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Exact renormalization-group recursion relations are derived in closed form for a one-dimensional spin-1

Ising model, The recursion relations possess tricriticat and critical Axed points. %e have studied the

flow diagram corresponding to the renormalization-group transformations, and we have linearized about

the fixed points. The predicted asymptotic homogeneity is shown to be satisfied by the true free energy,

which has been computed using the transfer matrix. The pseudocritical singularities, existing in the

zero-temperature hmit, are marked by a double degeneracy of the largest eigenvalue of the transfer

matrix, and the pseudotricritical point is marked by a triple degeneracy. The increased instability of the

tricritical fixed point, relative to the critical Axed points, is shown to be directly related to the

eigenvalue degeneracy of the transfer matrix being greater at a tricritical point than at a critical point.

I. INTRODUCTION

Insight into Wilson s renormalization-group
ideas has beeD obtalDed through the work of Fish-
er and Nelson and Kadanoff on exactly soluble
systems. They constructed exact renormaliza-
tion-group recursion relations exhibiting critical
fixed points for the spin-& Ising model in one
dimension. Here, we consider a one-dimensional
spin-1 Ising model' and find exact recursion re-
lations exhibiting A iczitieal and critical fixed
points. We have studied the flow diagrams corre-
sponding to these recursion relations. We have
llDearlzed about the fixed polDts and shown that
the pl edlcted asymptotic homogeneity ls observed
in the true free energy, which has been computed

by using the transfer matrix. In this model, the
pseudocritical lines, existing in the zero-tempera-
ture limit, are marked by a double degeneracy of
the largest eigenvalue of the transfer matrix. The
pseudotricritical point is marked by a triple de-
generacy.

We consider the one-dimensional model defined

by the Hamiltonian
H

X= Q [PS~8~«i+AS„S i+ ~ I 8» 8~+i (8 +8~ i)

where N is the number of spins and S„=1,0, -1.
The corresponding model in three dimensions, with

I =0, was studied within the mean-field approxi-
mation by Blume, Emery, and Griffiths. ~ The case
of I 4 0 was considered by Mukamel and Blume. e

In Fig. 1, we qualitatively sketch the phase dia-
gram found within mean-field theory for E = I.= Q.

The tricritical point C is the terminus of three
critical lines o, P, and y bounding the three co-

existence surfaces Z&, Zz, and Z3, respectively.
The three coexistence surfaces intersect in a line
of triple points ~. Consider a limit in which the
three-dimensional system becomes one dimension-
al, e.g. , by allowing appropriate interaction con-
stants to vamsh. As the one-dimensional system
is approached, the tricritical point will lie at low-
er and lower temperatures until, in the limit, it
becomes a pseudotricritical point at zero tempera-
ture. We can think of the phase diagram in Fig.
1 as flattening out. Finally, the first-order sur-
faces become the coexistence lines (a) and (f)
ln the T=0 plane shown ln Fig. 2. When (a) and

(f) are crossed in the T= 0 plane, one finds dis-
continuous changes in the magnetization M=(8„)
and/or the quadrupolar average Q =(8„). On ap-
proaching the lines (a) and (f) from T&0, one ob-
serves pseudocritical behavior. When the triple
point (c) is approached from T&0, one finds pseudo-
tricritical behavior in the appropriate limit.

Qur motlvatlon for conslderlng all of the lntel"-
actions included in (l. l) is that we wish to con-
struct the renormalization-group equations in
closed form. We shall see that if we begin with

only an exchange interaction Z and a crystal field
4, then application of the renormalization group
generates biquadratic exchange K. If the initial
Hamiltonian contains a. magnetic fieM II, then

the renormabzation group generates nonsymmetric
exchange I.. In order to gain some familiarity
with the Hamiltonian (l. l), we plot in Figs. 2-5
some of the possible phase diagrams at zero tem-
perature. In Fig. 3 we consider J=0, E&O, L, =O.
When the two-phase coexistence lines (f) are ap-
proached from T&0, pseudocritical behavior is
observed. On approach to the line (d), correspond-
ing to the coexistence of an infinite number (when
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M=Q=I
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-M=Q= I

H

FIG. 1. Qualitative sketch of the phase diagram in the
T, 6, H space for the spin. -1 model in three dimensions,
with K=L =0. The tricritical point C is the terminus of
the three critical lines n, P, p, which bound the coexis-
tence surfaces Z&, Z2, Z3, respectively. The three co-
existence surfaces meet in a line of triple points y.

&-~) ot phases, no pseudocritical behavior is ob-
served. Physically, this is because the system re-
sponds to a magnetic field like a collection of
free spins. In Fig. 4, we consider J &0, (I (

~J
+K. The phase diagram is a simple deformation
of that presented in Fig. 2 for L = 0. However, for
J &0, J+K & (L (, there exists staggered quadru-
polar order, as shown in Fig. 5.

M=Q=I

FIG. 3. Plot of the phase diagram at T = 0 in the 4, H
plane for the one-dimensional spin-1 model, with J=0,
K& 0, L= 0. Two phases coexist along the lines marked
(f); three phases coexist at the point (b), and an infinite
number of phases coexist along the line (d). Pseudocrit-
ical behavior is observed upon approaching the lines (f)
from T&0. No pseudocritical behavior is observed upon
approaching the line (d) from T& 0. Physically, the rea-
son for the absence of pseudocritical behavior is that the
system responds to a magnetic field like a collection of
free spins.

%e construct the renormalization-group recur-
sion relations by relating the transfer matrix
raised to a power b to a constant times the transfer
matrix corresponding to new interaction parameters
[see Eq. (3.7)]. For integer b, this is equivalent
to the spin-decoration transformation considered
by Fisher and Nelson and Kadanoffs for the spin--,'
Ising chain. However, the renormalization group
can be defined for noninteger b. Choosing 5= e'
and letting l- 0, one can derive differential renor-
malization-group equations.

To study nonstaggered ordering, one may choose

(c

-M=Q=I M=Q= l

J+K

(a) M=Q=
FIG. 2. Plot of the phase diagram at T = 0, in the 6,

H plane, for the one-dimensional spin-1 model, with J
& 0, J+K & 0, L = 0. Two phases coexist along the lines
(a) and (f), and three phases coexist at the point (c).
When (a) and (f) are traversed in the T=0 plane, one
finds discontinuous changes in the magnetization M and
the quadrupolar average Q. When the lines (a) and (f)
are approached from T & 0, one finds pseudocritical be-

. havior, and when the triple point (c) is approached from
T& 0, one finds pseudotricritical behavior in the appro-
priate limit.

-M=Q=I

(c)

FIG. 4. Plot of the phase diagram at T=O in the 6,
H plane for the one-dimensional spin-1 model, with J
& 0, I L I

~J+K. The lines (a) and (f) and the point (c)
are characterized in. the same manner as in Fig. 2, for
the special case L = O.
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M=Q=I

H=-L (a)

-M=Q= I

FIG. 5. Plot of the phase diagram at T = 0 in. the 6,
H plane for the one- dimensional spin-1 model, with J
& 0, J+K & I I. ) . Note the existence of staggered quad-
rupolar order.

b=2. To study staggered order, one can take b=3.
The renormalization-group transformations cor-
responding to 5= 2 are found to possess three
classes of fixed points. Txicxitica/ fixed points
correspond to transfer matrices with three posi-
tive equal eigenvalues. C~itica/ fixed points cor-
respond to transfer matrices with the largest
eigenvalue positive and doubly degenerate and the
third eigenvalue zero. Infinite-temjetatuxe fixed
points correspond to transfer matrices with at
least two zero eigenvalues. If we let b=3, then,
in addition to the fixed points discussed above, the
renormalization-group transformations possess
fixed points related to staggered ordering. There
exists a tricritical fixed point corresponding to
transfer matrices with eigenvalues 1, 1, —1 2nd
critical fixed points corresponding to transfer
matrices with eigenvalues X, —X, 0.

Consider the case of nonstaggered ordering. At
criticality, the transfer matrix has a doubly de-
generate largest eigenvalue and a smaller nonzero
eigenvalue. Repeated application of the renormali-
zation group results in the largest eigenvalues be-
coming more and more dominant over the third
eigenvalue. This ceuses movement along a criti-
cal surface toward a critical fixed point. If the
initial transfer matrix has a nondegenerate largest
eigenvalue, repeated. application of the renormali-
zation group causes convergence to an infinite-
temperature fixed point. There is no choice of
initial transfer matrix such that repeated applica-
tion of the renormalization group causes conver-
gence to the tricritical fixed point. The increased
instability of the tricritical fixed point relative
to the critical fixed point was noted by Riedel and
Wegner. ' From our work, we see that this greater
instability is directly related to the fact that the
eigenvalue degeneracy of the transfer matrix is

larger at a tricritical point than Bt a critical point,
For H=L =0, we find there exist a tricritical

fixed point and two distinct critical fixed points
(see Fig. 6). Let us define $, to be tbe correla-
tion length of (8; 8;) and t'« to be tbe correlation
length of ((S; —Q) (S~ —Q) ). The tricritical fixed
point corresponds to (, = (« ——~. The first critical
fixed point ($, =~, ,"«--0) is connected to tbe tri-
critical fixed point by a critical line ($, =~, $»
finite). The second critical fixed point ($, =0,
g« ——~) is connected to the tricritical fixed point
by a critical line ($, finite, («=~). At the second
critical fixed point the exchange J=O. Let us note
that tbe quantity

f = jy2+y2

co-TEMP (0, I) CRIT (2, Ij

CRIT (0,0) C= m TRI (1,0) C=I

FIG. 6. P1.ot of the flow diagram in the invariant plane
x=0, /=const, $/y=const. Fixed points are marked by
dark circles, and their character and coordinates are
labeled. For b =2, we need not consider x&1, since ~
~1 after one iteration. The trajectories are given by
Eq. (4. &7) and are labeled by the invariant C ~z/
The two lines of critical Hamiltonians correspond to C
=0 and C=~.

C= 4/kn

is an invariant of the renormalization group and
therefore is a convenient label for trajectories in
a flow diagram. In the immediate neighborhood
of the tricritical fixed point, the invariant C can
take on any value from 0 to ~. Since C is a mea-
sure of the strength of fluctuations in M relative
to those in Q, it is a useful measure of the cross-
over observed upon approaching the tricritical
point along different paths. Heuristically, the
crossover behavior can be thought of as resulting
from the competition between the two critical fixed
points. For H4 0, we find critical fixed points
characteristic of the nonsymmetric "wing" critical
points.

The local and the global properties of the re-
normalization group play an important role in Wil-
son's theory of critical phenomena. Local ques-
tions to be answered are "What fixed points exist?"
and "What scaling properties are predicted upon
linearizing about the fixed points?" Global ques-
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tions are "What Hamiltonians converge to a given
fixed point?" and "What is the flow diagram?"
For the spin-1 Ising chain, these local and global
questions can be answered exactly. It would be of
interest if future work could determine exactly the
nonlinear scaling fields introduced by Wegner in
his study of corrections to scaling.

This pa,per is organized as follows: In Sec. II,
the transfer matrix is used to compute the free
energy and correlation functions corresponding to
the Hamiltonian (1.1). In Sec. III, exact recursion
relations are derived for the spin-1 Ising model
(1.1). The fixed points are located, and the flows
are described. I inearizing about the tricritical
fixed point, we find five relevant eigenfields.
Linearizing about the critical fixed points, we
find two relevant eigenfields, two marginal eigen-
fields, and one nonlinearizable recursion relation.
In Sec. IV, we present our concluding remarks.

II. CALCULATION OF FREE ENERGY

AND CORRELATION FUNCTIONS

A. Transfer matrix

&S)M St) ) g 1 T Sa TRS)) T
N-R

where the exponents o'. , P= 1 or 2, and
I

1 0 0

(2. 8)

8= 0 0 0

0 0 —1

The transfer matrix has three eigenvalues Xi, X2,

and &3, with corresponding eigenvectors 4i, 42,
and 4,. In the thermodynamic limit N- ~,

«Fst. )=2
«ilail~*)('"

I&'~I~i) ~' . )a. ))
K=1 1

We see that the exponential falloff of the correla-
tions at large separations is determined by the
ratio of the next largest to the largest eigenvalue.
If the largest eigenvalue becomes degenerate in the
zero-temperature limit, this will correspond to
an infinite correlation length, giving rise to what
is known as pseudocritical behavior.

The magnetization is related to the transfer ma-
trix by

The free energy and correlation functions of the
system described by the Hamiltonian (1.1) are
easily computed by using the transfer matrix. For
a Hamiltonian of the form

MN = ZN'Tr S rN,
and the quadrupol. ar average by

@N ZN Tr~ ~ ~

(2. 8)

(2 9)

x=g v(s„, s„„),

the transfer matrix is defined by

e-ov(s, s') (2. 2)

The transfer matrix corresponding to the Hamil-
tonian (1.1) is

e g( J+K-~+L, +0 ) g(-~+» /2 8(-J+K- ~)e e

g(-x+0 ) /2

e g(-J+K"LL )

e "g(b+H ) /2

e -8(~+&) /2 g(J+K'-&-L, -H )e

(2. 3)

The partition function Z„ is expressed in terms of
the transfer matrix by p= 1 g=e g(J K 6)

)
-g(J +K-4/2) -2gJ

In the thermodynamic limit N- ~, the magnetiza-
tion and quadrupolar average per spin are deter-
mined by the eigenvector corresponding to the larg-
est eigenvalue by

~= &+mls l~i), (2. 10)

q = &~, ls'I +~& . (2. 11)

9. H=I. =O

In the case of vanishing magnetic field H and
nonsymmetric exchange I, the Hamiltonian (1.1)
is invariant under the reversal of all spins, 8„- —8„. This leads to the symmetry property of the
transfer matrix, &ss. = 7' s, s. . Upon introducing
the par ameteriz ation

ZN= Tl T (2 4) the eigenvalues are given by
For nonzero temperature, the transfer matrix has
positive elements so the Frobenius theorem im-
plies that the largest eigenvalue is positive and

nondegenerate. The free energy per spin j„is
defined by —Pf„=N 'InZ„. In the thermodynamic
limit N- ~, the free energy per spin f is deter-
mined by the largest eigenvalue Xi of the transfer
matrix,

—Pf= ink& (2. 8)

The correlation functions are expressed in terms
of the transfer matrix by

&g = p '(I+ —,
'

(y + a)+ —,'t(y —z)'+ 8x']'~'}

~2= p '(l-y),
X, = p '(I —,'(y+z)- —,'[(y —z)'+ 8x']'"j,
and the corresponding eigenvectors are

+ = (I/~2)(~Q, ~2(I —0), ~Q),
+2= (1/v 2) (1, 0, —1)

4 = (1/v2) (v'1 —Q, —)t2Q, )tl —Q )

where the quadrupolar average Q is

(2. 12a)

(2. 12b)

(2. 12c)

(2. 13a)

(2. 13b)

(2. 13c)
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(S,S„„)= Q (X2/X, )"

(SiSi s)-Q'=Q(I-Q)(~3/&i)" .
(2. 15a)

(2. 15b)

Q = z {1+(y —z)/I (y —z)'+ 8x']"'] (2 14)

With the positive choice of square root, Xq is the
largest eigenvalue, and the free energy per spin
is determined by (2. 5). From (2. 7), we find that
the correlation functions can be expressed by

To ensure the ordering A& &A&~ A3, the cube root
is cut along the negative real axis and is real ana-
lytic. The square root is cut along the negative
real axis and is positive on the positive real axis.
In the limit H - 0, L - 0, one finds A&- X&, Az- max
(~2 ~3) ~3 min(~2 Xs), where X are defined in
(2. 12). Introducing

r'=y +4', 2c=g +P, 2s=g —p

Hence the correlation lengths $, for fluctuations
in the magnetization and (« for fluctuations in the
quadrupolar average are

it is straightforward to show

8 = z'- 9zr + 9(cz+ 3y+ 3s4) x

D = r'(z' r')'-
(2. 20a)

(2. 16a)

(2. 16b)
+ [(18zr' —2z') (y +s4)+cr'(10z'+ 6rz)]x'

+ [c2(12r~+ z ) —18cz(y+ s4') —27(y+ s4) ]x4
The susceptibilities can be obtained from (2. 15) by
using the fluctuation theorem, and we find

+8c'x' . (2. 20b)

9M Q
s(pH) 1- xg~,

Q(1 —Q)
8(Pa) 1 —X,/X,

C. Nonzero 0 and L

(2. 1Va)

(2. 17b)
—Pf = —lnp+ ln(1+ A, ) (2. 21)

The critical singularities corresponding to non-
staggered ordering occur when 8 &0 and D-O. In
this limit,

In the thermodynamic limit X-~, the free ener-
gy per spin f is given by

Let us compute the free energy corresponding to
the Hamiltonian (1.1) with nonzero magnetic field
Ii and nonsymmetric exchange L. %e consider the
case of nonstaggered order; so we restrict our
attention to J ~ 0, I L ~

~V+K. The algebra involved
in solving the cubic characteristic equation for the
eigenvalues of the transfer matrix (2. 3) is reduced
by introducing the parameterization

J,=-.'z+ (-a)'"(-.'- WD/a) . (2. 22)

The first class of critical singularities corresponds
to

z &0, xg-0, x&f& -0, y-0, +-0, (2 23a)

and is realized upon approach to the first-order
lines labeled (a) in Figs. 2 and 4. One finds

p = 1+z = e I '" '/ coshP(L+H)

pe g6 /2
y pe g( J+IC 6 )

Q=es" ~2, 4=tanhP(L+H)

B=z +O(r, cx )

D=z2(x2-zy) +z (sx —z@)2

+O(cr'x', crx', c'x') .

(2. 23b)

(2. 23c)

The transfer matrix (2. 3) can be written

T=p xQ 1+z xQ

y xQ' 1 —9
(2. 18)

3Ag = z+ I"+ Z'*

3A2- g+ +*I'+ coI"*

3A3 ——g + (dI + C0+I +

where

r= (a+ f v'27D) '"

(2. 19a)

(2. 19b)

(2. 19c)

For nonzero temperatures, we denote the eigen-
values by A, &Az A,. I et us write A =p '(I+A ).
Letting an asterisk denote complex conjugation and
&= e ', the solution to the cubic equation has the
form

The second class of critical singularities, "wing
critic al points, " corr esponds to

z &0, xg-0, xP '-0, r —z -0, (2. 24a)

and is realized upon approach to the first-order
lines marked (f) in Figs. 2-4, where in addition

y 0. The cases with 0 &y ~ l correspond to dif-
ferent paths of approach to the triple points in Figs.
2-4 when one considers 4-0+. One finds,

B = —8zs+ O(zz- r, cxz)

D=z (z'-r')'+16[z'(y+s4)+cz4]x'

+O(cx', (z'-r')x', c'x') .

(2. 24b)

(2. 24c)

The third class of critical singularities corresponds
to

4&0, ' z& —4', y-O, xQ-v'24(4+z), xg '-0
(2, 25a)
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These singularities are realized upon approach to
the triple point (c) in Fig. 4, with —I.= /+K &0.
Defining

g= (xP)'- M(@+z),
we flQd

8 = (z + M') + O(r„, y, x y, x ) (2. 25b)

III. RENORMALIZATION GROUP FOR
SPIN-1 ISING CHAIN

A. Derivation of equations

It is instructive to perform a, renorma3. ization-
group analysis upon the spin-one Ising chain. The
simplicity of the one-dimensional chain allows the
construction of exact renormalization-group equa-
tions ln closed form. TI16 model exhibits lIlterest-
ing Rnd varied pseudocritical behavior in the zero-
temperature limit, which is reflected in the struc-
ture of the renormalization-group transformations.
These equations possess fixed points characteristic
of both critical and tricritical phenomena. %6
shall construct exact renormalization-group equa-
tions for the spin-one Ising chain described by the
Hamiltonian (1.1).

In Sec. II, we computed the free energy and cor-
relation functions for the model specified by (1.1)
by 8olvlng fox' the elgenvalues ~) and the eigenvec-
tors O'I (i = 1, 2, 3) of the transfer matrix T(J,K, I.,
IX, H). Tile I Bllol'IllRllzatloII-gl'oup BIluat1ons re
lating 4, K, L, , 4, H to new parameters O', K',
I ', 4', H' will be defined by

D= (M+z)~ g'+ (@+a) ' (3@+x)' [x'- (@+a)y]
+ 0(t, x, x r, x yt, ty, x y, y ) . (2. 25c)

The final class of critical singularities cox responds
to

4 &0, x &@, y-O, xP-O, xP -v'24. (4-z)
(2. 26)

and is realized upon approach to the triple point
(c) in Fig. 4, with I.= I+K &0. The expressions
for 8 and D follow from {2.25c) and (2. 2M) upon
the replacement Q —ItI „4-—4'.

The telic, xitieal singularities corresponding to
nonstaggered ordex' occur when 8 0 and B-0,
that is,

z-0, xP 0, xP -0, y-0, 4'-0, (2. 2Va)

and are realized upon approach to the triple points
marked (c) in Figs. 2 Rnd 4. In this limit,

(2. 2Vb)

Since 8 is homogeneous in xQ ', xQ, y, z, 4 of
order 3, and D of order 6, the free energy is
asymptotically homogeneous of order 1. Finally,
we note there is no singular'ity when B &0 and D 0.

T (Z, K, I., n, a)=A {Z,K, l„xx,a)
x UT(J', K', I, ', S', H') U

' . (3. 1)
Exluatlon (3. 1) speclf les Rll lllfllllty of dlffel'slit, x'8-
normalization groups, each labeled by a 3x3 non-
singular matrix U. The partition functions corre-
spond3. ng jo primed and unprimed coupllQg param-
eters are ref.Rted by

Z„,(Z, K, I„~,H)=a"(Z, K, r„~,a)
x z„(z',K', I.', Ix', a'), (3.2)

which follows from (2. 4) and (3, 1). The correla-
tion lengths

tII= —ln imp/A. , i

],II= —ln tx,/~,
~ {3.4)

Rx'6 'tl'RllsforI'Iled under (3. 1) according 'to

~(z', K', I,', r",H')=((z, K, L, , xx, a)jb . (3. 5)

For any choice of QonsinguJ. Rr U, the quantity

is left invariant under the transformation (3.1).
In the following„we shall make the special choice
U= 1. Then (3.1) becomes

T (Z, K, L„, Z, H)=A(J, K, L, A, H)T(Z', K', I.', 6', H').

(3. V)

Since T and T commute, they both have the same
eigenvectors. As R result, the magnetization M
= (8„)Rnd tile quadrupolar Rvel'Rge Q =- (S„)Rl'8 in-
variant under (3. V), because they can be expressed
Rs matrix elements between eigenvector's of the
transfer matrix. However, M Rnd Q are not in-
variant under (3. 1) for an arbitrary choice of U.

The expllclt fixed-point structux'6 of the tx'RQS-
formations (3. V) depends on the choi. ce of b. Let
us first consider the choice b =- 2, which is appro-
priate for the study of Qonstaggered ordering. Then,
the transformations (3. V) possess three classes of
fixed points:

(a) Tricritical fixed points, which correspond to
a transfer matrix with three posltlve equal elgen-
values. (b) Critical fixed points, which correspond
to a. transfer matrix with the largest eigenvalue
positive and doubly degenerate Rnd the third eigen-
value zero. (c) Infinite-temperature fixed points,
which correspond to a transfer matrix with at least
two zex'0 elgenvRlues.

At criticality, the transfer matrix possesses
oubly degenerRte 1Rrgest elgenvalues Rnct a smaller

eigenvalue, not in general zero. Repeated applica-
tion of (3. V) will result in the largest eigenvalues
becoming increasingly dominant over the third
eigenvalue. Therefore (3. V) will cause movement
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along a critical surface toward a critical fixed
point. On the other hand, if the initial transfer
matrix has a nondegenerate largest eigenvalue,
then repeated application of (3.V) will cause move-
ment toward an infinite-temperature fixed point.
It is significant to note that there is no choice of
initial transfer matrix such that repeated applica-
tion of (3.7) will cause convergence to the tricrit-
ical fixed point. The increased instability of the
tricritical fixed point relative to the critical fixed
point was emphasized by Biedel and %'egner. We
see that this greater instability is directly related
to the fact that the eigenvalue degeneracy of the
transfer matrix is larger at a tricritical point than
at a critical point.

If we let b = 3, then, in addition to the fixed points
discussed above, the transformations (3.7) possess
fixed points related to staggered ordering. There
exist tricritical fixed points corresponding to trans-
fer matrices with eigenvalues 1, 1, —1 Rnd crit-
ical fixed points correspondingto transfer matrices
with eigenvalues X, —X, G.

(3.9)

It is easy to see that the transformation (3.7) pos-
sesses the lnvRrlRDt plane

(3.10)

Also, since T' commutes with T, (3.7) possesses
the invariant pJ.Rnes, labeled by the constant E,

(1+y —p)/x = E (3. 11)

The invariance of the planes (3.11) is equivalent to
the invariance of Q =;-tl+E!(E3+6) ~2I.

The transformatlons (3.0) induce flows within
the invariant planes (3. 10) and (3.11). The tra-
jectories describing these flows can be detex mined
using the invariance of C = $,/$„, which was noted
in (3.6). I et us consider only the ferromagnetic
case J~O; so O~y=-. 1. Then, within the x=Oplane,
the tx'ajectox'les pRx'Rm, etex'ized by C Rre

8. Invariant subspace 0 = L = 0 p=(1-y)'(1+y)' ' (0==-C-- ) (3.12a)

For H=I. = 0, the renormalization-group equa-
tions close within the subspa. ce spanned by J, K,

In this region, the susceptibilities BM/BH and
BQ/8& are explicitly given by (2. 16a) and (2. 16b),
respectively. Under (3.7), the susceptibilities
transform according to

eM

8(PH), 1- (X,/X, )'

(
Q(1 —,0)

8(pa), 1- (Xs/X, )' (3.ab)

Here, we have used the invariance of Q.
At the tricritical fixed point both BM/BH and

BQ/Bd are divergent, since Xq= X2= Xs. A critical
surface X& = X& & XB connects the tricriti. cal fixed
point to the critical fixed point X&- X~, X3= G.

Along this critical surface, BM/BH is divergent,
while BQ/Bb, is finite. Another critical surface
~g= Xg & ~2 connects the tricritical fixed point to the
critical fixed point X&-= X3, Xa= Q. Qn this surface,
BQ/Ba is divergent, while BM/BH is finite. The
second critical fixed point, at which BQ/ 8k is di-
vergent, corresponds to a Hamiltonian with vanish-
ing exchange J= 0, but with nonzero biquadratic ex-
change K and crystal field 4. The above considera-
tions are illustrated in Fig. 6.

To proceed, it is useful to introduce the param-
eterization discussed in Sec. II B. There, we
defined p=e ~'~+~ ~', x=8 ~'~~ ~ 2', andy =e
The transfer matrix was written

p' '-(1+y)(1-y) ' (0=-C= 1) . (3.12b)

C, Linearization about fixed points for b = 2

%e will now consider nonvanishing magnetic
field Rnd nonsymmetric exchange. Staggered order
will not be considered in this subsection. A re-
normalization group appropriate in the absence of
staggered ordering corresponds to choosing b = 2
in (3.7). To proceed, we use the parameterization
introduced in Sec. 0 C

p= I+a =-e @ + ~'/coshp(I. +H)

Q=e~ ~, 4=tanhP(l, +H)

The transfer matrix can be written

These trajectories are plotted in Pig, 6. Note that
the tricritical fixed point is (x= 0, y = 0, p=-1), the
critical fixed point at which $, =- ~ is (x = 0, y = 0,
p= 0), and the critical fixed point at which $»=~
is (x=0, y=1, p=2). There is an infinite-tempera;
ture fixed point (x=-0, y = 1, p=-0).

The invariant C provides a. natural measure of
the relative strength of fluctuations in M compared
to fluctuations in Q. One canthink of the crossover
behavior of the susceptibilities on approaching the
tricritical poi.nt a,s resulting from the competing
influence of the two critical fixed points (corre-
sponding to C = 0 and C =- ~) and as being measured
by C. (See Fig. 6. )



EXACT RENORMAI IZATION GRQUP EXHIBITING. . .

xy=xy '=y =a= +=0,
cl ihcal,

(3. 14)

x/=0, xP =0,
y=-(1 —4 ) i, p=2, (3.15b)

—1 & 4 & 0, x&f = [- 24(1+ 4')]'I,

xQ =0, y=O, p= —24

0&4'«1, x/=0, xP '= f24(l —%)]II3

,(3. 15d)

infinite temperature,

—1 & @& 1, g4 = (1+4)/(1 —4'),

y=(1- ~')'", p=x'/(1-~')'", (3.16R)

p'=»p =xA p =yp =+p =o
(3.16b)

(3. 16c)

In. the last section, we considered II = I = 0, i. e. ,
4= 0, Q= 1. We have noted that this region is com-
posed of the invariant planes x=-0 and (1+y —p)/x
=E. For all E, the second set of planes contain
the tricritical fixed point (x=0, y = 0, p=1), the
critical fixed point (x = 0, y = 1, p = 2), and the in-
finite-temperature fixed point (x=xo(E), y = 1,

T= p xP 1+x x$

y xy I 1 —e
% e obtain the recursion relations

7 (p, x, y, P, C)=p Ap'T(p', x', y', P', 4') . (3.13)

Explicitly,

g=-3. + tlI +y +Ox

A4' = 24+sx

A$ = 2y+x

Ap'= p + 2(.x

»'P'= {1+@+p)xy+yxy '

Ax'(Q') '= (1 —@+p)xg '+yxp

Here, we have again defined 2c = P2+ Q
3 and 2s

The fixed points of these transformations are
easily located, since they have a simple charac-
terization in terms of the eigenvalue structure of
the transfer matrix. The tricritical, critical, and

infinite-temperature fixed points correspond, re-
spectively, to transfer matrices with the largest
eigenvalue triply, doubly, an.d singly degenerate,
and the other eigenvalues zero, The fixed points
are tricritical,

p = (1 —x) (1+v') (0» C» ~)
p' '=(1+&)(I-~) ' (0»& 1) .

(S. 1Va)

(S. IVb)

These trajectories are derived exactly as were
those of Eq. (3. 12),

Let us recall that if p.„are fields measuring
deviati. on from a fixed point, all p, ~=-0 at the fixed
point, then p, ~ are called eigenfields with eigen-
VRlues yII If p»= b /II+ O(p~ p, „). The fIeld px is
relevant, ma, rginal, or irrelevant if yz &0, y~=0,
or yz &0, respectively. The scaling piece of the
free energy is predicted to asymptotically satisfy
f,(b" lII, O'I p, 3, -.) = bf, (pI, lI3, " ), in the limit

~sr
Llnear1zlng the recursioII relations (3 13) about

the tricritical fixed point (3.14), we find five rele-
vant fields xP, x&f, y, x, .and 4, all correspond-
ing to eigenvalue 1. This implies the free energy
is asymptotically homogeneous of order l in these
variables, which is confirmed by (2. 20) and (2. 2V).

The critical fixed point (S. 15a) is characteristic
of the critical surface (2. 23). Linearizing about
this fixed point, we find two relevant eigenfields
corresponding to eigenvalue 1,

y '+ x' = 2(y + x )+ ~-

4'+ex' = 2{4'+sx~)+ ~

and two marginal elgenflelds,

x Q = x&f&+ "'

The recursion relation

p —p +2cx +'"I

(3.18c)

(3.18d)

(3.18e)

cannot be lineari. zed. This may be termed margin-

p = x',(E)), where xo(E) = —,'E—+—,
' (E'+ 8)II'. 8ince

x' 2x/p+E x'/p
p' 1+ 2x'jp~

it follows that x'/p'» 1/xo(E), so we need consider
only x/p» 1/xo(E). For 0 &x/p & 1/xo(E), we see
that x'/p' &x/p. In addition,

1 —y'= (1-y)'/(1+ x'+y'),
which implies 1-y'&1-y for x &O. Hence au
flows starting with x &0 approa, ch the infinite-tem-
perature fixed point x=xo(E), y = 1, p=xo(E).

Another invariant subspace is defined by xIt
=xQ = 0. This region is composed of the invariant
planes 4"/y'= 4'/y = const. Because of the manifest
cylindrical symmetry, we define x = 4'3+y~. Then,

x' = 2r/(r + 1)

wlHch imp»es + ~ ~, and also t' &J' for 0 &'p

Within the plane 0'/y = const the flows follow the
trajectories



Ri= 2(p- '4+-&'OS),

Rp=-x(j&«t (1+~I!g) 2 +xQ 0 (

and the two marginal eigenfields,

M, = xg «~(1 —+,)/2 —x &~ P(l + 4,)72

(3.19a)

(3. 19b)

al behavior, since it represents a slow variation
in the neighborhood of the fixed point. Equations
(2. 22) and (2. 23) show that the singular part of the
true free energy is asymptotically homogeneous of
order 1 in —zy+x and —z4'+ sx near the critical
surface (2. 23). This agrees with the prediction of
the linearized renorrnalization group, since terms
of. order (z + 1)4' and (z + 1)y have been dropped in
(3. 18).

The critical fixed points (3. 15b) are characteris-
tic of the critical surface {2.24). Consider linear-
izing about the fixed point with 4=- 40, y =-yo
-=(1 —+0)'~', p = 2, where —1 & @o & 1. Define T«'! = @
—4'0, y=y-yo, and j=p —2. Ke fi.nd the two rele-
vant elg8nfleMs %1th eigenvalue 1~

The recursion relation for

(3. 19e)

cannot be linearized. To check the prediction that
the singular part of the free energy is asymptotical-
ly homogeneous of order 1 in Rl and R3 near the
fixed point„note that

Rq=(z —x )~ for x= 1

R3= (c +$ 0+ 8«l!0)X3 .2

Near the fixed point (z =1), Eq. (2. 23c) becomes
D=Rq+16RI. Using (2. 21) and (2. 22), this estab-
lishes the required homogeneity property.

The critical fixed points (3. 15c) are character-
istic of the critical surface (2. 25). Consider lin-
earlzlng a~ou~ the fixed point with ~= ~„~=- 2+„
xQ-- 4 —24'0(1+ «1!o), where —1 & 4'0 & 0. Let us de-
fine 4=4'- 4, j=p+240, and W=xtt —« —24,(1+4,).
The linearized recursion relations are

1 —34'0

T«!I g

(l-e, ) W' =

(1 —40) v'- 240(1+ ~4()

1+ CIo+ 24'0

2(1+ ~o)~2+o(1+ @o)

0 IC

~24'0(l + 4O) W

—44'o i P

%6 find two r6levant eigenfie]. ds corresponding to
eigenvalue 1,

R, = 4+«t —240(1+ 4,) W —4', j
and iwo Mal g3.nal elgenflelds,

iM g-- «- 24'~(l+ 0'0) x(f& +2@oy"
M,.--- —«t- M, (1+4,) e+ (1+ 34,) W+

The 1 ecursion relation for

cannot be linearized. Near the fixed point

R~=(xg)'-24(4+a), Rs=x'- (4+x)J

so Eq (2 25c) shows

& = (1 —@0)' R~+ Hl —+0)'i(1+ @o)tRa,

xvhich establishes the asymptotic homogeneity of
the singular part of the free energy, Treatment
of the fixed points (3. 15d) follows that of (3. 15c)
with the replacement Q —Q and 4

O. Recursion relations for b = 3

I.et us brief&y consider the renormalization group

(3.7) corresponding to 5 = 3. The fixed points ex-
isting for b = 2 are also fixed points when b =- 3.
However, there exist fixed points of the recursion
relations for 5=- 3, related to staggered order,
which are not fixed points of the renormalization
group for b = 2. For example, in addition to the
tricritical fixed point (3. 14), corresponding to a
transfer matrix with eigenvalues {1,1, 1) for b =- 3,
there exist tricritical fixed points corresponding
to a transfer matrix with eigenvalues proportional
to (1, 1, —1). This illustrates the important point
that one must choose a renormalization group ap-



Voile it is clear that the eigenfields for 5 = 2 mill
be elgellfleMS for b = 4, a IloIItl'lvlal check oil (3.22)
is to llneRx'ize the 5 = 3 recux'sion x'elRtloDs around
the 5 = 2 fixed points (3. 14), and (3. 15). It is found
that the eigenfields computed for b = 2 are also the
eigenfields for b = 3.

ReDormRllzRtlon-gx'oup 1ecux'sion x'elatlons have
been obtained for continuous-spin models by vary-
ing the momentum cutoff. ' Under these x enormal-
ization groups, the magnetic field transforms in
a vex'y simple manner~

III y (0+2 g ) /2~ (4. 1)

The magnetic field also transforms according to
(4. 1) under the exact recursion relations derived
by Baker fox' the hierarchical model. For these
renormalization groups, all fixed points lie at

proyriate for the problem of interest. As noted by
Fisher and Nelson, if one uses an inappropriate
renormali. zation group, thex'6 might be no fixed
points characteristic of the phenomenon being stud-
ied.

Recall that an eigenfield p, of the linearized re-
normalization group is supposed to satisfy (for
arbitrary h)

(3.22)

H=O orIJ=~. OD the other hand, the magnetic
field does not transform so simply under the re-
cul'sloll 1'elatloIls (3, 7) d81'lved fol' 'tile discrete
spin model. And for this renormalization group,
me have found critical fixed points at finite H 40,
col'x'espondlng to the King crltlcRl points.

%6 have also found that the recursion relations
(3. 7) do not close unless one allows for the exis-
tence of biquadratic exchRDge. As R x'esult of ln-
eluding biquadratic exchange, me find there exist
t%o dlstlDct critical fixed polDts Rt H =LI = 0 Let-
ting $1 denote the correlation length of (8» 8») and

$« the correlation length of ((8» —Q) (&» —0)), one
critical fixed point corresponds to $1=~, $„=0,
and the other critical fixed point to $1= 0, g«=~
(see Fig. 6). To our knowledge neither the ana-
logue of biquadratic exchange (F43) nor the ana-
logue of nonsymmetric exchange (V&f&) (Vga) has
been considered in the continuous-spin models.
Consequently, the fixed point with SM /SH strongly
divergent and 8Q/86 weakly divergent has been
found, but the fixed point with SM/SH weakly di-
vergent and 8Q /86. strongly divergent has not been
observed. As emphasized by Fisher and Nelson,
work on the one-dimensional models provides the
earning that Dot all renormalization groups pos-
sess the same fixed points. Care must be taken
to choose a renormalization group appropriate to
the phenomenon being studied.
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