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The electronic structure of Cu-Ni alloy has been studied for up to 50 at. % of Cu concentrations in

the Ni-rich domain, using the coherent-potential approximation, Results are presented in both the

paramagnetic and ferromagnetic phase. Reasonable agreements with the experimental results on charge

transfer, specific heat, Curie temperature, and the magnetic moments are obtained. The calculation lends

support to the minimum-polarity model of Lang and Ehrenreich.

I. INTRODUCTION

The effect of alloying a magnetic metal like nick-
el with nonmagnetic impurities in the form of cop-
per has been of both theoretical and experimental
interest for a long time. Experimentally it has
been observed that the magnetic moment of the al-
loy disappears in the vicinity of 60 at. % Cu concen-
tration. This transition from the ferromagnetic to
the paramagnetic pha, se had led the theoreticians
to believe in Mott's rigid-band model of the alloy.
According to this model it is believed that the den-
sity of states of a pure crystal remains unchanged

as another component is added to form an alloy.
The only effect of adding the impurity is to allow
the electrons to redistribute equally between the
host (Ni) sites and the impurity (Cu) sites, thereby
shifting the position of the Fermi. level. Earlier
experimental evidence on nickel led one to believe
that, in the metallic state, it ha.s 0. 6 unfilled @-

electron states per atom. Thus this band is just
full when Cu concentration reaches 60 at. %, be-
cause Cu has one additional electron per atom.
However, during the last decade evidence has been
piling up which suggests that this explanation might

just have been due to a combination of circum-
stances which gave a correct answer, starting from
an incorrect hypothesis. In 1968 Lang and Ehren-
reich undertook a formidable many-body calcula-
tion, in which they treated the effects of the inter-
actions of the d electrons in the t approximation,
using a, short-range model Hamiltonian due to Hub-

ba.rd, s Kanamori, 4 and Gutzwiller. 5 They found

that a careful analysis of the rigid-band approxi-
mation would give a pole in the zero-temperature
static paramagnetic susceptibility at a. concentra-
tion of Cu around 10 at. %.' This shows that the
ferromagnetic Curie temperature T~ becomes zero
for this concentration of Cu, rather than at 60 at. %%ug,

They went on to calculate the pressure dependence
of the Curie temperature, and compared the pre-

dictions of the rigid-band model with the experi-
mental measurements by Qkamoto et al. ~ They
found that the rigid-band model would predict an
increase in the Curie temperature with the pres-
sure, rather than the observed decrease.

Further failures of the rigid-band model were
noticed when accurate measurements of the low-
temperature specific heats were made in both the
magnetic and nonmagnetic phases of the alloy. The
Fermi-level density of states p(E~) calculated
from the specific-heat coefflclent p shows sharp
disagreement with the predictions of the rigid-band
model. More direct evidence on the subject comes
from the recent photoemission experiments by
Hufner et a/. ' The experimental p(E~) are in sharp
disagreement with the prediction of Mott's theory.

Lang and Ehrenreich proposed an alternative
model, referred to as the "minimum-pola, rity
model. " According to this model there is little
charge transfer from Cu to Ni sites on alloying,
and the constituents retain their atomic configura-
tions of (Sd"4s) and (3d'4s), respectively. Thus,
in contradistinction to the rigid-band model, where
each site has appreciable ionic character, the
minimum-polarity model demands local charge
neutrality at each site. X-ray emission data of

Blokhin et al. ' corroborate that the numbex of d
holes in Ni is substantially larger than 0. 6—it be-
ing approximately l. 1.

A practical way to calculate the density of states
of an alloy, which is valid in the intermediate con-
centrations of the impurities, was proposed by
Soven, and subsequently put into a mathematically
rigorous form by Velicky, Kirkpatrick, and Ehren-
reich. Considering a single band, the latter au-
thors wrote down a coupled nonlinear equation for
the one-particle self-energy function Z. Stocks
et al. used the coherent-potential -approxlmatlon
(CPA) to calculate the density of states for the
paramagnetic Ni-Cu alloys, starting with a realis-
tic density of states for the host material. Subse-
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quently Hasegawa and Kanamori1 considered vari-
ous Fe-based alloys, where the impurity too was
magnetic. They included the cor relations between
the d electrons, within Hubbard's model of in-
tra-atomic and intraorbital interactions, in
the Hartree-Fock scheme. While this provided a
way to estimate the effects of such electron inter-
actions~ these authors took 1deallzed density-of-
states curves by simplifying the state-density
curve of Connolly ' in such a way that the height
Rnd the width of their linearlized curve corxe-
sponded approximately to the major peak of Con-
nolly's calculation. Because of this the calcula-
tions were not expected to provide quantitative es-
timates of the properties of the alloys considered
by them. Recently Levin et al. 16 calculated the
spin susceptibilities of Ni-Hh and Ni-Pd alloys us-
ing the CPA density of states.

In this work we have undertaken an extensive cal-
culation of the Cu-Ni alloys in the Ni-rich region.
Thus our emphasis has been on the ferromagnetic
phase of the alloys, even though we have considered
both phases for completeness. Kirkpatrick et al. '
have studied the density-of-states function of this
alloy within the framework of CPA in a simple
model. Since we can expect the effect of d-elec-
tron interactions to be very important here, we
have considered a model which included intra-
Rtom1c RQd intelox'bltRl 1QtelRct1OQS consldeled
within the Hartree-Fock theory. %6 calculate the
spin-dependent self-energies by solving the CPA
equations for each spin. The input density of
states 18 tRken 1Q 1ts full detRll fl om the x'ecent
tight-binding calculations of Callaway and Wang. ~

The scheme of the paper is as follows.
In Sec. II we write down the model Hamiltonian.

and discuss the strengths of the various electron
interactions. Also in this section we review brief-
ly the coherent-potential approximation and write
down the relevant formulas. In Sec. III we give the
method of calculation, and set up the numerical
algorithm for both the paramagnetic and ferromag-
netic calculations. Section IV gives the results for
the paramagnetic state. By calculating the para-
magnetic susceptibility as a function of the temper-
ature and concentration, we also get information on
the instability towards the ferromagnetic regime.
Section V discusses the results for the fer romag-
netic phase, where we calculate such properties as
the magnetic moment and ferromagnetic specific
heat. By extrapolating the magnetic-moment curve
we also obtain information regarding its paramag-
netic instability as a function of concentration.

II. THEORETICAL BACKGROUND

A. Hamiltonian for aHoy

We shall be concerned basically with the con-
tribution of the d electrons to the various magnetic

properties of the alloy. Both the constituents be-
ing transition metals, we need to consider Hamil-
tonians which are appropriate to the case of elec-
trons in considerably narrow bands (the d band).

A suitable model Hamiltonian has been introduced
by Hubbard, 3 Kanamori, and Gutzwillex'. In this
model one considex s only the correlations between
d electrons to be of any importance, and, because
of screening by the conduction electrons, such cor-
relations are once again confined to the carriers in
the same atomic site. The simplest of the Ham-
iltonians is the one in which all interorbital inter-
actions are neglected, and is given by the follow-
ing expression:

where K, represents the renormalized single-par-
ticle Hartree-Fock energy,

+ v, (F)) p„(F ')(;), -
(2. 3)

IL(, and p,
' being the fivefold degenerate orbital

indices and h= l. Here y&(r - R;) is an orbital of
symmetry p, centered at R„V~(r) is the periodic
potential of the rare-gas cores, and Ci~, Rnd C~i„,
are the conventional electron annihilation and cre-
ation operators. U~ =—(p p) V[ pp) is the intra-
atomic intraorbital interaction,

(v, , v, , ~)' gw)= J d rd r'q„, (r)y ,(F)„

We shall denote this Hamiltonian as case (i).
The second model Hamiltonian [case (ii)] to be

considered is one in which we consider the d car-
riers as holes, in which we include the effect of
interorbital interactions. The model is the same
as proposed by Lang and Ehxenreich, except that
we do not distinguish between the separate 12~ and

e, symmetries, as do these authors. The Hamil-
tonian is written

K=XO+ U Q +),~,.„,—J'
if

S;„ is the spin operator for the electron (i, )u),
whose components are given by
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= Cigt ~~pi
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(2. 6)

B. Coherent-potential approximation

%'e shall employ a variation of the coherent-po-
tential approximation developed by Velicky et al. '
to describe the alloy of Cu and Ni considered here.
The variation is necessitated by the spin depen-
dence of the selt-energy because of the ferromag-
netic interactions, and does not alter any of their
theoretical details.

Because of the single-site nature of their theory
we have to reduce our Hamiltonians (2. 1) and (2. 5)
to a one-body random problem. The kinetic-ener-
gy part Xo is rewritten as follows:

t+{) ~i@Cfpacigc+ ~fjc~v &C Jwe &
(2. a)

where c;~ is the single-particle energy, which is
either (Ecti Gr CNg depending upon the atom occupy-
ing the site i. The transfer integrals t;; are taken

The Coulomb matrix elements involved in (2. 5) are

(11@
i
V

i PP) = U, (pp i Vi pp ) = U

(v u'
(
i'[ u'v) =~, (u u ] &) p,

' p') =&',

where by dropping the orbital indices from the U,

J, etc. , we have tacitly assumed equivalence of the
orbitals. This is obviously erroneous, but never-
theless it might provide a general understanding of
the situation where interorbital interactions are in-
cluded. In any case, as we shall discuss shortly,
the estimates of U, U', etc. , are highly contro-
versial and hence this assumption is not entirely
unreasonable.

At this stage, we shall talk briefly about the
magnitudes of the various parameters that have en-
tered into our models. There has been consider-
able dispute over the value of U, which depends on

the amount of screening of the intraorbital inter-
actions provided by the conduction electrons. %'e

refer the reader to an extensive discussion given

by Herring. " Herring himself estimates it to be
-5 eV, while Kanamori takes it tobe -V. 6 eV.
Herring's estimate of U and J is 3 and 1 eV, re-
spectively, while Kanamori' gives J as 0. 6 eV, but
does not speculate on the value of U'. Lang and
Ehrenreich found that taking the U' and J to be the
values given by Herring leads to a rather low value
for the pressure gradient of the Curie temperature
for Ni, and they parametrize U to be 3. 9 eV to be
consistent with the available experimental data on
dTO/dP. Because of the apparent confusion we

shall consider various combinations of U, U', and

J in the course of our numerical computation.

to be independent of the individual sites i and j and
to depend on the separation ) R; —R;) . It is further
assumed that the quantities cc„, ~„„and t;, do not
depend upon the relative concentrations of Cu and
Ni.

The interaction part of the Hamiltonian is re-
duced into one-body problems in the Hartree-Pock
approximation. This is done by writing down the
equation of motion for the single-particle opera-
tor C;„„and linearizing the resultant equation of
motion.

For case (i), it gives

R„= U; N„-, ¹„,, (2. 9)

which can be absorbed into Xo by defining spin-de-
pendent energies e;~, through

e;„=e;, + U;(N„;) .
For case (ii), a similar procedure gives

(2. 10)

G(z) =(z -0)-' . (2. 13)

The effective Hamiltonian characterizing the aver-
age crystal is defined by

(G(Z)) =(Z-H.„)'.
The matrix elements of H,«are given by

(pk cr
[ H„, [

pk'o ) = 5„„.[S(k) +Z."(Z)],

(2. 14)

(2. iS)

where S(k) are the matrix elements of g';~„ f;,C',„,
&& C;„„which is diagonal in the Bloch representa-
tion, and the self-energy Z,"(Z}is spin-dependent
and is given in the CPA by the following equation:

Z, (Z) = (xe' „+ye'„, ) —[e' „—Z, (Z)] [&'„—&,"(Z)]

xF,"(Z),
where E,"( )iZs defined by

(2. i6)

r.'(Z) = p'(Z)/[Z —Z."(Z) —Z] dE,
00

(2. 17)

p ( E) is 'the density of states c01 1 88pondlng 'to 'tile

band structure S(k). Henceforth we will drop the

/ I
e...=e,„+Ups„-,) -Zo g (S',.„,)+Z g (X,„...),

~I fJt

(2. iS)
where the primes on the summations indicate that
the term p,

'=
p, is excluded from the sum, and

U=U-U', J=U' —2 J . (2. 12)

Having reduced the problem to the case of single-
site Hamiltonians, we can closely follow Velicky
et a/. The relevant formulas are reproduced, tak-
ing care of the spin dependence of the quantities
involved. %'e consider Ni and Cu alloyed in the ra-
tio y: x, such that y+x=1.

The single-particle properties of the system are
derived from a study of the Green's function
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superscript p, , assuming it to be understood. The
total density of states of the disordered system
p,(E) determined through

p, (E) = —(I/v) im[F, (Z)],.„,, (2. 18)

gives the total number of electrons per atomic or-
bital,

N;, = p, (E)f(E)dE,
OO

(2. 19)

where f (E) is the Fermi function. The partial
density of states p«or p„, is obtained through the
relation

F.(z)
1 —[~„' —z,(z)] F.(z), , ...

(2. 20)
(A = Cu or Ni). It obeys the charge-conservation
sum rule

p, (E) =~pc.(E)+ypst(E) . (2. 21)

III. METHOD OF CALCULATION

We are concerned basically with the ferromag-
netic regime and therefore will restrict ourselves
to a nickel-rich system. The host material will
be taken to be nickel with the effect of alloying be-
ing described by the coherent-potential approxi-
mation. Thus to start with we require a reliable
density of states of nickel. There have been sev-
eral band-structure calculations on nickel, and on
choosing a reliable band structure we examined
these calculations to find out how well they explain
the important physical properties of metallic nick-
el. We require both the paramagnetic and the fer-
romagnetic density of states, because as the cop-
per concentration increases the ferromagnetic Cu-
rie temperature of the alloy drops from its value
633 K for the case of pure nickel to less than
200 'K for 40 at. % Cu concentration. Thus at room
temperatures, even at intermediate concentrations
of copper, the paramagnetic phase of the alloy is
as important as the ferromagnetic one.

Recently Callaway and Wang ~ did a self-consis-
tent calculation of energy bands in ferromagnetic
nickel using the tight-binding method. The crystal
potential of their work was generated from a su-
perposition of overlapping charge densities, the
atoms being in the (3d) (4s)' configuration. In-
corporating a Kohn-Sham-Gasper"' type of ex-
change they obtained very satisfactory results for
the Fermi-surface properties. The number of d
holes is assumed to be 1, which is consistent with
recent calculations of the number of free electrons
in Ni by Blokhin et al. using the x-ray emission
data.

We have taken the density of states of Wang and
Callaway and subtracted out from it the contribu-

tion due to the conduction electrons, assuming the
s-d hybridization to be small and assuming a par-
abolic band structure for the s-electrons. This is
clearly an approximate procedure, and a proper
account of the &-d mixing must be taken in a better
calculation. Pure nickel will be assumed to have
1 d hole per atomic site, whereas pure copper will
be considered to have a closed d shell. This,
along with the magnetic-moment data from Wang
and Callaway's calculation, immediately fixes the
average number of majority and minority spins
per nickel site. The unit of energy is taken to be
half the bandwidth of nickel. For the case of the
Hamiltonian with only intraorbital interaction, the
value of U is taken to be 5 eV. In real life there
is no reason to assume that the strength of inter-
action U is the same for both types of metals.
However, our information about U to data is so in-
complete that making such a distinction seems
rather meaningless. For the case of the Hamil-
tonian with the interorbital (but intra-atomic) in-
teraction, we consider two sets of parameters sug-
gested by Herring: U=5 eV, U'=3 eV, J=1 eV;
and U=3. 9 eV, U'=3 eV, and J=1 eV. Further,
it is convenient to define the zero of energy such
that

&Cu ~Ni (3. 1)

IV. RESULTS FOR NONMAGNEITC STATE

Calculations were carried out, starting with
Wang and Ca,llaway's input density of states for

which defines 5 as the separation between the d
resonances of Cu and Ni, in the absence of any
electron-electron interaction. This is therefore
the atomic resonance separation given by a band-
structure calculation. The orbital dependence of 5
is very small and is to be neglected. We have cal-
culated the position of the d resonance of Ni for the
band-structure calculation of Wang and Callaway,
and have taken the corresponding value of Cu from
Stock et al. For a fixed set of parameters U, J,
and J, we can then obtain e";„',and E;„",by using the
formulas (2. 10) and (2. 11).

In actual computation, we determine the real and
the imaginary part of the coherent potential Z,(E)
by using trial values of¹,. The simultaneous non-
linear equations in ReZ(E) and ImZ(E) are solved
numerically by using the two-dimensional Newton-
Haphson method until the convergence is one part
in a thousand. The number of electrons per site
is then recalculated using these values of real and
imaginary Z(E) and the whole cycle repeated.
Very fortunately, there is very little charge trans-
fer from Cu to Ni sites on alloying, a fact well
borne out in our calculation. Thus when the first
cycle of calculation is completed N;, 's are already
determined to an error of less than 1.5%.
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FIG. 1. Total density of state of Cu-Ni alloys for
various concentrations for 6'=5 eV.

paramagnetic nickel (bottom of Figs. 1 and 2).
The temperatures were fixed at slightly higher
than the phenoIQenologlcal Cul le teQlpex'atux' fUx'es o

e copper-nickel alloys, so that we are in the
paramagnetic regime, Figure 1 shows the alloy

ing results with U = 3. 9 eV, U' = 3 eV, and J = 1 eV
are shown in Fig. 2, It is observed that even for
small concentrations the structures seen in the

0.5

= 0.4

I IG. 2. Density of states of Cu-Ni alloys for U= 3.9 eV,
O' =BeeV, and J =.I. .'.V, Fermi energy is denoted 4 ~ Ey'.

FIG. 3. Partial density of states at Cu and Ni sites.
e, U'=3eV, and JParameters correspond to V=3.9 eV U' =

pure-nickel band tend to smooth out and the peaks

50 at. c
become less sharp, and for concentrations a dI'oun

at. Vo copper, the alloy band shape is almost flat,
with only the remnants of the two major nickel
peaks still barely identifiable. It is also found that
when the interorbital interactions are included this
effect is more pronounced than in the case with

den
only the intraorbital electron interactions Th ese

ensity of states have been compared with the ex-
perimental optical density of states obtained by
Seib and Spicer, and show the general qualitative
features of the experimental curves, Stocks et al 0

have given detailed discussion of such comparison
for the noninteracting case, and the shape of the
density of states does not change very much in the
presence of electron interactions. In Fig. 3 we
have shown the partial density of states of Ni and

Cu, which show the energy distributions at the Ni
and Cu sites. It is seen that the electrons at the
impurity (Cu) sites spread towa. rd the higher ener-
gies (away from E~) and the opposite picture ap-
pears for the host sites. The partial energy dis-
tribution is affected by two factors. The first is
the energy difference 6 between the mean energies
at the copper and nickel sites, and the second is
the abrupt change in the amplitude of the wave func-
tion from a host site to the impurity site. If the
wave function has a large amplitude at the nickel
site, the resulting cost of band energy will offset
anv gain in energy, due to the fact that &

' & z"'
The electron-interactions U, J, etc. , affect these
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marginally because, since their strengths are the
same at both Ni and Cu sites, they tend to influ-
ence the wave functions of Ni and Cu in similar
fashion. For low copper concentration, the local
density of states at the Cu site has a rather con-
spicuous peak in the region away from the Fermi
energy, which is approximately Lorentzian in
shape. As concentration increases this band be-
comes more and more flat, and gradually over-
takes the secondary peak of pure nickel. The po-
sitioning of the impurity sub-band at energies re-
moved from the Fermi energy would suggest that
the number of electrons at the Cu site is less than
that in the case of pure Cu. However, the height
of the peak in the low-concentration region and the
spread in the high-concentration region offsets
this and the integrated density of states does not
vary from its value in pure Cu by more than 2. 5/o.
Figure 4 gives the integrated density of states
i. e. , average number of electrons) for both Ni and
Cu for two sets of parameters. We find that the
electron transfer from Cu and Ni is small. Mott
in 1935 had introduced the rigid-band model, ac-
cording to which it is believed that the electrons
redistribute equally among the lattice sites. This
explained the ferromagnetic to paramagnetic tran-
sition in Cu-Ni alloy as a function of concentration,
if we assume that Ni has 0. 6 holes per site. How-
ever, the pressure dependence of the Curie tem-
perature shows a qualitatively incorrect behavior.
Our calculation lends credence to the "minimum-
polarity model" of Varley and of Lang and Ehren-
reich, according to which the charge transfer on
alloying is negligible. As we shall see later, as
in the case of the minimum-polarity model, our
calculation gives a rather strong correlation effect,
which makes the ferromagnetism disappear for
copper concentrations above 40 at. %.

We have also computed the low-temperature spe-
cific heats of the Cu-Ni alloy as a function of the
concentration. The results are presented in Fig.
5. We have deliberately not attempted to make any
comparison here with the experimental data for

Cu

10-

I 8-
O
E

cu
I

0 4-
E

2-

I I I I I I I I

10 20 30 40 50 60 70 80
Cu conc. (Ot. %)

FIG. 5. Low-temperature specific heat in the para-
magnetic region. Continuous curve corresponds to U=5
eV, and the broken curve to U=3. 9 eV, U' =3 eV, and
~=1 eV.

two reasons. First, at temperatures at which
most of these experiments are conducted (-1.2-
4. 2' K), the alloy is in the ferromagnetic phase.
Second, the density-of-states curves are peaked
sharply near the Fermi energy, and the specific
heat depends crucially on an accurate determina-
tion of p(EF). Thus even though we have provided
the experimental specific-heat coefficient for Cu
concentrations &43 at %, no. special importance
should be attached to the actual theoretical num-
bers. However, it should be remarked that even
within our accuracy the value of p seems rather
low. This is presumably because of the fact that
for such concentrations of copper, we can no lon-
ger regard the effect of alloying as being given by
considering copper as an impurity in nickel. A
proper description in this region cannot be provided
by starting with either Ni or Cu.

We have also calculated the paramagnetic sus-
ceptibility of the Cu-Ni alloy for various concen-
trations as a function of temperature. Regarding
the carriers as holes, we have used the expres-
sions for the susceptibility obtained by Lang and
Ehrenreich within the so-called T approximation.
They express the static susceptibility for both the
models in terms of the density of states, and the
interaction strengths U, J, and U' only.

For the case of the usual Hubbard model (U& 0,
J = U'= 0) they obtain the static susceptibility X,
(assuming all orbitals to be equivalent) as

0.5—

II, = 10NIJs E/(1 —U'„,'E),
and for the second case (U, U', JA0)

II), = 6NpsE/[1 —(U',f + fCT2f f)E]

where

(4. 1)

(4. 2)

0.0—
0

I I I I I I

10 20 30 40 50 60
Cu conc. (ot. /o)

E= d&p 6 (4. 3)

FIG. 4. Total number of d electrons per atom, (Ã~),
at Ni and Cu sites.

(~) U
ett 1 Ug
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3- 2000-

' 1500
2-

IOOO

hC
I
—~o I

+ 500

0
0 IO 20 50 40 50 60

Cu concentration (at. /o)

FIG. 6. Ferromagnetic Curie temperature as a func-
tion of concentration of Cu.

U+ (U+ 2 cT)(U —el)K
[1+(U+2J)K][1+(U-J)K]' (4. 5}

(4. 6)

(4. 7)

In (4. 3) and (4. 7), the energies e are measured
from the energy of the bottom of the d bands (X~)
for case (i) where the carriers are electrons, and.

from the top of the conduction bands (X~) for case
(ii), in which the charged carriers are the holes in
the threefold degenerate t&, sub-band. The insta-
bility towards the ferromagnetic state is deter-
mined by the denominators of X, and p«being zero.
Figure 6 gives the Curie temperature of the alloy
as a function of concentration. The theoretical
curves do not end at the Curie temperature of pure
Ni, when extrapolated. This is because in the lim-
it of extremely low concentration localized mag-
netic moments appear, and the calculation of T&

for the metal becomes independent of the vanishing
of the determinant of X. A rather detailed discus-
sion of this point has been given by Hasegawa and
Kanamori, in their description of the Fe-Ni sys-
tem. For comparison's sake we have also drawn
the experimental Curie temperature due to Ahren
et al. The temperature where the denominator of

X vanishes does not exist for concentrations of Cu
~ 50 at. Ic. The general agreement of the theoret-
ical curve with the experimental one is very poor,
a fact that seems to be an inherent inadequacy of
the CPA, in that Hasegawa and Kanamori' also ob-
tained a similar-shaped curve for the Fe-Ni sys-
tem. The concentration at which the Curie tem-
perature vanishes is approximately 50 at. %, which
is lower than the experimentally observed value of
57 at. %. We stress once more that the conclusion
for concentrations ~ 50 at. % seems to be rather
dubious, and, as in the case of Hasegawa and
Kanamori, " indicative of a spurious first-order

phase transition at T = 0, which is not observed ex-
perimentally.

2-

EF
X= 0.5

2-
X= 0.5

0

X=0.2

X =0. l

NICKEL

FIG. 7. Density of states for up and down spins for
the ferromagnetic alloy. Note that the majority spin
band spreads across the Fermi level for c~ 0.3.

V. FERROMAGNETIC PHASE

Figure 7 shows the density of states for the Ni-
Cu alloys up to 50 at. % Cu concentration. Once

again, we have used the recent density of states
due to Callaway and Wang. '7 We have presented
the results for the case U=5 eV. Not much more
information from the structure of the density of
states can be obtained for the other set of param-
eters used in our calculations. For all three sets
of parameters, however, the Fermi energy E~ lies
above one of the spin bands (referred to as the ma-
jority spin band), so that this band is full. The
other band (or the minority band) is only partially
occupied, giving a net magnetization. As the con-
centration of Cu increases beyond 20 at. %, how-
ever, the majority spin band starts to cross and

spread away from the Fermi level, and a small
number of holes start appearing in this band. Be-
cause of the cost involved in our computation, we
had limited ourselves to steps of 10 at. % in Cu
concentration. We were unable to obtain any fer-
romagnetic solution by the iterative method em-
ployed here for 60 at. % of concentration of Cu.
This is in agreement with the disappearance of fer-
romagnetism around 57 at. % Cu. As in the para-
magnetic case, we find that, except for the major
peaks towards the Fermi energy, which are still
identifiable for large Cu concentration, both the
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FIG. 8. Average number of d electrons per atoms of
spin 0 per site, (N;,), in the ferromagnetic state.

ma)ority Rnd the minority spin bRnds Rl e deformed
considerably. Vfe have also calculated the inte-
grated density of states for Cu and Ni, for both the
spin states, from their partial density of states,
and the results are reproduced in Fig. 8. Once
again the calculations lend support to Lang and
Ehrenreich's minimum-charge-transfer hypothe-
sis.

Figure 9 compares the calculated magnetic mo-
ment of the alloy with the experimental measure-
ments of Ahren et al. As expected, the magnetic
moment decreases with the addition of the nonmag-
netic Cu atoms. The calculated values are some-
what lower than the experimental ones. Figure 10
shows the average magnetic moment at the nickel
site for concentrations of Cu up to 50 at. /g. Recent
neutron-scattering measurements '~3 reveal the
existence of giant magnetic moments (-8-10',s).
Assuming that the spin moments on a nickel atom
depend upon the local atomic environment, we can
understand our low values of the Ni moments on the
basis of clustering of the Ni atoms. For example,
for 30 at. % Cu concentration, our value for pN,
-0. 22 indicates clusters containing 30-40

¹

atoms. Nickel clusters of approximately this size
may be expected on a statistical basis24 in the given
concentration range.
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0.6-

~0. 5

gp 0.4
E
O
& oa

c 0.2

+ O. l

I l

ID 20 50 40 50 60

Cu concentration (at.%)

FIG. 10. Average magnetic moment at the Ni site for
the ferromagnetic alloy. This curve corresponds to the
parameters V=3.9 eV, U'=3. 0 eV, and J=1 eV.

Figure 11 gives the measured specific heat in the
ferromagnetic region, compared with that calcu-
lated from the density of states on the Fermi sur-
face. Experimentally one obsexves a large spe-
cific-heat anomaly near the critical concentration
region. This rather large contribution has been
interpreted to be due to electron-magnon interac-
tion in the ferromagnetic regime, ' and also due to
paramagnons in the region of T& Tc.

VI. DISCUSSION

%'e have seen that while the one-band CPA gives
a reasonable qualitative description of the alloy
properties, in both the ferromagnetic and paramag-
netic regions, it still falls short of providing a to-
tally satisfactory description. Most of the prob-
lem is due to the formation of local clusters, which
eludes our discussion of the system as a totally
disordered system. In particular properties like
the partial magnetic moments, which depend more
on the local configuration, are very unsatisfactory.
A, proper description should also account for the
many-body interaction beyond the Hartree-Fock
scheme.

An alternative modification is to consider a mul-
tiband CPA. Some preliminary nonquantitative
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FIG. 9. Total magnetic moment of the Cu-Ni alloys. FIG. 11. Ferromagnetic specific heat of Cu-Ni alloy.
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steps have already been taken in this direction. 36

As Cu concentration increases, our description of
the alloy starting from a pure Ni host becomes less
and less satisfactory. Ideally, in the Cu-rich re-
I»'loll» tile de1181+ Of StRteS Of Cll pl'OViCleS R good
starting point, and therefore in the intermediate
concentration range we should take a statistical

sum of the properties obtained by starting with Ni

and Cu separately.
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