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Excited-state spin waves near the Curie temperature in Pr,T1
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A theory has been developed of the temperature dependence of the spin waves in a system involving

transitions between all levels of the ground multiplet of an ion. The excitations out of both ground and

excited states are described by the product of annihilation and creation operators for the single-ion

states of the crystalline field' and molecular field. The spin-waves are obtained with the random-phase

approximation applied to the interlevel transition operators rather than to S, as in conventional

spin-wave theory. Numerical results have been obtained for Pr,Tl that agree with the neutron

measurements of Birgeneau and coworkers. There is little variation with temperature through the phase

transition of the scattering from modes having wave vectors greater than (0.25,0.25,0)2m/a. This is

partly because the measurements average over two groups of spin waves that interact, the spin waves

out of the ground state and the excited-state spin waves corresponding to the I 4
—l I, transition. The

I, —14 zone-center modes are strongly temperature dependent but do not go soft. They decrease in

frequency as T rises from zero to Tc by factors of -4 and -6 for S+ and S, modes, respectively.

Very-low-frequency transverse (S+) modes (-0.02 THz) appear at elevated temperatures and do go soft

as T ~ Tc. These modes correspond to transitions between the states of the weakly exchange-split I,
triplet.

I. INTRODUCTION

A large number of attempts have been made to
understand the varied and often surprising magnet-
ic properties of singlet-ground-state systems. ' '
The simplest theory of such systems is the singlet-
singlet model in which the excited states of the
lowest multiplet are approximated by a single lev-
el. This theory, when solved within the random-
phase approximation, predicts that the frequency
of the longitudinal zone-center spin-wave mode will
fall to zero as the temperature is raised from zero
to the transition temperature, and will then rise
again and tend to the crystal-field splitting, 6, as
T- ~. The behavior of the modes as observed ex-
perimentally is in marked contrast to this. The
neutron scattering results on single-crystal TbSb
(Ref. 5) show that as T- T„ the mode falls in fre-
quency concurrently with the growth of critical
scattering centered on zero frequency. Above T~
there is no evidence of a well-defined excitation.
In PrsTl, on the other hand, the frequency of the
neutron peak observed in the polycrystal '7 remains
well defined and almost independent of temperature
through T~. It was not clear from these measure-
ments, which had to be made at nonzero wave vec-
tors because the specimen was polycrystalline,
whether the zone-center mode does or does not go
soft.

A refinement of the theory, the singlet-triplet
model, is not in significantly better agreement with
experiment. In this model four states of the ground
multiplet are included, the singlet ground state, I"~,
and a triplet excited state, I"4, as found for Tb3'
and Prs'.

In the model of Pink the magnetic dipole transi-
tions between the singlet and the outer members of
the triplet are ignored as is the moment carried
by the triplet states and thus the model is not ap-
plicable to Pr3Tl. Hsieh and Blume applied the
singlet-triplet model to TbSb. They found the
Goldstone mode that Birgeneau~ has suggested
should always occur in the singlet-triplet mode]. ,
but it is this feature of the model that is respon-
sible for most of the disagreement with the experi-
mental results which show a large energy gap.
Smith, who has developed the singlet-triplet mod-
el for Pr compounds and included all singlet to
triplet transitions, found that near Tc the modes
within the triplet prevent the I"4 —I', modes from
going soft.

The only theories of singlet-ground-state sys-
tems in which the real level scheme has been in-
cluded are the pseudoboson theories of Holden et
al. ' for TbSb and Cooper for P r~Tl. The pseudo-
boson theory' '3 is restricted to T = 0 since transi-
tions are included out of the ground state only. It
was found that the wave-vector-dependent exchange
mixing of the higher-frequency transitions into the
lowest spin-wave branches introduced an energy
gap at q =0. No model, therefore, that ignores the
true level structure can provide a realistic de-
scription of the spin waves, in particular the sin-
glet-triplet model with its Goldstone mode.

The pseudoboson theory is a zero-temperature
theory and cannot readily be extended to finite tem-
peratures in a many-level system where the pure-
spin Holstein-Primakov transformation is no lon-
ger applicable. Thus it has not been possible until
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now to calculate the temperature dependence of the
spin-wave spectrum in real many-level systems.
The many-level structure is important in TbSb
(Ref. 5), PrsT1 (Ref. 7), and in earlier studies of
KCoF3 (Ref. 13) and CoFz (Ref. 14) where the
ground state of the magnetic ion is degenerate. A
theory of the temperature dependence of spin waves
that can be applied to both singlet- and degenerate-
ground-state systems is clearly required. Such a
theory is developed in this paper and applied to
Pr3Tl.

To describe the spin waves we abandon the
pseudoboson concept and work with the basic op-
erators that annihilate and create a given single-
ion state. The single-ion states are those of the
crystal field and molecular field. Products of
these describe the transitions between all states of
the ground multiplet and not just those out of the
ground state as in the pseudoboson theory. There
is thus one set of spin waves out of each level of
the ground multiplet and these are coupled together
by the exchange interaction if they have the same
symmetry. The theory therefore includes the
mode-mode interaction that occurs at finite tem-
perature in Pr,T1 between the spin waves out of the
ground state and those out of the excited states.
This interaction is absent in most theories to date.
The singlet-triplet model of Smith' does of course
contain the interaction of the modes within the trip-
let with the I'4- I"z modes, but the interaction with
the excited-state I"3 —I"4 modes is ignored. The
latter interaction is necessary if the neutron scat-
tering results are to be understood.

In Sec. II the dynamical susceptibility theory is
developed. It is shown in Sec. III that the theory
is equivalent in the T=0 limit to pseudoboson the-
ory, and in the paramagnetic phase to the theory of
Fulde and Peschel, ' and that it has the same form
as the theory of spin waves in itinerant magnets.
Some of the results for the paramagnetic phase of
Pr&T1 were obtained by the present authors in a
previous paper to be referred to as Paper I. In
this paper we have used the theory generalized to
be valid in the ferromagnetic as well as the para-
magnetic phase and the numerical results are pre-
sented in Sec. IV. Comparison is made with the
experiments of Birgeneau et al. ' and the nature of
the soft mode and the mode-mode interaction is
discussed.

II. GENERALIZED DYNAMICAL SUSCEPTIBILITY

A. Properties of the single-ion Hamiltonian

The Hamiltonian for spin waves in a crystal con-
taining rare-earth ions of total angular momentum
(orbital plus spin) 8 coupled by isotropic exchange
and subjected to a crystalline electric field is

x =gx.,(i)+gz(ij)s(i) s(j) . (1)

This may be divided into a single-ion part

22, =Q 22.,(i)++S,(i) 2 Q J(ij)(S,(j) ))
i j

and an interion part

(2)

x, = Qz(ij)s, (i) [s,(j) —2(s,(j) ) ]

2
Z~('j) [s.(')s-(j)+s ( )s,(j) ]

The single-ion part, since M„ is a known function
of S in terms of a sum of operator equivalents, ~7

0„, is first diagonalized exactly for a given molec-
ular field

a, = 2 g z(ij) (s, (j) ) (4)

where

f„=exp(- „tek /T) g exp(- e /k T))
m

(7)

and

s.„„=&n~s.~n& .

This value of (S,) is then substituted in Eq. (4) and
the process repeated until (S,) and hence the eigen-
functions and eigenvalues have achieved self-con-
sistency. This is the molecular field or best sin-
gle-ion approximation. Numerical results ob-
tained from this procedure applied to Pr3Tl are
given in Table I and Fig. 1 of Paper I and Fig. 4 of
the present paper.

The single-ion Hamiltonian may now be written

X,=g g(d„C„'(i)C„(i) .
z n

(8)

The operator C„annihilates the state In). Within
all 28+1 states of the ground multiplet a complete
description of S is given by the projections

to give a set of eigenfunctions, In), and eigenval-
ues, co„, satisfying

x ~n& =(d„~n& .

The states In) are a linear combination of the ba-
sic spin states I S,= S ) to I s, = —S). Matrix ele-
ments of any component of the spin, S„S„andS
in practice, are then computed between all (2S+1)
levels of the ground multiplet. [The case of a
transition-metal ion with (2S+1)&&(2l+1) levels can
also be treated. K„is then the sum of the spin-
orbit interaction and the noncubic part of the crys-
tal field and S is the pure spin. ] The average spin
may be calculated from

(s,) = gs,„„f„,
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s„=ps.„„c„'c„,

s =ps.„c'.c„,

s.=g s,„„c.'c„,

(9)

ments. Thus if

S, „&0

then

S „=0 (18)

where

S„.„=&m~s. ~n) . (10)

The coefficients of the expansion of S are the ma-
trix elements of S evaluated between the single-
ion states In), This description of S is exact with-
in the ground multiplet to the extent that the high-
energy excited spin-orbit states can be neglected.
It is easily verified with the aid of the property of
annihilation operator s

[Cm j Cn]j: = ~mn j

that the projection (9) preserves as it must the spin
commutation relations

This will be used to simplify the equation of mo-
tion for the spins and is valid for Tbs', Prs', and
Co ' in a cubic or tetragonal field as in TbSb, '
Pr3T1, and KCoFS but not for a field with a
rhombic distortion as in CoFz.

B. Interion coupling and equation of motion

The total Hamiltonian is the sum of the single-
ion pa, rt (8) and the interion part (3):

K =g g ~„c'„(i)C„(i)
n

SxS =iS,
and that the transition operators satisfy

[c„'c„,c'„c,]=8 C.'c, -8,.c'„c„

(12)

(13)

+ g&(ij)s, (t)[s,(j) —2&s,(j) ) ]

+
2 g z(~j)[s.(i)s (j)+s (i)s,(j) ] .

and

P [c'.c„,c',c,]s.„=g(c„'c,s.„,—c~p. ),
(14)

where n may represent +, —,or z and a commu-
tator without a sign external to the square bracket
has a negative sign between its terms. The two
signs of the commutator of Eq. (11) show that the
statistics of the C„operators is immaterial; Eqs.
(12) and (13) are satisfied for either Bose "parti-
cles" (integral S) or Fermi "particles" (half-in-
tegral S).

Qnly some of the matrix elements of S„S, and
S, between the levels I n) will be nonzero. Since
the crystal-field operators O„contain no terms
with m =1 the matrix elements of the transverse
components of spin are entirely nondiagonal

-=-ie(t)([s, (i, t), s (j, o)])

and a longztudznal part

G"(ij, t) —= —i8(t) ( [S,(i, t), S,(j, 0)]),

(18)

(19)

where B(t) is the unit step function. The following
Fourier transforms are defined:

G(q, t) =—g G(ij, t) e'*' " '" (2o)

The spin components are given in terms of the C„
operators by Eq. (9). The spin-wave spectrum and
neutron scattering can be obtained from the dy-
namical susceptibility. In the magnetically or-
dered phase of a cubic system the susceptibility is
anisotropic and has a transverse part

G -(ij, t) = G(s, (t), s (j), t)

S+nn = 0

This does not mean that the longitudinal spin com-
ponent of spin will be entirely diagonal for there
are in general inelastic transitions governed by the
nonzero values of S~„(m w n) which give rise to the
Davydov excitations. For exchange of the Heisen-
berg or of the uniaxially anisotropic form (Z, w J„
=J,) the excitations divide into pure longitudinal
(Davydov) and pure transverse spin waves.

For ions in a sufficiently symmetric environ-
ment it is found that between the levels m and ~, if
any one of S„S,or S, has a nonzero matrix ele-
ment, then the other two have zero matrix ele-

Gttj, tt)= f ( tGietj' 'dt .

The Heisenberg equation of motion,

~G(w, a, ~) =([W, a])+ G([w, X],a, ~), (22)

(23)G 8(ij, co) == g S„„G(mn, ij, ~),
mn

where a, P=+, —,or z. The theory proceeds by

may be applied to the transverse and longitudinal
susceptibility in which A, B are S„S or S„S„
respectively, but it is better to define first an in-
terlevel susceptibility G by the equation
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applying the equation of motion to C~ in which
A = C Cn and B=Sq. The decoupling is performed
on G and G is then recovered from Eq. (23).

The commutator with the Hamiltonian in (22) in-
volves three types of terms in X, the diagonal
terms, the transverse terms, and the longitudinal

A

terms. In obtaining an equation for G the commu-

tator of C Cn with the diagonal terms gives

p p [ct (i)c„(j),c„'(u)c„(a)]~„
k r

=5, ,(~„—~ )C'„(i)C„(i) . (24)

The transverse terms give, with the aid of (14),

QJ„[C„(i)c„(i),s, (k)s (l)]= Q J;. , Q [S,„,(i)C (i)C,(i) —S, (i)Ct(i)C„(i)]Q S,~(l)ct(l)C~(l)
kl

g z„.P [s „,(i)c.'(i)c,(i) s,.(i)ct(i)c„(i)]g s, (i)ct(i)c,(i) .
l Pe

(25)

In order to decouple the equations the random-

phase decoupling is used:
+s „„(f„-f„)Ps,„c',(f)c,(i)

Pe

(2'7)

C'(i)c,(i)c,'(f)c,(i) =f b)~,c',(I)c,(~)

+f,(i)5„c.'(i)c,(i) . (26)

This decoupling is similar to that used in the band

theory of magnetism (see Cooke, ' for example)
where the subscripts are band indices. It is dif-
ferent from the usual random-phase-approximation
(RPA) decoupling for magnetic systems, where S,
within a Green's function is replaced by (S,), be-
cause it is applied in detail of each of the coupled

equations for the interlevel transitions, mn, rather
than to the equation for S,.

The decoupling (26) applied to the right-hand
side of (25) gives four terms, two of which are
zero because of (15) leaving

Q J;, S,„(f —f„)gs ~ct(l)c~(l)

as the total contribution from the transverse terms
in the Hamiltonian. Since the single-ion levels are
the same for all ions in a perfect crystal, the la-
bels on the f and the matrix elements have been
dropped.

The commutator of C„(i)C„(i)with the longitudi-
nal terms in the Hamiltonian may be evaluated in a
similar manner. The fluctuating terms on site i
are found to cancel since they have already been
included in the single-ion part of the Hamiltonian
and the result is

P z [C.'( )C.( ), s,(u)(s, (i) —2(s, (I) )]]

=2+ J;,S, (f„-f„)QS„C,(l)c (I) . (26)

The final equation for the interlevel susceptibility is

&uG~(mn, ij, u) =(f f„)s&„5,, +(e„-—ur )G~(mn, ij, v)+ g J;, S, (f -f„)g S,&G (qp, lj, e)

+S „(f„f)p S„~G~(qp-, lj, ur) +2+ 8;,S,„(f f )g S,~G~(qp—, lj, &o) .
Pc

(29)

gna(&~ &)
—gnS (&) g SntmnSSnm(fm fn)

mn CO —COn+ COm

(30)

By applying the same procedure to the full equa-
tion (29) it is found that

G '(q, ~) =g '((o)+g"'((u)J(q)G ~(q, &u)

+g' (q, (o)J(q)G''(q, &o)

+2g '(~)J(q)G" (q, ~) .

The single-site dynamical susceptibility, g (q, &),

is the solution for J;, =0 in Eq. (29). In Fourier
transforms, after multiplying through by S „, di-
viding by co —u„+ ~ and summing mn, it is

g' (~)
1 —&(q)g' (~)

(32)

for the transverse modes (the equation for G
' is

the same with ——+), and

Gnn( ) 1 —2J(q)g"(~)
(33)

For the systems of interest in this paper where

the matrix elements satisfy Eq. (16) the only non-

zero components of the single-ion susceptibility
(30) are g', g ", or g". The solution for the spin

waves is then
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for the longitudinal modes. These equations are
deceptively simple because most of the physics of
the detailed level structure and matrix elements is
contained within the temperature-dependent single-
ion susceptibility (30). That such a simple form is
possible is a reflection of the particular form of
the isotropic interion coupling in exchange-coupled
systems. Axially anisotropic exchange (J,W J„=J,)
can also be handled by evaluating g (ur) with J, and
then using in the renormalization 2„ in (32) and J,
in (33).

The transition temperature is where the longitu-
dinal susceptibility diverges:

I/g" (0) = 2 Z(O) = 2zZ . (34)

The ~- 0 limit of g"'(((() is not given correctly by
the theory, however, since the quasielastic fluctu-
ations are ignored in the RPA. ' In practice, there-
fore, the transition temperature is found by rais-
ing T until (S,), Eq. (6), falls to zero using the
self-consistent single-ion states of Sec. IIA. This
gives the molecular-field-theory transition tem-
perature. The magnetization (S, ) is found to fall
smoothly to zero as T- T~ in contrast to the first-
order phase transition found in the singlet-singlet
model.

The neutron scattering S(Q, (d) is directly related
to the generalized susceptibility by

S(Q, fd) =( ~) f(((('(( - e ' )'(mG((1 ~), (M(

where

(36)

spin waves tends to zero as the population factors
for each excited level approach zero.

For all finite temperatures the present theory
gives results that were not previously available.
The inclusion of excited-state spin waves, in par-
ticular the I"4-I'3 spin waves, greatly affects the
predicted temperature dependence of the spectrum.

In the paramagnetic phase the theory becomes
equivalent to the theory of Fulde and Peschel ' as
shown below. The use of more realistic model
parameters" in the present theory leads to better
agreement with experiment than was found by
Peschel et al. in their model calculation for
P r3Tl.

There are also similarities with the theory of
spin waves in itinerant magnets as discussed in
Sec. IIIC.

A. Relation to pseudoboson theory

For transverse spin waves the single-ion sus-
ceptibility at T =0 becomes

+- I i V +On --On +nO -On

47 —
NnO W + CO„O

(39)

In pseudoboson theory the response functions are
P' (nm, ij, t) = —ie(t) ([a„(it),a (j0)]), (40)

where a„=C„Co with similar expressions for the
related functions P ', P", and P . The Heisen-
berg equation of motion for the P' operators in a
ferromagnetic system can be obtained after evalu-
ating the commutator of a„with the transverse part
of the Hamiltonian expressed in pseudoboson oper-
ators as given by Buyers et al. , ~~ Eq. (17):

For polycrystalline materials studied in the (000)
Brillouin zone the appropriate G is

G(q, (d) =-,' [G' (q, (d)+ G '(q, ~)]+G-(q, ~) (37)

which simplifies to

g ((u+ e„o)P' (n'n", q(d)
nl

6nn" —Z &nn'P (n n
~ q~)

G(q, (d) = 3G"(q, (d)

ln th6 paramagnetic phRse since g = 2g

III. RELATION TO OTHER THEORIES

(36)

A„„.=A@) (S „OS,((„.+S,„0S 0„.)

The dynamical susceptibility theory described in
Sec. II is an improvement on the singlet-triplet and
similar models in that spin waves between all lev-
els of the ground multiplet are included. Even at
T = 0, where the excited states are not populated,
the theory gives different results from the singlet-
triplet model since it is found to predict a zone-
center energy gap in agreement with the experi-
mental results on TbSb (Ref. 5) and the results for
PrBTl (Ref. 6) extrapolated to q=0. In this T=O
limit the theory is shown below to be equivalent to
conventional pseudoboson theory as might be ex-
pected since the intensity of all the excited-state

Rnd

B„„.= J(q)(S,„OS „.0+S „OS,„.O) .
In an obvious matrix notation, Eq. (41) and the

related equations are

(el+ uro) ~ P' = -1-A ~ P' -O' P

(&el —sro) ~ P = 0+A ~ P + 8 ~ P'

(~1 —&u,) ~ P '=1+A ~ P '+I3 ~ P',
(ural+(do) ~ P" =0 —A ~ P" B ~ P ' . -

(43)

To compare with the dynamical susceptibility the-
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ory we evaluate the pseudoboson response G~ by
substituting in Eq. (18) the pseudoboson transfor-
mation

S,=ps, o„a„+Q S,„()a„. (44)

The result is

G~ (q~) =g IS„„S,„.P (nn ', qur)
nn'

+S 0 S . OP +(nn', q(()) +S pS p
P+ (nn', qur)

+S,„OS „.P"'(nn', q&u) ] . (45)

G'J, (q(d) =g' (~) +J(q)g' ((d) G~ (q&u) (48)

For each nn' component of I' the expression
given by Eqs. (43) is substituted in (45) producing a
series of energy denominators of the form co+ ~„o.
After a certain amount of algebra (45) becomes

Fulde and Peschel, ~' who used a diagram technique
to derive their result. The total susceptibility
G(S ~ S, q(d) is also equivalent to Fulde and
Peschel's result in the paramagnetic phase be-
cause the single-ion susceptibilities, of both the-
ories, renormalize in the same way with J(q).

C. Relation to magnetism in metals

In the theory of itinerant ferromagnetism (see,
e. g. , Cooke and references therein) the appro-
priate equation of motion is that of the total spin
operator S(r) regarded as a continuous function of
position r. Its relationship to the localized spin
operators, S(i), used in this paper will now be de-
scribed.

The component of the total spin operator, S,(r),
can be expressed in terms of the Fermi operators
C„(k) that annihilate an electron of wave vector k
and index n whose wave function is („-„(r):

with g' (&u) given by its low temperature limit, Eq.
(39). Since (46) is equivalent to (32) we have Gz =G
and thus the dynamical susceptibility theory re-
duces to pseudoboson theory at T=0. A similar
equivalence exists for the longitudinal spin waves.

S,(r) =P g q'„;„.(r)
nn' Fk'

xs. p„f,(r) C'„,(k ) C„(k) . (52)

B. Dynamical susceptibility in the paramagnetic phase

(s.„)'= 2(s.„)', (4V)

In the paramagnetic phase (S,) = 0 and there is no
distinction between the longitudinal and transverse
response functions, (32) and (33). The special re-
lations between the matrix elements that exist when
(S,) = 0, such as those between the triplet I'4 (states
2, 3, 4) and the ground singlet I') (state 1),

The index n is here taken to be a combined index
for the band and spin. To make connection with
the localized-spin picture the wave functions are
written in tight-binding form

g„-„(r)=Q g„(r —i )e'"' (53)

where the g„(r —i) is an atomic orbital localized in
cell i. The total spin operator (52) is then inte-
grated over a. cell to give the localized spin oper-
ator for nonoverlapping atomic orbitals as

then conspire to ensure that

g' (~) =2m"(~) . (48)
s.(() =f s,(r) d~ =ps, „,„(f)c'„,(f) c„(f)

nnt
(54)

g(S S, &) = g ((()) + g (&)+g (&) ~

Each term is then rewritten in the form

(49)

To obtain an equation for the total susceptibility,
the single-ion part is first written

with

s,„.„(()= J S(, (r)s, d„(r)d r—:(s'~s, ~s)
V~

(55)

and the localized annihilation operators related to
the itinerant ones by

+- ~ +mn - nm +nm -mn—~ m
Q7 —(O~ CO —(d nm

(50)
C„(f) = Q C„(k)e" '

which leads to

g (s ~ S, ~) = Q, 2 (f„-f„)

=g,"-, (f. -f„)
~

S„~' (51)

using the special properties of the matrix elements
(48). Equation (51) is the same a.s the single-ion
susceptibility of the paramagnetic phase given by

Thus the itinerant spin opera. tors go over into
the localized ones in the limit of localized mag-
netic orbitals provided the identification is made
of n, the band and spin index, with the indexn of
the single-ion levels at site i. The localized op-
erators of the present theory thus differ from the
one-electron operators that are usual in the band
theory of magnetism. They annihilate or create a
state I n) in which the Hund's rule correlation of the
electrons is already included. The states l n) are the
states within the cubic-field ground state in the
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case of transition-metal ions, and the spin-orbit
ground state J= L a S in the case of rare-earth ions.

The decoupling procedure used in Sec. II B to
truncate the hierarchy of equations is the general-
ized random-phase approximation as given, for
example, by Cooke

1 3 3 4 fl( 14 3 3 13C3C4)

+f3(52~3 C, C4 —
53~4 C, C3) p (57)

where in the present case "1"represents index n
and site i. Because the exchange in insulators
couples ions only on different sites, the form that
arose in Sec. IIB was special in having it/ so that
1=3 and 2=4 are not allowed. Thus

C.'(i) C, (i) C', (I) C, (I) = C.'(i) C,'(I) C, (1) C, (i)

=f.(i) 5„,C', (I) C, (t)

+f, 5~, Ct (i) C,(i) (5&)

as stated in Sec. IIB.

IV. RESULTS

The spectrum of magnetic excitations in Pr, Tl
has been obtained numerically as a function of
temperature from the dynamical susceptibility the-
ory of Sec. III. The crystal-field parameters and
the nearest-neighbor exchange constant mere the
same as those of Paper I which were chosen to
be consistent with the observed T =0 spin-wave
energy at the zone boundary, i.e. , a, splitting
~ = 77 K, and with the ordered moment of 0. 75 p, ~.

The poles of G' (q, &d) and G"(q, &d), Eqs. (32)
and (33), give the frequencies of the spin waves.
The poles of G(q, +) are conventionally obtained
by diagonalizing a matrix. For finite temperature
the dynamical susceptibility matrix, given by Eq.
(29), is of order 2$(2S+1), larger than the matrix
of the pseudoboson theory since excitations between
all pairs of levels are possible. For Pr" withS=4
this is not an impossibly large matrix to diagonal-
ize, particularly if the factorization into longitudi-
nal and transverse parts is utilized. Fortunately
there is a much simpler way to obtain the solution
when numerical solutions a,re sought and this is the
method we have adopted.

The method is simply to search for peaks in
Im G(q, &d+ia) as a function of frequency at con-
stant q as is done experimentally. The steps in
Re& are less than e while e is chosen small com-
pared with the intermode spacing so that no peaks
are missed. Typically 4: =0.002 THz is set in an
initial search and once a peak is found & is reduced
to a small value (0.0001) and the peak located to
six-figure accuracy. This method is found to be
comparable in speed to diagonalizing a. matrix and
has the advantage that the intensities of the spin
waves are found at the same time without having

REDUCED WAVE-VECTOR COMPONENT, $, FOR g=($,$,0) 277/a
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FIG. 1. Dispersion relation of spin waves propagat-
ing along the [110]direction of Pr371 at T=0. The full
circles are the experimental results of Birgeneau et al .
(Ref. 6). The single-ion matrix elements corresponding
to each transition 0 n are SI —= (n I S~ ) 0), where e =+,

or 8 ~

to evaluate eigenvectors. Since the peaks are
Lorentzian the intensity is proportional to the val-
ue of Im G(q, ~) at the peak times 2c.

The dispersion relations for Pr, Tl at T=0 are
shown in Fig. 1. The choice of the [$/0] direction
for the wave vector closely simulates' the response
expected for a polycrystal at the same IQ ~. For
the present nearest-neighbor model the frequencies
of the excitations with the same IQ I are found to
be isotropic to 0.3/p. Only the three lowest
branches of Fig. 1 have appreciable dispersion.
The higher-frequency branches, since they have
small matrix elements, are almost independent of
wave vector as expected from Eq. (32) or (33).

At finite temperatures the excited states become
populated and new modes appear. At 0. 901T~ the
dispersion relations of the lowest frequency ex-
citations are as shown in Fig. 2. The new branch
of excited-state spin waves in the vicinity of 1.2
THz interacts strongly with the main I"4-I'~ branch.
Greater detail of the transverse modes in the re-
gion of the interaction is shown in Fig. 3 and in the
Appendix a method is given for finding out which
modes can cross.

In Fig. 2 the new branches are weak, as indi-
cated by the symbols, 8', except for three modes
out of the six expected between the three I"4 levels
(2, 3 and 4) and the two I'3 levels (5 and 6). The
relatively strong excited-state branches are the
longitudinal mode 6-3 and the transverse modes
5-2 and 5-4. Mode 5-3 is magnetic dipole inactive
whereas 6-4 and 6-2 are weaker than the others by



TEMPERATURE DEPENDENC E OF MAGNETIC. . .

5-4

~n ann

THz

4.262 - 2.650 9
3.995 -0.795 e

3.650 2.256 7

2.923 - 1.763 6
2.757 0.795 5

1.71 2 -0.256
1.611 0,754 3 „
1.592 0.654 2

+ I +

m —tyI
Q1 —OJ
Ol Ol N

N I +aO-ONe
LO

CU CU
I I

I

/i
+PL

gg IA

tg Ig

I
i& /

I lt'~
y) lOCI ~+
0 —~ k)

I

ONm
cf Ktf)-, —,Oa N NI 0 0 Q

0 1009 1

Pr~TL: TRANSITION AMPLITUDES FOR MAGNETIC STATES

9-8
4-

0 0,2 0.4 0.6 0.8 1.0
REDUCED WAVE-VECTOR COMPONENT

a factor of -4. These and other relations can be
found from the level diagram and matrix elements
in Fig. 4. The lowest-lying modes within the trip-
lets I'4 (3-2 and 4-3) and 1, (9-8 and 8-7) exhibit
an energy gap at q =0. This is to be contrasted
with the Goldstone (or acoustic) modes that occur
in the singlet-triplet model (see Smith, 0 for ex-
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FIG. 3. Details of the crossing and anticrossing for
transverse modes only.

FIG. 2. Dispersion relation for Pr3Tl at finite temper-
ature. The symbols nz-n identify the single-ion transi-
tions corresponding to the excited-state spin waves.

FIG. 4. Energy levels of the Pr ' ion in the crystal-
line field and molecular field appropriate to pr3T], at
T= 0. On each transition is given the appropriate matrix
element (m ) Sm I n) and a symbol G.' indicating whether the
transition is S„S,or S~.

ample). The gap is a result of the inclusion of
higher excited states than I'4.

The intensity of the 1 ~-14 modes is anomalously
large near the crossover. The intensity, for no

interaction with other modes, depends on

where n belongs to the exchange split 1"4 group of
levels and m to I'3. Approximately 0. 7%%up of the

population is in each of the I'4 levels while the

f„(I'3) are two orders of magnitude smaller. Since
the dominant I"3-I'4 matrix elements are compar-
able with the I'4-1", matrix elements, in the single-
ion approximation the I'3-I"4 modes should have

only -0. 7'%%uo of the intensity of the r4-r~ modes.
Near the crossover this is no longer the case as
shown in Fig. 5 which gives the neutron scattering
that would be measured at (0. 25, 0. 25, 0)2m/a with

a spectrometer of small resolution width. Fulde
and Peschel" noted similar behavior in their cal-
culations for the paramagnetic phase. Some of the

large intensity of the lower I"4-I'~ branches, e.g. ,
the 2-1 transition, proportional to (f~ —fa) (S,2~)

with f, -0.99, is transferred to the weak r~-r4
branches. The mixing of branches becomes in-
creasingly strong as the crossover is approached.

There has been much discussion of the nature of
the soft mode in singlet-ground-state systems.
The behavior of the zone-center modes as a func-
tion of temperature is shown in the lower part of
Fig. 6. A schematic energy level diagram is su-
perposed as an aid in identifying the various modes.
The pair of levels indicated on each mode indi-
cates only the transition that makes the largest
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FIG. 5. Neutron scattering for q just less than the
crossover wave vector as observed with a spectrometer
of very high resolution.

contribution to the mode wave function. This iden-
tification is only qualitative in view of the mixing
discussed in the last paragraph, but is given as an
aid in understanding the physical process. The
two transverse zone-center modes are plotted as
a single line as they are almost degenerate. Their
frequency falls by a factor of -6 and remains finite
when T- Tc. The single longitudinal (8,) mode
falls by a factor of -4 and becomes degenerate with
the transverse modes as it must in the paramag-
netic phase.

The main branch, identified as I'4-I ~ at low tem-
perature, does not go soft. Instead new transverse
modes of very low frequency appear that do go soft
at the transition. In Fig. 6 their frequencies have
been plotted for T &0. 6T~ where the intensity be-
comes appreciable. They are associated with the
transitions 3-2 and 4-3 within the 1"4 triplet, and
since they have the same symmetry as the trans-
verse I', -I', modes (see Appendix) they interact
within them. One may say that the I'4-1

~ modes
"drive" the low-frequency modes within the triplet
soft, or that the presence of the low-frequency
modes "prevents" the I'4-1

~ branch from going
soft, but this is largely a pictorial way of speak-
ing. As emphasized above the transitions are
mixed together by the exchange.

Several modes are not shown in Fig. 6, includ-
ing two soft quadrupolar modes: the mode within
the I'~ doublet and the 4-2 mode. Note that Smith
plots the 4-2 mode although it has zero magnetic
dipole strength. The soft modes within the I", trip-
let are of very low intensity, as are several high-
er-frequency modes which are likewise not shown.
There are 27 magnetic dipole modes in all.

It is incorrect to identify the transverse modes
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FIG. 6. Temperature dependence of the spin waves.
The zone-center spin waves {lower part of figure) are
compared with those at small but finite wave vector (up-
per part of figure). The schematic level scheme at left
is a key to the mode labeling.

within the triplet as the soft modes that are re-
sponsible for the transition, since Smith' has
pointed out that they do not have the correct sym-
metry. According to Smith the true soft modes
have zero frequency at all temperatures and in-
crease in intensity as required to make the longi-
tudinal susceptibility diverge as T- Tc. Qur nu-
merical calculations indeed show that the trans-
verse susceptibility does diverge as T- T~-, but
the longitudinal susceptibility does not. This is be-
cause the modes whose frequency goes to zero at
T~ and which carry a finite magnetic dipole
strength are all transverse modes. The truly elas-
tic response of the longitudinal spin components is
ignored in the present RPA theory and would, if
included in a better theory, make the longitudinal
susceptibility diverge also. A theory that is con-
sistent with the hydrodynamic behavior is the long-
time approximation of Mori. It has been applied
to spin waves by Cheung but only to the idealized
singlet-singlet problem.

The temperature dependence of the modes of
wave vector (4, 4, 0)2m/a is shown in Fig. 6. Here
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the behavior is more complex. One simple result
emerges, ' the percentage change in frequency of
these modes is much less than that of the zone-
center modes. Further, since one group of modes
moves to lower frequencies and the other to higher
frequencies as the temperature is raised, it is ex-
pected that, when viewed with a spectrometer
whose resolution spans the mode frequencies, lit-
tle variation with temperature will be observed.

It is clear from the results already presented
that the magnetic excitations in Pr3Tl are consid-
erably more complex than is suggested by the ini-
tial results of Birgeneau et al. ' who plotted a
one-branch "dispersion relation. " The interpreta-
tion of this curve must certainly be that it is the
neutron peak position, &, versus wave vector rath-
er than a dispersion relation for any branch of ex-
citations. The experimental resolution was suffi-
ciently coarse that the neutron peak position can be
an average not only over the components of a given
transition, e. g. , the three I', -I', excitations, but
also over the components of excited-state transi-
tions such a.s I'3-I"4. The latter is certainly the
case for the large majority of the published results
on the temperature variation of the peak position,
as the peak studied was at @=0.6 A ~, i.e. ,
(0. 33, 0. 33, 0)2m/a, a wave vector close to the
crossover region as can be seen from Fig. 2. To
compare with the published neutron peak position
the appropriate weighted average frequency has
been derived from the results at 0.6 A '.

(59)

tegrated intensity of the neutron group are shown
in Fig. V. Also shown are experimental results
which were obtained from the line shapes of Fig. 7
in the paper by Birgeneau where ~ was taken a.s
the midpoint of the line through the half-height
points, and I as the planimetered area under each
neutron group when corrected for background. The
normalized frequency is plotted so as to remove
the small displacement at T =4. 5 K between the
theoretical (l. 26 THz) and experimental (1.13 THz)
frequency. The predicted frequency of the neutron
group remains constant to within 5% of its low-tem-
perature value for all the temperatures studied in
the experiment. The error bar on the 4. 5-K ex-
perimental point is +5%. The width of the neutron
group at 4. 5 K was of the order of 0. 35 THz or
about 32% of the frequency of 1.13 THz. Thus the
theoretical peak position varies by no more than
one sixth of the peak width. It is concluded that
theory and experiment are in good agreement for
the temperature dependence of the frequency.

The agreement for the temperature variation of
the intensity (Fig. 7 lower part) is not so good, but
is in qualitative agreement with the observation of
a general falloff with temperature. Birgeneau (pri-
vate communication) has found, in a further experi-
ment at Brookhaven with higher resolution, that the
falloff in intensity was slower and that structure
was observed in the neutron group measured near
the predicted I",-I „ I'~-I"4 crossover. The inten-
sity below Tc is nearly constant on our model for
the 0. 6-A ' wave vector of Fig. V, apart from a
readjustment near T~ where the population factors

where

I.O
—2.0

The position of each peak in the neutron scattering
S(0.6, ~), Eq. (35), is &u, , and I, is the intensity at
the peak. For several temperatures where there
were many closely spaced peaks the neutron peak
position was also computed as

~ = Q~s(Q, ~)/ps(q, ~), (60)

where the sum was made over a constant wide
range encompassing the range of interest and the
steps in co were equal to Imago. In general the two
methods agreed to within 0. 1/o but for certain tem-
peratures where the mode density was high, dif-
ferences as large as 1% were obtained in which
case the improved expression (60) was used. The
temperature dependence of the total intensity I was
also obtained at the same time.

The theoretical results for the temperature de-
pendence of the neutron peak position and the in-
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PIG. 7. Temperature dependence of the frequency
(left scale) and intensity (right scale) of the peak in the
neutron scattering compared with the experimental re-
sults (full and open circles) of. Birgeneau (Ref. 7).
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and matrix elements for the many transitions that
contribute are changing rapidly.

The transition temperature predicted by the the-
ory is 16.65 K whereas that observed is 11.3
*0.3 K. The discrepancy is largely the result of
the use of molecular-field theory to calculate (S,).
It could be argued, however, that a better model
would have resulted if the exchange constant had
been chosen to fit Tc rather than the observed spon
taneous moment of 0. 75', ~. This would have re-
sulted in an improved agreement with the observed
frequency (1.13 THE) of the peak at T = 4. 5 K and

Q =0.6 A '. With a better theory (as opposed to
better parameters), however, both methods should

agree.
%e conclude that the dynamical susceptibility

theory developed in this and in paper I gives a rea-
sonable description of the spin waves in complex
magnetic systems. It reproduces many of the fea-
tures of the spectrum of the singlet-ground-state
ferromagnet PrsTl both in the pure state and when

diluted with La. The theory predicts an energy
gap for all T & Tc in contrast with the singlet-trip-
let model. The transverse modes within the trip-
let and not the main I'~-I"~ modes go soft as

The absence of a soft longitudinal mode

is not understood~6 but is in agreement with the work
of Smith. ' The theory contains the basic physics
required to describe excited-state spin waves and

any mode-mode interaction that may occur and is
applicable at all temperatures. Since it involves
a generalized random-phase approximation, the
theory cannot describe effects of fluctuations or
critical effects. The theory is of such a form,
however, that it should be possible to extend it to
include some of the effects of fluctuations, e. g. ,
linewidths, and it is hoped to perform such an ex-
tension in the future.

¹teadded in Proof. The divergence of the cen-
tral mode arising from the elastic transitions, m
=n in Eq. (30), is discussed by M. E. Lines [J.
Phys. Cg, L282 (1974)j for the singlet-triplet model,
and is generalized to the full-level scheme of Pr, Tl
by W. J.L. Buyers [AIP Conf. Proc. (to be pub-
lished) ].
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APPENDIX

The conditions under which two modes can cross
in & -q space are discussed in what follows, and
the classification of the levels according to sym-
metry is described.

%e note first that the longitudinal modes, de-

scribed by 6", can cross the transverse modes,
described by G' or G ', since Eq. (31) shows they
are orthogonal as a result of g' =0 and g" = 0. The
transverse modes satisfy two equations of the form
of Eq. (32) with G=G' and G=G ', respectively,
indicating that there are two types of transverse
modes. The first type satisfies Eq. (29) with
G' (~nqe) =S, „G (mnq&e):

(x —v„+ „)G' (mnq&o) = (f —f ) ~S
~

(&1)

This shows that the single-ion transition, m-n,
that is characterized by matrix element S „and
occurs at ~=+„—~, couples to all other transi-
tions q-P, characterized by matrix element S ~
and frequencies ~ =co~- &,. It does not couple to
transitions characterized by S„~. Thus the "S "
transitions are orthogonal for this system to the
"S," transitions. They would not be orthogonal in

a system like CoF2 where both S„&and S,~ are
nonzero for any one transition P- q. It may be
argued that in (Al) the energy loss transitions
P- q, where ~~ &~„are really "S," transitions
since S ~, =S„~. However, their response occurs
at negative frequencies, &u = —((o~ —&o,), and so is
always off-resonance as far as the positive fre-
quency transition, co = ~„—~, is concerned.
These negative frequency transitions can there-
fore never affect any anticrossing at positive fre-
quencies. Notwithstanding their inability to pro-
vide mode-mode repulsion, they do, of course,
mix in and change the position of the positive fre-
quency poles by a small amount.

The above ideas are illustrated by the theoreti-
cal results of Fig. 2 which shows the complex net-
work of interacting transverse modes in the region
of the crossover. Comparison with the transition
matrix elements of Fig. 4 confirms that allowed
crossings consist of an intersection between an
"S," and an "S " mode. Any "S,"mode is in gen-
eral a mixture of the transitions

9p25p28p39p46p57p697
while any "S " mode contains

1 4, 1-7, 2-3, 2 6, 3 4, 3-7,
4-5) 4-8, 5-9, 6-7, 7-8, 8-9 .

From the transition matrix elements we can
classify the level symmetry in a qualitative way by
observing how each level is connected to each ad-
jacent level. Thus, since level 2 is obtained from
the ground state by the spin-raising operator S„
we may call level 2 a level of + symmetry. Like-
wise levels 3 and 4 are of z and —symmetry, re-
spectively. Level 5 is connected by S, to level 2

which has already been created by one spin-rais-



TEMPERATURE DEPENDENC E OF MAGNETIC. . .

ing operation. We describe this contribution to
level 5 by (++). Level 5 can also be obtained from
4 by S giving (- -) in all. Level 5 is therefore
denoted (++) + (—-). Since it departs by two mag-
netic-dipole operators from the ground state we
anticipate thai the 1-5 transition is quadrupolar
in character and is absent as a magnetic-dipole
transition as indeed it is (S„~=0 from Fig. 4).

1

However, transitions from 5 to levels of symmetry
+ or —will be allowed since this involves only one
magnetic-dipole operator. Thus S,» is finite since
level 7 is a —level (S ~~ finite). Note that the sym-

metry of a level, say 7, can be inferred indepen-
dently of the route followed from the ground state.
Thus 7 from the route 1-3-7 is (z) x(-) =(-)
since 8, does not change the symmetry, from
1—4- 7 is (-)&&(z) = (-), and from 1 - 6 - 7 is
(z) x (-) .= (-). The resulting symmetry labels are
attached to the schematic level scheme on ihe left-
hand side of Fig. 6. It is found that the same sym. —

metry labels apply in the disordered phase as may
be seen from Table I of Paper I~ provided the
identity of the various components of degenerate
crystal-field levels is maintained.
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