by com-
parison, particularly if one takes into account the
much gx'GRtex' simplicity Rnd GRSG of cRlculRtlon of
a cumulant calculation. Finany, we mention sev-
eral interesting questions which remain to be an-
swered. Firstly, is the cumulant expansion
used here a convergent one, or is it an asymptotic
expansion as is the case' with the z expansion&
Some insight into this question would be gained by
a third-order calculation which although consider-
Rbly xnox'6 complicated thRQ ln second ordex' ls pr6s-
ently being carried out. Secondly, as a practical
question one would like to knower how increasing the
cell size affects the accuracy of the calculation. Is
there, for example, some optimum cell size for a
given ordex of the cumulant expansion~ A system-
Rtlc lnvestlgRtloQ of this probleDl ls currently Undex'

Way.
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