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Spin-wave relaxation and phenomenological damping in ferromagnetic resonance
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Relaxation rates for the uniform precession mode in ferromagnetic resonance, with general elliptical
polarization, have been calculated for several microscopic scattering processes using the spin-wave

formalism. These results are compared with the widely used phenomenological formulations for
ferromagnetic resonance. The results demonstrate in relatively general terms the specific features of the
Landau-Lifshitz and Gilbert phenomenological formulations on the one hand, and of what may be
called "intrinsic" confluence processes in the microscopic formulation. These formulations are consistent
with the assumption of an intrinsic damping parameter describing the motion of the magnetization
vector under sufficiently general conditions, The two-Inagnon process and the Bloch-Bloembergen

phenomenological description of damping in ferromagnetic resonance are not consistent with such an

assumption.

I. INTRODUCTION

The form of the ferromagnetic equation of mo-
tion,

dM—„;—=-lyl(M x H) -R, (la)

R =(v/H') Hx(Mx H).

For completeness, it is also important to mention
the Gilbert formulation, '

H"=(~/M, )Mx „, , ( e)

which yields results identical to R for n'«&."

whexe M is the vector magnetization, y is the
electron gyromagnetic ratio, H is the total inter-
QRl field, Rnd R is a phenomenologlcal x'81RZRtion

term, has often been discussed from a geometric
viewpoint involving the exact direction of 8 and
the physical difference between processes conserv-
ingMO, the absolute value of M, orM„ the com-
ponent of M along the field. ' 3 These two types
of relaxation are usually described by,

R'" = (o. I y I/M, ) ]ax (Mx H),
R"=(v/H', ) ll, x (Mx H) . (lc)

The superscripts LL and BB refer to the Landau-
Lifshitz~ and the original Bloch-Bloembergen'
formulations of fex'romagnetic relaxation; + and
v denote phenomenological relaxation parameters.
In the BB form, Hz denotes the static internal
fieM. A modified form of R~, in which the re-
laxation is toward the instantaneous internal field
H, avoids the problem of negative loss for anti-
Larmor excitations 6":

Here, v, is the Kittel resonance frequency,

&2)x/s

~s, ~ = & l (~H+ Nx~~) + (~s + N)»~)1 ~

(os =
l y l (Ho —4',MO),

(Sa)

(Sb)

(Sc)

with &o„=ly[4wMO. The quantity P„ is an ellipti-
city factor,

(4)

The conventloQRl field swept liQewldth +H is x'8-

lRted to ~4} according to

lyl(2») =(s»)/Pg
The demagnetizing factors satisfy N, + +, + N, = j .

For physical reasons, the Gilbert formulation
appears preferrable. '

Apart from the differences in the behavior of
M, for these different relaxation forms and the
related implications concerning Qonlineax effects,
the relaxation terms yield quite different expres-
sions for the ferromagnetic resonance linewidths,
which are obtained from the susceptibility solu-
tion of Eq. (la), linearized in the transverse com-
ponents of the time-dependent precessional mag-
netization. For an ellipsoidal sample with demag-
netizing factors (N„,N„N, ), and the static exter-
nal field along the z-directed principal axis, the
frequency-swept half-linewidths (in angular fre-
quency units) for the uniform precession (UP)
mode axe:

(2a)

(2b)

(2c)
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Equations (2) define one-half of the usual half-pow-
er linewidth in angular frequency units; this con-
vention will make possible a direct comparison
with relaxation-rate expressions.

In the present work, we are concerned only with
these low-power resonance linewidths, and their
variation with the parameters characterizing a
particular experiment on a given material, such
as frequency, field, and samp1e geometry.

The importance of the elliptieity factor P„has
been pointed out previously in connection with line-
width data for Ni-Fe films. ' It has also been
noted' '" that the 81och-Bloembergen damping
leads to a dependence of the linewidth on sample
geometry different from that described by Eq.
(2a). On the other hand, Callen' has proposed
that the phenomenological damping parameters
themselves should depend on sample geometry;
his argument was based on a comparison with
theoretical spin-wave transition rates. However,
recent calculations of the damping in metals" "
indicate (in agreement with experiment) that the
physical relaxation is consistent with the assurnp-
tion of an intrinsic damping parameter z, which
is constant except for a possible temperature de-
pendence. Part of the argument was based direct-
ly on compai ison of the theory with Eq. (2a),
which indicated that the factor P„should appear
even in microscopic calculations. "

In the present study, the uniform precession
decay rate has been examined as a function of the
ellipticity of the UP polarization for several sim-
ple scattering models, using standard second-or-
der-perturbation-theory methods in calculating
transition probabilities. ' It is explicitly as-
sumed that the scattering exhibits, on the aver-
age, at least rotational symmetry.

The results show that: (i) in general, both the
UP decay rate and the corresponding phenomeno-
logical parameters depend on the sample geo-
metry, the UP polarization, and the frequency.
An example of this behavior is the well-known
two-magnon process, where the decay rate is
not consistent with the assumption of a constant
(i.e., intrinsic) damping parameter in any of the
a,bove formulations. (ii) In the case of the general
"conf)uence" process, the UP decay rate depends
on an intrinsic (material) parameter n and on
the field and frequency in exact accord with Eq.
(2a), provided that the participant excitations
are unaffected by the magnetic field and that wo
is small compared with their characteristic fre-
quencies. This simple result reflects the qualit-
ative features of the known damping mechanisms
involving electron scattering, such as those stud-
ied in metals, " '~ the fast-relaxing impurity
mechanism in ferrites, "and, in part, the multi-

particle magnon-phonon processes. " It is not
rigorously applicable to three-magnon confluence
relaxation.

II. MICROSCOPIC RELAXATION CALCULATION

Co =Pbo+(Xbo

where p and v are real coefficients satisfying,

p' -cr' =1,

p +0 =P~. (Bb)

The parameters &~ ~ and the ellipticity factor P„
are the same as given above.

The UP decay rate is calculated from the transi-
tion-rate equation,

dn--'=p' -p
dg

where the "up" and "down" (p' and p, respective-
ly) rates are;

p'
=2m +)(n, ~ l, n~)Z, (n„n;))'5((u~ —ur;+~, ) .

Here (i,f), (cu, , &uz), and (n, , nf) denote the initial
and final eigenstates, frequencies, and occupa-
tion numbers of the system, no is the occupation
number of the uniform precession eigenmode, and
XI ls written ln terms of the co~ and co

For a general confluence process as shown in
Fig. 1, the interaction D is given by,

(l2)~ fkk'nk ' ~k

The a~~ and a~ are either fermion or boson oper-
ators for the participant excitations with wave
number 0 and frequency &~. The matrix elements
f» are assumed known, even though their actual
calculation is nontrivial and generally involves
indirect processes, "'~ so that the values axe

The formulation of the relaxation problem
follows essentially the approach of Sparks, ' The
interaction of the UP with other excitations is
assumed to be of the form,

X =D~b +Db ~

where the b~o and bo are creation and destruction
operators of circularly polarized magnons, and
the D~, D are composed of operators of other ex-
citations. The actual uniform precession eigen-
modes in an ellipsoidal sample are represented
by the operators ct and c, obtained from diagonali-
sation of the UP Hamiltonian (in frequency units),

X, = u) s b, b, + z' &u„(b, b, + b, ho),

by the transformation"'
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EXCITATION

U. P. MAGNON

(Olo )

XCITAT ION
(k', cuk~)

temperature dependent. The matrix ff»i] need
not be Hermitian.

Substituting (8) and (8) into (10) and (11), with
the usual assumptions that the occupation num-
bers (n„, n~, ) are equal to their thermal values
(R„n,i), and that dn, /dt = 0 when n, is equal to
its thermal value, one obtains

4'Plp—' = -(n, -n, )(1/r, ), (13)

FIG. 1. Schematic iDustration of three-particle con-
fluence with one incident UP magnon and two other gen-
eral excitations.

scattering relaxation, fast-relaxing impurity
processes, " and certain classes of magnon-pho-
non relaxation. The key ingredient for the extrac-
tion of a linear frequency factor is that &„u„
»cop is satisfied. The key ingredient for the P„
factor is that the participant excitations not be
appreciably field affected. Consider the case of
magnon confluence where neither is satisfied.
The (a„, a„") then represent circularly polarized
magnon operators, which must be transformed to
elliptical magnons as are the (b„be). The result-
ing relaxation-time expression is complicated
considerably by this modification, and a simple
P~ factor is not obtained. Further, kS10' cm '
for typical magnon confluence (in ferrites, for
example), so that e~» v, is not satisfied.

As an example of processes where such consis-
tency is not found for any of the damping formu-
lations cited above, consider the magnon-boson
process where, generally,

where I/r, generally depends on p and c. We as-
sume that the scattering has at least rotational
symmetry, i.e., dn, /dt is invariant under rota-
tional transformations about the field axis. This
allows retention of only terms proportional to p'
and 0'; those involving po crossterms are not in-
variant. Then, one obtains

I/~. =2vg (p'lf, «I'+o'If» I')
k,hi

x (ygq —'nq, )b(~q, —~q —~o) . (14)

u, =2vg —,"" g If».l'b(~, —~a).
8k

This is in exact accordance with the phenomeno-

logical expression (2a) based on the Landau-Lif-
shitz (or Gilbert) equation; 1/7, is proportional
to the frequency ~„ the ellipticity factor P„, and

a scattering summation a„which is an intrinsic
parameter under the above assumptions and the

additional provision that the excitations (b, &u„)

and the f»i are not appreciably affected by the

magnetic field.
The above conditions are satisfied for electron

The factor n, —n„may be expanded in the differ-
ence ur, —+„, at least for ~p++QT; owing to the

5 function it is then equal to —eodg~/du&, . Fur-
ther, if &p is'small compared to the co„and co,

over which the matrix elements and density-of-
states factors implied by the summation in Eq.
(14) vary appreciably, the sum may be evaluated
using 5(&g~ —v~). With these assumptions, the

result is

I/ To = CRq tdoP~, '

D= Q(&aba+Gaba') (17)

In the case that the (b~t, b„) represents magnons
(other than UP), they are also elliptically polar-
ized due to dipolar effects. However, for suffici-
ently short-wavelength spin waves the correspond-
ing Holstein-Primakoff transformation does not
involve the effect of sample shape except for a
static-field shift in energy; the matrix elements
EI, and GA, thus depend on intrinsic properties and
on the total static internal field. If the Holstein-
Primakoff transformation is done explicitly [ex-
pressing D in terms of the elliptically polarized
spin wave operators (c~, c~)], an alternative de-
monstration [to that preceding Eq. (14)] of the
disappearance of terms in po in Eq. (18) derived
below can be obtained. The source of the G,
terms in Eq. (17) is twofold: (1) in the anisotropy
of individual scattering centers (or events), "
(2) in the above-mentioned transformation for the

secondary magnons.
Proceeding in the same way as in the preceding

case, one obtains the UP decay rate in the form
of Eq. (13) with,

I/7, =»g (p'I && I'+c'I G~ I')b(~. - ~.) .
(18)

Qbviously, there is no general "ellipticity factor"
to be factored out, and no frequency factor. Even
in concrete simple models, such as the isotropic
approximation to the pseudo-dipolar two-magnon
process" where it is possible to do the sums over

I E~ I' and I G~l' explicitly, the result is not pro-
portional to P„=p'+0' since the two sums are not

equal. Moreover, a significant and rather com-
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plicated variation of 1/v, with frequency and sam-
ple geometry is known to be caused by the varia-
tion in the density of degenexate magnon states
participating in the k sums as these parameters
are changed. Equations (17) and (18) apply as
well, at least forma, lly, to a magnon-phonon pro-
cess. As long as the scatteI ing amplitudes are
considered proportional to the deformation„ ) E„~
=(G~ I is satisfied" so that p'+o' =P„d oesfactor
out of Eq. (18).

III. DISCUSSION

The observed consistency (or lack thereof) be-
tween phenomenologieal and microscopic results
I'BveRls cI ltexlR foI' the deflnitlon of reil. axation
parameters related to different physical process-
es which may be used in phenomenological for-
mulations for practical ealeulations. The point
of interest is whether any such definition may
corI ectly characterize the general magnetization
response, irrespective of the particular experi-
mental parameters. This point ha, s been exam-
ined by fallen. ,

' who observed that the phenomeno-
logical parameters could not be constant if the
quantum-mechanical relaxation rates were con-
stant. However, Callen did not investigate the
conditions for invariance of 1/r, The pr. esent
results show that one class of microscopic pro-
cesses and one form of the phenomenological
damping) among the simple cRses considered,
are explicitly consistent even though 1/r, is a
function of external parameters in the micxo-
scopic result.

Concerning the negative I esults with the Bloch
forms of damping on the one hand, and relaxa-
tlons lnvolvlQg magnetic excltRtloQS on the otheI',
one does not intuitively expect to obtain relaxa-
tion parameters which are field independent in
such cases. On the phenomenological side, the
v parameter in the unmodified Bloch-Bloembergen
equation is Qot expected to be invariant because
of known thermodynamic deficiencies in the for-
mulation (such as negative loss for anti-Larmor
modes). As to the modified form, the lack of
agreement simply shows that this particular mod-
ification is not sufficiently sophisticated. Intui-
tively, the internal field to which M relaxes must
involve not only H but the molecular-field char-
acteristic of the feI'I'OIQRgnetlc lntBI'action Rs
well. [Note Gilbert's observation quoted by
Wangsness, '0 that the replacement of H in Eq.
(1c) by the sum of H plus the molecular field
leads io the Landau-Lifshitz form of Eq. (1b).]

The positive result concerning the I.I, form and
nonmagnetic confluence ls less tI'lvlRl. TI16 Rs-

sumptions which allow the extraction of the fre-

queDcy Rnd elllptlclty fRctoI's, 1D tile simple deI'l-
vation presented above, are also made implicitly
in Gilbert's derivation. '2' The use of a Rayleigh
dissipation function which is not strictly allowed, "
is approximate and valid only in the low-frequen-
cy and low-field limit. Moreover, the particle-
hole character of the secondRry BxcltRtloDs Rs-
sumed in the present derivation is R feature com-
mon to other viscous phenomena such as electri-
cal conductivity. Similar implications appear in
recent woIk eoneeI ning the damping in metals. ""

It is to be emphasized that the variation of M,
is not considered in the present analysis, done
in the limit of low power and small excitations.
Only the transverse relaxation is considered.
From this perspective, the equivalence of longi-
tudinal Rnd transverse relaxation rates implied
in the LI, formulation is of no direct interest. In
fact, the (aJ, a, ) excitations in the confluence the-
ory may even represent nonunifoI'm spin excita-
tions, in which case M, would be conserved in the
second-order kinetics. The only point is that the
secondary excitations must not be substantially
affected by the static field H. Thus, low-frequen-
cy magnons are excluded; others, e.g. , Stoner
exeitations in metals, RI'e not excluded.

IV. CONCLUSION

The above results demonstrate in relatively
general terms the specific features of the I.andau-
I,ifshitz and Gilbert phenomenological formula-
tions on the one hand„and of what may be called
"intrinsic" confluence processes in the micro-
scopic formulation. These formulations are con-
sistent with the assumption of an intrinsic damp-
ing parameter describing the motion of the mag-
netization vector under sufficiently general con-
ditions. The two-magnon process and the Bloch-
Bloembergen phenomenological description of
damping lD ferromRgnetlc I'esoIlRQce RI'6 Qot con-
sistent with such an assumption.

Similar implications may be inferred from cal-
culations of the two circular susceptibilities {of
the Larmor and anti-Larmor modes) using the
methods of linear response theory' " '~" "and
comparing again with the phenomenologieal equa-
tions. We have chosen to treat the elliptically
polarized eigenmodes because the calculations
are in a very familiar foxm, Rnd elliptical-mode
resonances are probably the simplest situation
in which the role of the anti-Larmor components
can be assessed experimentally. Microscopic
calculations concerning elliptically polarized
eigenmodes have obvious practical implications
lQ thRt, linewidth dRtR may be used to dlstlDgulsh
between various scattering mechanisms.

Finally, it is recognized that the consistency
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of the "viscous" damping proposed by Gilbert
with the "confluence" mechanism is not inciden-
tal and on the other hand, other processes involv-
ing scattered magnons exhibit features similar
to those observed with the two-magnon process.
These points will be further developed in separ-
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