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The tricritical behavior of a model studied by Harbus and Stanley is reanalyzed. The Harbus-Stanley

analysis of the direct susceptibility suggested anomalous (i.e., non-mean-field-like) tncritical exponents.
The tricritical point cannot be unambiguously located by present series data. %e point out that, if the
true tricritical temperature were actually somewhat lower than the Harbus-Stanley value, then standard
ratio analysis would give tricritical exponents consistent with the Gaussian-tricritical-fixed-point analysis
of Riedel and %egner. However, the present situation remains inconclusive.

I. INTRODUCTION

The theoretical work of Bausch' and Riedel and
%egner predicts that true and mean-field tricriti-
cal behavior' in three space dimensions (2 = 3)
should differ at most by logarithmic corrections.
Experimental work~ on He -He4 mixtures confirms
this prediction. Evidence from other experimental
data is at present inconclusive, so there has been
an active interest in the numerical study of three-
dimensional lattice models by series-expansion and
Monte Carlo techniques. Recent work on the d =3
Blume-Capel model6'~ and the layered metamag-
net" finds mean-field-like tricritical exponents.
Qn the other hand, Harbus and Stanley' studied a
simple-cubic s = —,

' Ising model with nearest-neigh-
bor (nn) and next-nearest-neighbor (nnn) exchange
interactions,

nn ann

3C= —cTt Q st sj —eTe Q st 8I —tt+Qst y (l)
«s) i

where 8, = + 1 on each lattice site i and J, = —1
(antiferromagnetic), but J's = —,

' (ferromagnetic). The

(y„),= l. ll ~0.02, (3b)

where the confidence limits reflect the consistency
of the Neville tables at h =0.84 and k~T=6. 42. The
corresponding mean-field prediction is (y„),= l.

Th pp tlyd ti d p t f a-

p, H term represents the interaction with an exter-
nal magnetic field H. The behavior is antiferro-
magnetic at H=O but Harbus and Stanley found a
tricritical point (TCP) at

h, =- y.H, /ha T, = 0. 84 + 0. 02 with ha T, = 6.4 + 0. l
(2)

and characterized by a tricritical exponent' for
the direct susceptlblllty

(3a)

distinctly different from the mean-field-like value
y, = —,. In a Monte Carlo study of the same model
but with Zs/d, = ——,

" Landau's finds the more uncer-
tain value y, =0.29 +0. 18. Harbus and Stanley'0
derived series for X„butdid not quote a numerical
value for (y„),. We find by ratio methods that
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The choice of TCP is crucial, if one is to obtain
correct values for the tricritical exponents: The
exponents y, t and y, which have Ising-like values
(y„=~~, y= —,') throughout the second-order region,
presumably cross over discontinuously to their
tricritical values, as the TCP is attained from the
second-order side. Analysis of finite series ex-
pansions (as in Ref. 10) represents this crossover
as an apparently smooth but more or less rapid
decrease' of y„and increase of y in the tricritical
region. The TCP occurs in this region of rapid
change of "effective exponents, "~ so a small error
in locating the TCP can lead to a large error in
estimating tricritical exponents.

In Hef. 10 the high-temperature phase boundary~6

was located by standard methods from the well-
converged series for X,t. The position of the TCP
along this phase boundary was then identified in
two steps: (a) An eyeball sketch of the first-order
phase boundary intersecting the 7=0 axis at p, H
= 6 (exact) joins smoothly~~ onto the second-order
phase boundary at ks T, = 6a l. (b) Harbus and
Stanley then argue that the X series, which are
rather poorly converged (relative to y„)in the
second-order region (where presumably y= a, = —,

'

)st =1.11
%&W%&W&&

6.42 —e~
7=0.25I

6— st '0
5..88—~~-----

7=0,50

X t at h=0.84
st

at h=O.g4
st

field tricritical behavior has prompted a good deal
of speculation and several thus far fruitless
searches for non-Gaussian tricritical fixed points
in d =3. In this note we point out that there is some
evidence that the exponents (8) are actually spurious
and that the series deta in fact support mean-field
tricritical exponents. The case, as we shall argue,
rests on the possibility that (2) misidentifies the
TCP. No final determination can be made on the
basis of existing high-temperature series alone. "

II. DISCUSSION

TABLE I. Neville tables for k&T~ from X~t. E„=p„
= b„/b„».The coefficients b„arefrom Ref. 21. The
extrapolants are derived from E~~~ = {1/p) j nl~~ '
—(n -P) Et'-,'].

h = 0.84, k& Tc =6.42 y 0.03
6.515 6.468
6.506 6.462
6.499 6.456
6.493 6.450

6.448
6.443
6.430

6.436
6.409

5=0.94, PENT =5.88y0. 02
5.878 5.885
5.880 5.890
5.881 5.887
5.881 5.882

5.900
5.879
5.865

5.852
5.843

by universality), should converge well near the
TCP, where the nonordering fluctuations become
large. They examine the Pade approximants to
(y)~ for a variety of values of P and h. They find
Pades~s for @= 1/y=4, h, = 0.84, which are strik-
ingly more convergent than for nearby values and
exhibit a ks T& in agreement svith that obtained from

On this basis they infer (2) and (8). The
argument, though plausible, is open to question,
particularly at step (b), as we shall discuss below.

Our central observation is that, if the TCP soere
located at

h, = 0.94+ 0.02 (with ksT, = 5. 88 t 0.02),

then the tricritical exPonents svould take on mean-
field like values to-unthin uncertainties, ~9

(y,g)g = l.00+ 0.01, yg 0.4-0.6.

The location (4) is only slightly outside the Harbus-
Stanley phase boundary~6 and compatible with a
"reasonable" sketch [step (a)] of the first-order
phase boundary. '~ The only dA"ect evidence in
favor of this choice is the most recent Monte Carlo
data, which give
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The data of Eqs. (4) ~d (5)
standard ratio analysis of the series for X,& and

Figure 1 shows ratio plots at h= 0.84 and 0.94.
The X,,t series are very well converged, and we
take. k~T, from the Neville extrapolations given
in Table I. The exponent estimates,

FIG. 1. Ratio plots of Xst and X at k = 0. 84 and 0.94.
Series data are taken from Ref. 21. In the asymptotic
region the ratios p„should behave as p„=k3T~[1+(0 —1)/
nI, where 0 is the critical index. The straight dashed
lines show the asymptotes corresponding to the exponents
(3) and (5). Note that the Xst series are well converged
at n = 8, while the g series are still irregular.

biased with these values-of k~T, lead to the y,»

values quoted in (8) and (5). The ratio series for
X, on the other hand, are still noticeably irregular
at n=s but must go to the same k~T, , Successive
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TABLE II. Pade tables for the leading singularity
of X~.

X. at a=0. 84

5.91
6.37
6.39
6.38
6.39

6.89
6.39
6.38
6.39

6.57
6.38
6.39

6.35
6.39

4.77
G. 18
5.18
4.91
5.35

5.94
5.46
5.55
G. 70

5.48
5.43
5.78

5.59

estimates (I) for (y)„,n= 6, 7, 8, are (h=0. 84)
0.22, 0.20, and 0.31 and (h=0. 94) 0.16, 0.24, and
0.33. Extrapolation is clearly not meaningful;
however, the data for 8 =0.94 are certainly not
incompatible with y= 0. 5.

The Harbus-Stanley analysis of y (applied at h

=0.94) does not corroborate these ratio results
Table II exhibits a Pade table of the singularities
of g . It is strikingly less regular than the anal-
ogous table23 for X4 at 6=0.84, shown for com-
parison, and tends to favor a value of k~r, some-
what below (4). This discrepancy is not under-
stood. If one wishes to discount the Pade evidence,
one can argue that the k'~T, values from y and X«

should only be expected to agree, if the correspond-
ing (finite) series are equally well converged. It
is evident from Fig. 1 that this is not the case,
and, in fact, it is well known that specific-heat-
like series are quite generally more poorly be-
haved than corresponding strongly divergent sus-
ceptibility series. This reasoning, however, fails
to explain why the Pades to y4 at h = 0.84 are ap-
parently so very well behaved. Furthermore, these
same Padh methods [see discussion above (4)]
were applied to the layered metamagnet and in that
case gave results with excellent internal consistency
and in agreement with Monte Carlo analysis.

In short, the present situation is not without
ambiguity. A more definitive determination of the
tricritical behavior of the model (1) must await
better data. One possibQity is the derivation of
longer series, both high- and low-temperature. 3

Such work is now reported to be in progress. ~5

In the interim, extant data cannot be regarded as
inconsistent with mean-field-like tricritical ex-
ponents.
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