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%e have extended the series for the zero-Geld susceptibility of the spin-s Ising model through tenth
order in the reduced inverse temperature K on the square, triangular, simple-cubic, body-centered-cubic,
and face-centered-cubic lattices. Thc series codBcients h „(.s) are expressed as simple polynomials in

X = s (s + 1). Using extended methods of analysis wc have estimated the nature of the leading

singularities on the face-centered lattice and conclude with good conGdence that the susceptibility

exponent y, equals 1.25, independent of s. The exponent of the leading correction term is estimated to
bc y~ 0.75 ~ 0.08 in good agreement with renormalization-group theory. For s = 1/2 only, the
amplitude of the confluent correction apparently vanishes. We have also studied the leading singularities

on the triangular lattice and conclude that y, = 7/4, independent of s, with, however, much stronger
corrections than in three dimensions. These results provide a very strong corroboration of the
universality hypothesis.

I. INTRODUCTION

In a previous payer' (hereafter referred to as I)
we presented high-temperature series for the zero-
field susceptibility of the spin-s Ising model on the
triangular (TRI), simple cubic (sc), body-centered-
cubic (bcc), and face-centered-cubic (fcc) lattices
through eighth order. Domb and Sykes had pre-
viously reported results through sixth order on the
fcc lattice. In this work we extend the series
through order 10 on. those lattices and include the
10th order series on the square (SQ) net. As in I
the notation of Domb and Sykes~ will be followed
throughout.

In I we relied on rather straightforward ratio and
Pade methods to study the apparent spin dependence
of the susceptibility. We found two principal re-
sults: (i) the apparent critical point varies smooth-
ly with s as s' K,(s) '=s(s+1) K,(~) '+KOOK, /s,
which —since Ko and K, are much smaller than K,(~) ~

18 vel y close to the predlctlon of molecular—
field theory 'N. amely, K,(s) ' ~ (s+ 1)s. pre also
«und (ii) that the apparent critical exponent y(s)
GbtRlned from rRtlo RQRlysls rema1ns constant Rt
y= 1.23 for all s «3. As s is reduced from 3 to —,

'
the apparent exponent increases to y~ 1.25.

Repeating the end-shifted ratio a,nd Pade analysis
of I on the longer series produces no consequential
changes from the results reported therein. Even
for small s the estimates for K,(s) change only in
the fifth place, while those for y change in the
fourth place. In particular, we find y(~) = 1, 232
(unchanged) and y(-,') = l. 248 (as opposed to 1.246
using eighth-order aeries). The latter agrees very
well with that found by analysis of the twelfth-order
s =. —,

' series constructed by Moore, Jasnow, and
Wortis and by Sykes, Gaunt, Roberts, and Wyles.
These results are an apparent contradiction of the

universality hypothesis, which states tha, t y should
depend upon dimension but not spin.

%'ortis, in unpublished work, has suggested that

y is indeed independent of s, and that the apparent
sp1Q dependeQce Gf y 18 due to R weaker, confluent
singularity in the susceptibility. Similarly,
Wegner hRs used x'enox'mR11zRtlon-g1oup theory
(ROT) to find the effect of irrelevant variables on
the leading power-law divergences at the critical
point. Within the context of RQT, Wegner finds
that all Hamiltonians in the same "universality
class" have equal critical exponents, and that there
are weaker confluent corrections to the leading
powex' lRw. These corrections a.16 due to 11rel-
evant" operators (such as that equivalent to a spin
shift in the Ising model). The exponent of the con-
fluent correction term, ye= y- ~, is also a univer-
sal quantity. However, the relative amplitudes of
the principal and secondary singularities vary from
Hamiltonian to Hamiltonian in a given class. %6g-
ner has estimated that 6-0.5.

Following these suggestions we have carried out
ratio analysis —appropriately extended to allow for
the existence of confluent singularities —on the
fcc series. In addition, we have recast the series
in the ma. nner proposed for the study of confluent
singularities by Baker and Hunter. 9 The results
of ratio analysis are certainly consistent with
y= 1.25, a confluent singularity with exponent y3
=y- 6, and spin-dependent relative amplitudes for
the principal and secondary singularities. The ex-
ponent ~ is estimated to be ~=0.50+0.08. The
Baker-Hunter analysis for s = ~ (where straight-
forward analysis of the bare series shows high ap-
parent convergence to y= l.232) shows clear evi-
dence of confluent singularities and yields y = 1.249-
1.253 for the dominant singularity. The apparent
exponent of the weaker singulax"ity is y2= 0.68-



0. 73, yielding 6=0.52-0, 57. The analysis of the
series for finite s is somewhat less clean, but
tends to agree with the s = ~ results, except for
spin-& which stands out as a special case. In this
case the analysis shows no evidence of the weaker
singularity. (This has already been noted by Baker
and Hunter, ' and is implicit in the results of Sykes
ef al. ) Accurate two-parameter fits to the critical
points K,{s) are presented in Sec. III for both the
confluent singularity analysis and the direct end-
shifted ratio a,nalysis.

In an accompanying paper, Saul, Wortis, and
Jasnow report independent studies of the fcc series
which —although quite different in the details of
analysis —are in excellent agreement with our con-
clusions regarding the nature of the two leading
confluent singularities. These authors have actu-
ally obtained the eleventh- and twelfth-order con-
tributions for several values (2, 1, 2, 2, —', , 3, +z,

4, ~, 5, '~', and ~) of the spin s.
We have also studied the initial susceptibility on

the sc lattice. The series here exhibits much
poorer convergence than that on the fcc net. The
principal cause of this degraded convergence is the
loose-packed structure of the sc lattice which al-
lows the existence of a weaker singularity in the
susceptibility at the antiferromagnetic Curie point
E= -E,." Although the series oscillations caused
by the antiferromagnetic singularity can be par-
tially removed by extrapolation of alternate or
square-root alternate ratios, " the most effective
way to deal with the series is to introduce the
Euler transformed variable W= 2E K/(E+ K—*),
where E* is a, (hopefully fairly accurate) estimate
for A;. If K =—K„ the ferromagnetic critical point
is invariant under the transformation while the
antiferromagnetic critical point is transformed to

For A*=K„ the ferromagnetic critical
point is only slightly cha, nged by the transformation,
while the antiferromagnetic critical point is shifted
far off the circle of convergence. '" Pade analysis
of the Euler transformed sc series yields results
very similar to those found for the fcc net. That
is, the apparent exponent y is best converged for
large spin s, for which y= 1.23. The convergence
18 poorer at small s bu't there is a distinct tr'end

to y=-1. 25 at s = 2.
Unfortunately, the Baker-Hunter ana, lysis which

was quite successful on. the fcc lattice does very
poorly in the sc case. The point is that on a loose-
packed lattice the second most significant singu-
larity is not the confluent singularity, but rather
the antiferromagnetic singularity. ' On the other
hand, the similarity between the apparent spin de-
pendences of y on the two lattices leaves us little
doubt that confluent singularities are also impor-
tant on the sc lattice and that y is independent of
lattice structure (for given dimensionality) as well

as spin value. '
Finally, we have also studied the susceptibility

of the spin-s model on the (close-packed) TRI
lattice. In this case, both the critical point V,
[= tanh(K, )] and critical exponent y are known

exactly for the spin-2 model. The exponent has
the value y(-,-) = f, and the critical point is located
at V, =2 —v 3.'" In keeping with the universality
hypothesis, ' '" we assume that y=-~~—independent
of s. The apparent exponent y(s) depends strongly
on s, however, and is not settled down through
tenth order for any value of s. For large s y(s)
=1.9, while for s =-„y(-,') =1.75~0.02. Thus, in
contrast to the d = 3, fcc case, the apparent large-
s exponent is larger than the s = —,

' exponent.
We are able to reconcile the apparent spin de-

pendence of y with a universal exponent ~=~4 by al-
lowing for rather large correction terms with ex-

5 3 5 lponent, /2=4 a,nd p3= 4. pz
—-4 means D= » as ln

three dimensions. We also fit the series with
6 = &, —,', and 1, but found most reasonable results
for ~ =- ~. In any case, the amplitudes of the con-
fluent singularities are much larger relative to the
principal amplitude than they are for the fcc ca,se.

In Sec. II we present the series for the suscep-
tibility. The remaining sections are then devoted
to the various analyses of series described above:
Sec. III presents the fcc analysis, both direct and
extended. The analysis of the sc series is given
in Sec. IV, while the analysis of the two-dimen-
sional series is discussed in Sec, V. Finally, we
summarize our results and conclusions in Sec. VI.

Il. SERIES EXPANSIONS

The series presented herein have been derived
by generalization of the recursive method of
Stanley and Kaplan. 3 We have considered the
general class of models with Hamiltonian of the
form

—PK=Q W[Q(r)]+ —,'Eg P Q{r) ~ Q(r + 5) (2. 1)

where P (=1/kT) is the inverse temperature, Q(r)
is a classical tensor variable with arbitrary do-
main, W is an even function of Q, Q(r) ~ Q(r+ 5) is
the (in general, weighted) inner product of Q(r) and

Q(r+ 6) with r and r+ 5 nearest-neighbor sites.
Series expansions for the susceptibility have been-
derived through tenth order for arbitrary models
of the above type„Details of the method are de-
scribed elsewhere. '

The spin-s Ising model belongs to the scalar Q
subclass of the models described by Eq. (2. 1). For
such models the coefficients of the high-tempera-
ture series are sums of products of bare vertex
weights I~, defined by

(2.2)
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Furthermore, we replace E in Eq. (2. 1) by E(8)
=E/8 in conformity with the normalization of
Domb and Sykes. In Appendix A me show that the
vertex weights Ia, entering the series expansions
can all be written as polynomials in X-=8(8+ 1) of
degree l. Thexefore, if we mrite the susceptibil-
1'ty g (Rs ill I) Rs

I E(8)8(8+ I)Pl ( )E( )X (2. 5)

we may write the 72th coefficlen't }t„(8)Rs R poly'110-
mial of degree ll in X=8(8+ 1). Namely,

h„(8)=Q (2. 6}

where we have explicitly included a common de-
nominator D„ in each polynomial. (Note that the
coefficient of X is zero for all n. )

The coefflc1ents C
&

Rnd common denomlnatol s
D„ for n = 1,2, ~ ~ ~, 10 on each lattice are listed in
Table I. In each order D„ is listed first followed
by C'", ', .. ., C'„"'. For Rll lattices the leading term
Ao is unity.

III. ANALYSIS GF SERIES ON THE fcc LATTICE

As noted in Sec. I we have performed our most
detailed and extensive analyses on the fcc series,
primarily because apparent convergence is drasti-
cally improved by the absence of antiferromagnetic
singularities on the circle of convergence. In this
section me describe the various analyses performed
and the results to be drawn from them. In Sec.
IQA we discuss the results of repeating the end-
shifted ratio analysis of I (Ref. 1) on the
tenth-ordex series. In Sec. III 8 the asymptotic
behavior of ratios is discussed for series repre-
senting two and three confluent singularities. %'e

In partieulax, the Nth coefficient of the susceptibil-
ity has the form

g" Z&{P,.",P.).LI(1.)", (2.3}

where the sums over P, , . .. , P„run over all val-
ues of g, , .. ., p„j such that p, & 0 for all I and that

Q (2n)p„= 2X+ 2.

The integer M has value —,(X+ 2) for even N and —,
'

@(X+I)for odd
¹

The coefficients A(p„. . . ,p„)
are sums and difference of high temperature lat-
tice constants' and thus vary from lattice to lattice,

For the spin-8 Ising model in zero field W=O,
and Q is the z component of an angular momentuin
opel R'toI' of lllRgll1tude 8, Thus (j) tRkes oil VRlues
—8, —s + 1, .. . , 8 and the bare vertex weights are
given by

+s 2)
I

q =X(E)(I —E/E, ) -", (3.1)

although generally there mill be additive corrections
which may be singular (but more weakly so) at E,.
The critical exponent y describes the strength of
the singularity in g and thus is a key quantity in
characterizing critical point phenomena.

For a singularity of the form (3.1), with A(E)
analytic at E„ the ratio, R„=h„/Il„., of successive
E series coefficients is expected" '" to behave as

R„=E-,'[I+ (y- I)/n]

for large n. , If A is not strictly constant, there
will be correction terms in higher integer powers
of I/n. In the case that A{E) is nonanalytic at E„
Eq. (3.2) still holds but the higher-order correc-
tions are, in general, noninteger powers of 1/n.
We defer further discussion of the nonanalytic case
to Secs. IIIB and IIIC. For now, we assume that
(3. 1) holds with A{E) analytic at E,. Then, as dis-
cussed in I, the method of endshifted
ratios' should yield accurate estimates for K, and

ThRt ls
q me assume thRt

R„=E-,' [I+ (y —I)/{n+ ~)], (3.3)

and obtain a sequence of estimates for E,", y, and
the end shift A. As in I, ' we have used
(3.3) to estimate the best apparent critical param-
eters E,{8) ', y(8), and b(8) for a large number of
spin values logarithmically distributed between
s = —,

' and s = ~. The addition of two further terms
in the series produces no consequential changes in
the results of I. Table II is a list of the
"best" tenth-order estimates for the spin values
studied. The differences between this table and
Table II of I (Ref. 1) are unimportant. The
best value of y(8) is still y(8) = 1.23 for all 8 ~ —,'.
Indeed, the apparent convergence to y= 1.232 at
large s is spectacular. For example, with g = ~
we find, using sixth- through tenth-order series,
the successive estimates 1.2316, 1.2333, 1.2318,
1, 2318] and 1„2318for p. For 8' ~~ 2q p 1ncx'eases
with decl eas1ng s to 1, 2 5 at g = p, The m ost s1g-
nificant difference from the order eight results of
I (Ref. 1) is the change in the estimates for

then describe our (quite successful} efforts to fit
the spin-s ratios to such a confluent singularities
form, Section GIC presents the Baker-Hunter
series transformation mhich allows one to find
the critical exponents y„.. . , y„of N confluent
singularities from the poles of the [~- I/lV] psde
approximant to the transformed series.

A. End-shifted ratio ana1ysis

The ferromagnetic susceptibility is normally ex-
pected to exhibit a "power law" or branch cut
singularity at the critical point E,. Thus we ex-
pect that near E =A„* '
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bcc fcc

TABLE I. Susceptibility series through tenth-order for the spin-s Ising model. For eachorder the expansioncoefficient
h„(8) is givenby

a„a„{s)= g C,&"&X',
1~&

where X=s(s+1). The first number listed in s given order n is D„. This is then followed by CI"', ... , Ct"» in ascending
order.

I

K SQ sc

10

45
—6
68

675
G

—21(i
1 144

28 350
—45

1 806
—16 236

50 744
1 190 700

270
—12 960
190 152

—1 024 Q32

2 235 808
35 721 000

—1 890
100 260

—1 630 728
11497 6,'32

—41 433 696
68 310 016

13395 375 000
141 750

—8 505 000
163 501 200

—1 483 268 400
7 190638 800

—19 711689 600
25 954 467 200
70 727 580 ODO

—212 625
1390S 510

—286 090 380
2 834 637 552

—16 115073 984
57 157 269 40S

—125 021 664 576
136 519395 712

2 334 010 140 000
I 771 875

—127 575 000
2 915701 380

—32 655 191040
216 201 641 904

—923 056 564 608
2 629 938 997 056

—4 805 264 923 392
4 468 880 440 064

6 371 847 682 200 000
—1 616 162 625
125 415 722 250

—3 025 742 906 700
35 695 584 786 600

—253 070 383 970 592
1 198 433 342 376 000

—3 998 236 247 726 400
9 444 732 079 338 240

—14 794 167 627 828 480
11 974 432 007 975 9'36

1
2
5

—1
18
75

1

—66
464

6:300
—15

1 11(i
—15956

64 904
661 500

—2;3 652
549 228

—4 010 864
11 092 944
3 969 000

—:315
;38 070

—1 024404
10 828 9'76

—51 683 088
106 529 088

59 535 000
945

—155 790
5 059 764

—67 444 248
442 284 696

—l,i50:3,'3l 552
2 524 174 144

110020 680 000
—496 125

95 829480
—3 418 716 780
51 936 829488

—420 .'350 361 696
1 974 825 3;35 2;32

—5 447 227 7G4 544
7 291 822 764 928

18 153 412 200 000
20 671 875

5455 1Q'7 QOO

219 572 014 140
—3 736 467,'377 712
34 847 273 833 200

—198 561 705 025 920
724 887 263 981 120

—1 645 784 670 954 240
1 864 771 814 420 736

283 193230 320 000
—107 744 175

34 064 787 330
—1 471 018 205 196
27 028 694 292 768

—277 966 027 290 816
1 810 359 274 718 304

—7 925 971 293 760 704
23 678 823 685 360 128

—45 666 137 074 603 008
44 769 163 917 919744

1
—7
30

—88
136

1

5
—1
18
73

1
—56
484

6 300
] 5

948
—13268

70 952
26 460

9
—684

15 612
—134 688

519;376
3 969 000

—315
26 640

—675 348
7 445 912

—45 048 57G

1;34 113(i96
19 845 000

;315
—30 240
911;376

—12 891 672
100 431;384

—476 289 088
1 153 ~~7 0~6
3 14,'3 448 000

14 175
1 490 076

—48 243 924
74,'3 902 992

—(i 684 759 648
39 578 788 800

—153 5O2 2O2 048
312 149 311G16

1 037337 840 000
1 181 250

—1:37025 000
4 951 515 960

—86 683 603 680
900 597 250 656

—6 228 641 221 632
30 410 648 276 864

100 410 894 389 248
175 890 198 647 296
471 988 717 200 000

—179 57'3 625
22 518 783 000

—862 337 502 900
15 933 946 020 480

176 673 144 849 984
336,'387 037 162 880
443 0,'30 356 201 920
84l3 987 031 111040
558 940 112284 160
050 699 748 572 672

8
45

—12
296
67

12
—912

10 928
14 175

—45
3 882

—75 972
551 368
297 67c5

135
—14 04Q

444 348
—5,'361 168
27 79~ 632

8 930 250
—945

109710
—3 893 436
60 404 784

-499442 352
1 979 241 472

133953 750
2 835

—374 220
15 821 136

—315219 672
3 428 921 064

—21 984 134 208
70 437 239 296
35 363 790 000

—212 625
30 793 770

—1 408 662 900
30 878 814 384

—390 360 493 728
3 164 326 789 536

—16 391 099 923 392
43 833 285 137024

1 167 005 070 000
1 771 875

—283 500 000
14 513 848 380

—362 671 231 680
5 338 970 710 992

—51 359 92D 308 864
339 474 962 774 208

—1 486 064 221 437 696
3 408 695 720 774 912

41 417 009 934 300 000
—21 010 114125

3 638 990 832 750
198 557 342 018 100

5 280 876 942 929 640
—83 688 772 541 984 064
888 381 687 543 517 440

—6 766 760 745 776 191680
37 492 343 506 036 323 840

—141 691 361 091 197 548 800
283 891 578 221 538 506 752

—9
80

—425
1 171

1
—32
456

—4418
30 057

—13G 839
327 541

1

5
—2
76
75

2
—272
4 248
3150
—15

2 322
—70 772
656 648
330 750

22 tl

—49 104
2 440 236

—39 096 208
251 682 608

1 984 500
—315

79 290
—4 607 196
105206 144

—1 125263 472
5 480 403 392

29 767 500
945

—322 920
22 986 144

—664 684 728
9 548 691 096

—76 329 628 032
297 051 037 504

55 010 340 000
—496 125

198604 710
—15 730 522 380
522 161817 264

—9 196 404 968 448
96 001 685 872 416

612 403 917 558 592
976 994 515 599 744

9 076 706 100 000
20 671 875

—11240 964 000
1 022 154 935 940

—38 426 692 327 488
781 384 549 051 440
756 313531 512 96Q

185 615 539 775 040
829 648 399 806 720
663 580 597 467 904
707 983 075 800 000

—538 720 875
350 344 849 050

—34 744 487 761 (i20
424 537 364 737 880
123 083 739 615136
441 911630 847 360
075 580 182 500 800
929 530 585 443 840
339 534 638 795 520
325 856 325 700 608

K, for s ~ 2 (0.01% for s = —,', an order of magnitude

less for s =1, —,', and 2). It is interesting that spin-

& has the worst apparent convergence, yet —as we
discuss in Secs. IIIB and IIIC—is the only case
not marked by a confluent singularity.

As noted ln I) the crltlcal estimates vary

smoothly with s and (especially for large s) have a
variation close to that predicted by molecular-field
theory, namely,

std, (s) ' ~ s(s + I).
The order-ten end-shift results for the critical
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a(I —I~/Z )-'"-" (3. 5)

Here the first term represents the dominant singu-
larity in X; the second term arises by expanding the
amplitude A(E) of the dominant term about %=K,
and keeping terms to order E-E,. Finally, the

TABLE G. Best end-shift results (order 10) for p and

Ã, ' on. the fcc lattice for various spin values.

0. 5
1.0
1.5
2. 0
2, 5
3.0
3. 5
4, 0

4, 5
5. .0
5. 5
6. 0
8. 0

10.0
15.0
20. 0
30. 0
50. 0
50. 5
51.0

100.0
999.0

9999.0

x
9.79474
6. 82074
5.75798
5.21166
4. 87886
4. 65485
4.49378
4. 37238
4. 27761
4, 20157
4. 13920
4. 08712
3.94344
3.85687
3.74110
3.68304
3.62485
3.57822
3.57753
3.57685
3.54321
3.51166
3. 50850
3.50814

l.2482
l. 2401
1 ~ 2371
l.2355
1.2344
1.2338
l. 2333
l. 2330
1.2328
l. 2326
l.2325
1.2324
l.2322
1.2320
l.2319
1.2318
l.2318
l.2318
1.2318
1.2318
l. 2318
1.2318
1.2318
l.2318

0. 029
0, 311
0. 477
0. 562
0. 609
0.637
0. 656
0.669
0. 678
0. 685
0. 690
0, 695
0, 705
0. 709
0.714
0. 715
0. 717
0. 717
0. 717
0. 717
0, 717
0. 718
0. 718
0. 718

point fit the following formula to within 0.001%:

s'Z, (s)-'=s (s+ I)Z,(-)-'+Z, +If,/s, (3.4)

with Eo = —0.208 716 and K& = 0.013 146. Note that
(3.4) does not have a fitting parameter multiplying
a term linear in s. A three-parameter fit finds
such a parameter to be -10 and does not improve
the quality of the fit. This indicates that the mo-
lecular field result may be exact to lowest order
[i.e. , that the coefficient of s is exactly E,(~) '].
It is tempting to assume that s /K, (s) depends on
s(s+1) only. However the replacement of K,/s in
Eq. (3.4) by K,/[s(s+ 1)] leads to a small but def-
inite deterioration of the fit. This is also the case
with the confluent-singularity analysis discussed
below. The values for Eo and K, quoted for tenth-
order series are within 0.3 and 4. 2% of the respec-
tive results quoted in I (Ref. 1) for eighth-order
ser les.

B. Ratio analysis for confluent singularities

In this section me analyze the fcc series for g us-
ing the extension of the ratio method appropriate to
an assumed singularity of the form

q(If) = W, (I - IC/If, )-"+X,(I —SC/Ic, )
'"-"

third term is added to allow for the confluent singu-
larity proposed by Wortis and by Wegner.
In Appendix 8 we obtain the form of the ratios B„
=—h„/h„, for a function of the form (3.5). The ap-
propriate form as n tends to infinity is given by

where the coefficients A,' and B' are given by

X,' =1(y)wgi (y- I)a,

a' = r(y)a/r(y 5)a—„ (3. Ib)

respectively. The most significant effect of the
confluent singularity is the replacement of A~a 3

by B'5n ""as the leading correction to (y- I)/n.
To study possible confluent singularities we have

attempted to fit the ratio sequences to the form

R„=E [1+(y-1)/n+a/n" +5/n'], (3.S)

with E„y, 6, n, and b parameters of the fit. Any
attempt to derive a fit with all five parameters free
is an exercise in futility. No mell-behaved fits can
be obtained with 5 and either or both of y and D

simultaneously fit. Thus, in fits with y and/or 5
free we have set 0 equal to zero. Table III lists
the results for E,', y, 6, and a mhen all four are
free (with 5 =0) for several values of s. The list-
ed numbers result from fitting Rv through R,o. We
have also fit Eq. (3.8) using B, through B„B,
through Rs and P6 through 89. There is a great
deal of scatter in the results from order to order;
and, as may be seen from Table ID, the scatter (in
5 especially) within a given order is very great
Since me seek universal values for both y and 5,
this fitting procedure is not considered meaningful.

Thus, given that we cannot treat the problem in
its full generality, i.e. , with y as afree parameter,
tmo natural choices for y arise from the endshift
analysis of Sec. IIIA, @=1.232 and y=1.25. The
former value arises because it is the apparent ex-
ponent favored by endshifted ratio analysis for all
spin values greater than s=5 (in fact, @=1.23 is
favored for all s &2). On the other hand, the longer
s =

& series favors @=1.25, with a nearly zero
end shift. Additional evidence for y= l. 25 is pro-
vided by the analysis of the spin- —, series by Moore,
Jasnow, and Mortis, by Sykes et al. ,

' and by Baker
and Hunter, all of whom have strongly concluded
t at y(-,') =1.25.

Consider first our fit of Eq. (3.8) with h set equal
to zero and y forced to be 1.232, independent of s.
The results of this fit (using R, through 810) are
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shown in Table IV. Requiring y to be 1.232 pro-
duces no single reasonable value of 6, which varies
from about 0, 9 a,t s=~ to —0. 1 at s=2. Further-
more the scatter in 6 from order to order is ex-
tremely large. But, universality dictates that ~

should be independent of s. The lack of a single
reasonable estimate for 6 when y=1. 232 forces us
to conclude that this cannot be the universal value
of y for the Ising model.

In Table V we list the results of fitting Eq. (3.8)
with b=0 and yforced to be 1.250, for several val-
ues of s. Again, the results displayed are obtained
by fitting R, through R». In contrast to the cases
with y free and y=1. 232, examination of the fits to
R4 through R„R, through Rs and R, through Rg in-
dicates that the results are converging with in-
creasing order fit. Within a given order the re-
sults (for so —,) are practically independent of spin.
For example, from Table V we find 5 (10)= 0. 59
+ 0.01. The value of 6 estimated decreases with
increasing order and extrapolates to 6 = 0.49+ 0. 05
at infinite order. For s =-,', the value of 6 esti-
mated is very scattered as a function of order.
More importa, ntly the amplitude a is small for all
orders. In the light of these results we conclude
that 6=0.50+0. 06 for all s& —,', and that for s= —,

'

this leading confluent correction probably disap-
pears.

If we are willing to dictate both y and 6, we
should be able to obtain more detailed information
concerning the spin variation of K,(s) and of the
relative amplitudes of the singularities at K,. We
have therefore fit the series to Eq. (3. 8), with y
and 6 forced to equal 1.25 and 0. 50, respectively.
The results (as a function of s) of such a fit are
shown in Table VI. Note from the table that the
relative amplitude, a/(y- 1), of the I/n~' term to
the 1/n term in Eq. (3. 8) is an order of magnitude
smaller for spin--,' than for s =~. Exactly the same
statement holds for the relative amplitude 5/(y —1)
of the 1/n' term to the 1/n term. This aspect of
Table VI should not be surprising; Table II shows
that 4n ' comes very close to fitting the spin-& ra-
tios. The drop in a and b as s decreases from s
=1 to s = —,

' appears abrupt in Table VI. However,
extrapolation of a and 5 versus 1/s (using s =1

TABLE III. Parameters of tenth-order fit to Eq. (3. 8)
with b set equal to zero. For s =2, no solution was found
with ~ in the range —0. 5 ~ & ~ 4. 0.

TABLE IV. Parameters of the tenth-order fit to Eq.
(3. 8) with b set equal to zero, and p set equal, to 1.232.

C

9. 79401
6. 82274
5. 75893
4. 65520
3. 94359
3. 50824

0. 014
—0.181
—0. 111
—0.118
—0.122
—0. 123

—0. 076
1.922
1.179
0. 957
0. 896
0. 885

TABLE V. Parameters of the tenth-order fit to Eq.
(3, 8) with 5 set equal to zero, and p equal to l. 250.

through s =~) shows them to be decreasing linearly
with s ' for s &3 and to appa, rently pass through
zero at s = 2 (s = —,'). To follow this apparent de-
crease with more detail we have analytically con-
tinued tbe susceptibility series [Eqs. (2. 5) and
(2. 8)] tothe interval —,

' &X- 2(& ~s- 1). Estimates of

K„y, and 6 from bare end shifts together with
estimates for E, a and b obtained by fitting Eq.
(3.8) with y=&, and 5=, forced are given for sever-
al values of s in [-,', 1] in Table VII. Tbe end-shift
analysis is quite smooth. The apparent exponent
y increases rapidly from 1.240 at s =1 to 1.248 at
s = —,'; at the same time the end shift decreases
rapidly. The nea. r linea. rity of the decrease of a
and b is confirmed by the analytically continued
series. In fact, to the accuracy of the fit a and b

are zero at s = —,'. This is clearly seen by compar-
ing order nine estimates to the order ten estimates
for s = —, of Ta,ble VII. In ninth order of magni-
tudes of a and b are unchanged from tenth order.
However, the sign of both quantities changes on go-
ing from ninth to tenth order, an indication that a
and b are both zero for s=&.

We have fit If,(s), as estimated from Eq. (3.8)
with y=f. and 5=,, to the form, Eq. (3.4), sug-
gested by molecular-field theory. The parameters
Kp and K, of the resulting fit are —0. 207 681 a,nd

0.012949, respectively, which fit all estimates for
Z, ' listed in Table VI to better than 0. 001%. Again,
as with end shifts, we find no evidence for a term
linear in s. Indeed, the end-shift and "confluent"
estimates for Ko are within —,

'
/o of one another, as

are those for K&.
As a check on the va, lidity of the use of the as-

ymptotic formula, Eq. (3.8), to extrapolate tenth-
order series we have also fit the ratios to the form

z-'
C

6.82040
5. 75781
4. 65454
3.94304
3„50775

1, 242
1.239
1.238
1.238
l. 238

—0. 061
—0. 089
—0. 108
—0. 115
—0. 116

0. 829
0. 854
0. 791
0. 753
0. 744

9.79446
6, 81944
5. 75661
4. 65352
3.94223
3.50704

—0. 005
—0. 059
—0. 084
—0. 105
—0. 113
—0. 115

0. 385
0. 586
0. 596
0. 586
0. 578
0. 576
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0. 5
1.0
1.5
2. 0
2. 5
3.0
3. 5
4. 0
4. 5
5. 0
5. 5
6. 0
8. 0

10.0
15.0
20. 0
30.0
50. 0
50. 5
51.0

100.0
999.0

9999.0

9.79441
6. 81959
5. 75670
5. 21049
4. 87770
4. 65370
4. 49264
4. 37125
4. 27649
4. 20046
4. 13810
4. 08604
3. 94238
3. 85585
3.74008
3.68203
3.62386
3, 57724
3. 57655
3. 57587
3. 54223
3, 51069
3.50753
3.50718

—0.007
—0.043
—0. 058
—0. 067
—0. 073
—0. 076
—0. 079
—0. 080
—0. 082
—0. 082
—0. 083
—0. 084
—0. 085
—0. 086
—0. 086
—0. 087
—0. 087
—0. 087
—0. 087
—0. 087
—0. 087
—0, 087
—0. 087
—0. 087

0. 003
—0. 020
—0. 031
—0, 034
—0. 035
—0. 035
—0. 035
—0. 035
—0. 035
—0. 035
—0. 035
—0. 035
—0. 035
—0. 035
—0. 035
—0. 035
—0. 035
—0, 035
—0. 035
—0. 035
—0. 035
—0. 035
—0. 035
—0. 035

exactly appropriate to a susceptibility of the form
in Eq. (3. 5). That is, we have employed Eq. (83)
of Appendix B in forming the function to which we
fit the ratios. As in Tables VI and VII, y and &

are, respectively, set to 1.250 and 0. 50. The pa-
rameters of the fit are then K,', B/A„and A~/A„
where A~, B, and A2 are the amplitudes of the
singularities in Eq. (3.5). The results of such
a fit using s through so in the fit are dis-
played in Table VIII for several values of spin s.
In comparing Tables VI and VIII, the first thing to
note is that the largest relative difference in the
estimates for K,(s) is =0.003% for s =~; the esti-
mates for K, (s) obtained from the two methods be-
ing in even closer agreement for all other values
of spin. We can use Eqs. (3. 7) and (3. 8) to obtain
estimates for A2/A, and B/A, from 5 and a, re-
spectively. Using Table VI, we find estimates for
A2/A, and B/A, which differ from the estimates in
Table VIII by about 8% in all cases. Considering
the large-n character of Eq. (3.8) the extremely

TABLE VII. Ratio analysis of the fcc series for X (s)
analytically continued to 2 «s «l.

z-'
C

a-'
c

TABLE VI. Coefficients of three-parameter fit to Eq.
(3. 8) with &=1.25 and 6= 0. 50. Rs through Rgp are fit,

z-'
C

TABLE VIII. Estimates for K~ and the relative ampli-
tudes 8/A1 and A2/A~ obtained by fitting the spin-s ratios
to the exact form appropriate to Eq. (3. 5). As in Tables
VI and VII, y=1.25 and 6=0. 50. R8 through R&p are fit,
although no significant changes occur by fitting R7, R8 and

Rg.

2

1
3
2

2

2

3
7
2

2

5
fi
2

6
8

10
15
20
30
50
502
51

100
999

9999
99999

K C

9.79440
6. 81968
5 75691
5.21061
4. 87782
4. 65382
4. 49275
4. 37136
4. 27660
4. 20057
4. 13821
4. 08614
3.94249
3. 85595
3. 74018
3.68212
3.62395
3.57733
3. 57664
3. 57596
3.54232
3.51078
3. 50762
3.50731
3. 50727

0. 0196
0. 1242
0. 1709
0. 1968
0. 2123
0.2222
0. 2288
0. 2334
0.2368
0.2393
0. 2412
0. 2428
0.2464
0.2482
0. 2501
0. 2507
0. 2513
0.2515
0. 2515
0. 2515
0.2516
0 2516
0.2516
0.2516
0.2516

X2/X,

—0. 0128
0. 0432
0. 0825
0. 0970
0. 1031
0. 1061
0. 1077
0. 1086
0.1093
0. 1097
0.1100
0. 1102
0. 1106
0. 1108
0. 1110
0. 1110
0. 1111
0. 1111
0. 1111
0. 1111
0. 1111
0. 1111
0. 1111
O. llll
0. 1111

close agreement between the two sets of estimates
for K,(s) is very gratifying. We have further made
similar checks on the results in Table V and find
that order-by-order the estimates for E, aruS 5 ob-
tained by the two methods agree extremely closely
with each other. We take this close agreement as
a strong verification of the validity of Eq. (3. 8) in
extrapolating finite series of the form in Eq. (3. 5).
Finally we note that we have fit K,(s), as listed in
Table VIII, to the molecular-field formula (3.4).
The resulting parameters of the fit are Eo
= —0.203140 and K, =0.016080. An added term
Ks in the fit finds E-0.0007, which, as above, is
taken to mean there is no term linear in s in Eq.
(3.4).

In summary, we find that our generalized ratio
analysis is consistent with universal critical be-
havior in the spin-s Ising model. The universal
exponent is found to be y =1.25, and the exponent
of the leading correction is found to be y —6 with
6 =0. 50+0.08. The relative amplitudes of the sin-
gularities vary smoothly with s and evidently the
leading correction vanishes at s =2.

0. 50
0. 55
0. 60
0. 75
l. 00

9. 79474
9.27602
8, 83664
7. 84610
6, 82074

1.248
1.247
1, 246
1.243
1.240

0. 021
0 051
0. 082
0. 177
0, 311

9.79441
9.27546
8.83592
7.84509
6. 81959

—0. 007
—0. 013
—0. 018
—0. 030
—0. 043

0. 003
0, 002
0. 001

—0. 007
—0. 020

C. Baker-Hunter transformation

To further explore the existence of confluent
singularities, we recast the series in a form sug-



WILLIAM J. CAMP AND J. P. VAN DYKE

gested by Baker and Hunter. This procedure re-
quires only an accurate estimate y for K,'. Gen-
eralizing Eq. (S. 5), we consider a function E(K)
with N confluent singularities at E,= y "1, namely,

A,
E(K) = ~ ——

, , (1 —pK)"' (S.9)

followed by reexpxession of I" as a function ( leads
to

Introduction of the variable g via the transformation

to the spin infinity Ising model. The y dependence
of the estimates is seen clearly in the results de-
picted in Table IX. In this table we list the esti-
mates for y„y2, ys, A„A.» a,nd A, using the
[k —I/O] Pade approximants with k =2, 3, 4, 5, and
6 for five values of y. (We have used the eleventh-
order coefficient provided to us by Saul, %'ortis,
and Jasnow. ") The third column corresponds to
y =E, a,s obtained from the confluent singula, rity
ratio analysis, and the fourth column corresponds
to y=E, ' as obtained from "bare" end shifts. As
we vary y outside the range shown, apparent con-
vergence progressively worsens. On the other
hand small variations (!~g/$1 5 10 ) in g produce
little variation in apparent convergence, or in ab-

g ~ g (&&&)"

0 Pg I
(S. 10)

Having formed the g series for f($), we multiply
the nth coefficient of f($) by n! to obtain the aux-
iliary function

TABI.E IX. p& and amplitude A; from Pade-approxi-
mant table of Baker-Hunter series for the spin-~ model
on the fcc lattice. The parameter y is the value of E.,'
assumed in the series transformation.

y 3.50650 3.50690 3. 50718 3, 50814 3.50850

The auxiliary function has simple poles at $, = y, '
with residues —A, /y, . We note that the transfor-
mation from K t'o $ has the property that the coef-
ficient of K" affects the coefficient of 8 only for
k» n. Thus given an M term series for 3'(K) and

a, satisfactory estimate for y, we can construct an
M term series for E($). Further, if E(K) is of
the form described by Eq. (S.9), then F(() is very
suitable for analysis by Pade apprommants, in
particular using the [X-1/N] Pade approximants. 9

In examining the sequence of [k —1/k] Padh ap-
proximants, it is found that the sensitivity to y
(which is an input parameter to this process) in-

- creases rapidly with A. Baker and Hunter con-
sidered the effect of deviations from the assumed
form {S.9) on the approximants to 3'($). However,
they did not discuss in detail the effect of small
errors in y coupled with such deviations. Even
for test series with strictly constant amplitudes,
we find the higher order esbmates to be extremely
sensitive to y.

One possible criterion for fine tuning y is to at-
tempt to make the [k —I/O] sequence of approxi-
mants yield a single value for y&. For clean test
series this is a vexy successful method. However,
for real series we should keep in mind that the
[k —I/O] Pade approximant uses only the first 2k
terms in the series for F{$)and thus makes direct
use of only the first 2k terms in X(K). Hence, the

[1/2] approximant is determined from information
we would regard as far short of the asymptotic
character of the series.

We fix'st apply the Baker-Hunter transformation

[1/2] 1.756

1.256

[3/4] 1.258

[4/5] 1.258

f5/6] l.255

[1/2] 1.091

[2/3] O. 727

[3/4] 0. 740

[4/5] O. 739

[5/6] 0.72o

fl/2]

[2/3] —0, 378

[3/4] —O. 42O

[4/5] —O. 419

[5/6] —O. 337

[1/2] O. O25

[2/3] O. 254

[3/4] O. 251

[4/5] O. 252

[5/6] O, 255

[1/2] o. 3o9

[2/3] O. O82

[3/4] O. O85

[4/5] O. 084

[5/6] o. o82

[1/2]

[2/3] —o. oo3

[3/4] —o. oo3

[4/5] —o. Qoz

[5/6] —o. 004

1.753

l.253

1.254

1.253

1.252

l. 091

0. 712

0. 721

0.713

0.698

—0. 356

—O. 381

—0.347

—0. 275

0. 025

0.257

O. 256

0.257

0.259

0.308

0. 079

0, 081

0. 080

0, 078

—0.003

—0. 003

-0.004

-0.004

1,751

1.251

1.251

l.249

1,248

1.091

0, 702

0. 708

0. 681

0. 671

—0, 340

—0. 357

—0, 242

—0. 188

0, 025

0, 260

0, 259

0, 262

0. 263

0, 308

0. 077

0, 078

0. 076

0. 076

—O. 004

—0, 004

—0. 005

1.746

1.244

l.244

l.227

1.225

1.091

0, 662

0. 662

—0. 281

-0.283

—0. 822

—0. 764

Q. 025

0. 267

0, 267

0.292

0.295

0, 308

0. 071

0. 071

—0.005

—0. 005

—0, 001

—0.001

l.743

l.241

l.241

l.213

1,203

1.091

Q. 645

0.645

—0, 258

—0, 258

—0. 732

—0. 657

0, 025

0, 269

0, 269

0.316

0.337

0.308

0.069

0. 069

—0. 005

—0, 005

—0, 001

-0.001
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solute estimates. For example, we studied the ef-
fect of varying y in the range 3. 5070» y» 3. 5075
about the value obtained from confluent ratio anal-
ysis and found only smooth and minor variation of
estimated parameters. Before discussing these
results in further detail we remark that in all
cases studied the [3/4] and [4/5] approximants contain
nearly cancelling pole zero pairs that in some
cases are closer to the origin than the poles of in-
terest.

The best choice of y according to the "smooth-
ness" criterion is given by y = 3.5069 (K, =0.28515),
which differs from E, estimated using the conflu-
ent singularity ratio analysis by 0, 007%. However,
there is very little to choose between the above
value and the confluent singularity ratio value (y
= 3. 50718, K, = 0.28513) as is seen by comparing
estimates for y in Table IX. In contrast, the esti-
mates for y obtained using y=3. 50814 (K,
= 0. 28505), so as to agree with "bare" end shifts,
are much more scattered than those obtained from
either of the above values of y.

Thus, our smoothness criterion yields yl = 1.250
+ 0. 003 and y2 = 0. 68 + 0. 07 (5 = 0. 57 + 0.08) . This
result is the best evidence to date for universality
in the spin-s Ising model. In obtaining it we as-
sumed only that there exists a sequency of conflu-
ent singularities. The location of the singularities
was chosen by a smoothness criterion which we

consider relatively unbiased. The amplitudes Al
and A2 are relatively well converged and given re-

spectivelyy

by A, = 0.257+ 0. 005 and A, = 0. 080
+ 0. 004. Note that all cases considered yield Aly2
-2Aayl or A2-0. 3A&. The series is not long
enough to estimate y3 accurately, although its pres-
ence is probably real. In this regard, note that for
all values of y listed in Table VIII, the [1/2] approxi-
mant without the possibility of a third pole yields
values for yl completely inconsistent with the re-
maining estimates. The value y, —-—0. 35 is con-
sistent, to the accuracy we would claim, with

1
y3= —&. As we have noted above, ' higher-order
corrections are expected in y which means weaker
poles are expected in 6'($). The third pole detected
(y3 = —0. 35) evidently corresponds to the first cor-
rection to A2/(1 —yK)'2. In fact, we find no evi-
dence for a y = + 0. 25 which would correspond to the
first (analytic) correction to A, (1 -yK)"'. (We
shall find that for s =-,'- this term will be detect-
able. )

As we have already seen in the endshift analysis
(Table II), large spin behavior, i.e. , behavior
similar to s =, prevails roughly for s &3. The
s = ~ results just discussed are much cleaner than
the analysis for s & 3. For small s the effects of
a singularity or singularities not described by Eq.
(3. 9) are strongly apparent.

The results of the Baker-Hunter analysis for var-

TABLE X. Baker-Hunter analysis of the fcc series for
several values of s.

I 3 5
2 1 2 gl

S.7912 6.8190 5.7570 4. 8770
8 oo

3.9425 3.50718

[1/2] 1.253 1, 509
[2/3] l. 220 l. 230
[3/4) 1.251 l. 249
[4/5] 1.251 1.249

[1/2] 0. 284 l. 080
[2/3] ~ ~ ~ ~ ~

[3/4] 0. 213 0.615
[4/5] 0.212 0.606

[1/21 0. 971 0. 144
[2/3] l. 140 0.627
[3/4) 0.975 0. 582
[4/5] 0.975 0.583

[1/2] 0. 029 0. 522

[2/3] ~ ~ ~ ~ ~ ~

[3/4] 0.025 0.087
[4/5] 0.025 0.085

~1
1.633
l. 234
1.245
l. 243

'y2

1.093

0 ~ 598
0. 566

Al
0.067
0.494
0.471
0. 476

A2
0.48S

0. 090
0.088

1.709
l. 246
1.253
1.251

l. 093
0. 011
0. 689
0.675

0. 042
0 083
0. 312
0 ~ 374

0.425
0. 092
0. 099
0.097

l.745
1.249
1.250
l. 247

1.091
0. 686
0. 695
0.664

0. 029
0.295
0. 294
0. 298

0.346
0. 084
0.085
0. 083

l.751
1.251
l.251
l. 249

l. 091
0.702
0.708
0.681

0. 025
0.260
0. 259
0. 262

0.03l
0 ~ 077
0. 078
0. 076

ious spin values are summarized in Table X. (For
s =~we have chosen y = 3.50718 to be consistent
with confluent singularity ratio analysis. ) The
s = ~ analysis is typical of that for all s & 3 and is in
good agreement with spin infinity ratio results
namely, y&

—- 1.25 and y~ = 0.7 (5 = 0. 55). The first
thing to note about smaller spin results is that in-
ternal consistency down through the [k —I/O] list is
poorer than for s = ~. Nonetheless, they are con-
sistent with yl —-1.25 + 0. Ol for all s, and with y2

0.60 —0.70 independent of s (neglecting spin- —,
' for

the moment). Note that the ratio Az/At of the sec-
ondary to the primary singularity decreases from
0.29 at s =~ to 0. 15 at s =1. We found evidence
from "confluent" ratio analysis that A2 vanishes as
s tends to 2. Below we shall examine how this is
manifested in the Baker-Hunter analysis.

For spin-& the leading singularity is found to
have exponent y, = l. 251. There is clear evidence
for a secondary pole with y2= 0. 21. The value of

y2 is extremely sensitive to y although the value of

y, is not, within the range of y considered. If in-
stead of y =9.7912 we choose 9.7895 (a 0. 02%
shift), the [3/4] and [4/5] approximants yield y, = 0.250
+0. 001. If one looks for maximum agreement be-
tween [3/4] and [4/5] estimates, y = 9.7914 is perhaps
favored, with yl and ya then estimated as 1.251
+ 0. 001 and 0. 206 + 0. 002, respectively. It is
tempting to speculate that y2(2) = &, which is exactly
right to be the leading correction term in the (an-
alytic) amplitude function multiplying (1 —yK) '~'.
However, analysis of the V (= tanhK) series for
y(2} leads, in agreement with Baker and Hunter, ~

to no evidence for any confluent singularity. This
would then mean that the amplitude of any such sin-
gularity estimated from the K series should be very
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TABLE XI. Baker-Hunter analysis of the fcc series
for g {s) analytically continued to 0. 5 —s —j.. {y=~~ )

0. 50
9.7912

0. 55
9.2721

0.60
8.8300

0.75
7 ' 8444

1.0
6.8190

[3/4]
[4/5]

l. 251
1.251

l.252
1.252

1.259
1.259

l. 250
1.250

1, 249
1.249

[3/4]
[4/5]

0.213
0.212

0.447
0 446

0.623
0, 622

0. 588
0. 577

0.615
0.606

[3/4]
[4/5]

Q. 975
0. 975

O. 897
0.897

0.818
0.818

0.705
0 ~ 707

0.582
0.583

[3/4] O. O25

[4/5] O. O25

0.043
Q. Q42

0.071
0.071

0.087
0.088

0.087
0.085

small (I V, -K, I /V, is of order 10 ~, which would
imply an A2 for the K series an order of magnitude
less than in Table IX). In addition, we discuss
below the presence of complex poles in F((), per-
haps indicative of nonconfluent singularities.

Ai this point it is worth emphasizing that the re-
sults of Tables IX and X constitute eery strong evi-
dence for a universal value of y(s), namely y(s)
=1.250+ 0. 005, for all s. Since the value of y es-
timated from the Baker-Hunter transformation de-
pends somewhat on the value y for K,' employed in
the transformation, one could argue that we have
biased the results by choosing a value of y which
confluent-singularity ratio analysis yielded when y
and 5 were respectively set to 1.250 and 0.50.
However this is not at all the case. In fact com-
parison of the values listed for K,(s) ' in Tables
IX and X with those listed in Table VI show small
but significant differences between the estimates
for given s. What we have actually done is per-
form the Baker-Hunter transformation as a june
tion of y for a rather large range of y centered on
the estimate for K,' obtained from Table VI. As
noted above the result y =1.25 is rather insensitive
to small changes in y. Qn the other hand, changes
in y large enough to significantly alter the estimate
for y introduce a great deal of scatter in the esti-
mates from various Pade approximants. (See, for
example, columns 4 and, especially, 5 of Table
IX. ) Thus, in reality, using a smoothness-of-con-
vergence criterion we obtain unbiased estimates
for y(s) which overwhelmingly favor y= 1. 25 for
all s.

To follow the behavior of the assumed confluent
singularities near spin- —„we have analytically
continued the series to continuous spin values in
0. 50 = & = 1.0, as we did with ratio analysis above.
The results are summarized in Table XI. In this
table we see the crossover to s = 2 behavior in the
behavior of ya in pa,rticular. That is, for s as
small as 0. 75 the results look very much like the
small s results in Table X. For &=0. 60, and par-

ticular for s =0. 55, one sees the & = 2 behavior
manifesting itself. The change is not found prin-
cipally in A2, but rather in y2 which is decreasing
rapidly from its large-s value (= 0. 7) to its spin- —,

'

value (~0. 3). In fact, y2(0. 60) ~ 0. 5 and y2(0. 55)
~ 0. 33. Clearly, this apparent smooth variation of
y2 nea. r & =2 is not real. Actually, from studies of
crossover behavior, "we know that near a point
(s = —,) where the character of a divergence changes
discontinuously (i. e. , ya changes discontinuously
from yz ——0. 75 for s & 2 to yz= 0. 25 for s = —,), anal-
ysis of the critical exponent (y2) based on finite se-
ries produces estimates for the exponent which (i)
are poorly converged near the crossover point (s
= —,'), and (ii) change rapidly (from the large-s to the
s = —,

' value) near the crossover point. On this point
there is a discrepancy between Baker-Hunter anal-
ysis and confluent singularity ratio analysis. Using
ratios we found evidence that the amplitudes of both
(I —y&) ' and (I -y&) ' become very small (and
perhaps zero) at s =-, . Here we interpret the Bak-
er-Hunter results as implying that the amplitude of
(1 —yK) ' tends to zero at s= —', . However, that of
(1 —yK) ' is found to be -0.02 at s = —', , an order
of magnitude too large to agree with ratios. As
noted above, in our analysis of the t/' series we
found, in agreement with Baker and Hunter,
evidence for any confluent singularity at s = ~. We
pointed out above that this result implies that the
amplitude of (1 -yK) "2 is zero and that of
(1 —yE) '& is -10 (yz-—0. 75+0.08, y~=0. 25) in
agreement with confluent singularity ratio analysis.

We cannot, without much longer series, reconcile
this discrepancy. Basically, there are other non-
confluent singularities which interfere with both
kinds of analysis. However, this discrepancy not
withstanding, we find from every kind of analysis
performed strong evidence for a confluent singular-
ity A2(s) (1 —yK) "~ (with y2

—-0. 75+0. 08) whose am-
plitude A2(s) vanishes at s = —', .

Caveats —Nonconfluent sint, utarities. The Pade-
approximant analysis of the Baker-Hunter series
5'(() finds pairs of complex poles entering for all s.
Typically, these poles are found in [3/4] and [4/5] ap-
proximants to be closer to the origin than is y, '.
Now Baker and Hunter point out that should y be
greater than K,', instead of having a single pole at
y ', 'F($) will have a pair of complex poles. One
might thus surmise that these complex poles found
in our analysis are due to an error in our location
in y. However, this cannot be the case. The de-
crease in y required to make the complex poles go
away is simply inconsistent with how well we know

y. For spin--,'- the change 5y/y, (where y~ is our
best estimate for K,') is about 10%, whereas we
know K,' to within about Q. 01%. The locations of

the complex poles are distinctly a function of y for
variations of 10/0 in y. When the complex poles
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TABLE XII. Series for F(() [see Eq. (3.11)] for the
spin-& Ising model vrith y = 9.7912. The thirteen-term
series of Ref. 18 has been used to obtain the last thoro

terms ~

which we found no evidence of nonanalytic correc-
tions to the dominant singularity.

D. Model series

0
1
2

3
4
5
6
7
8

9
10
11
12

Coeff. of $

1.00000
l.22559
1.52821
1.91315
2.38932
2.97003
3.81252
4.86377
4.46108

15.72241
—30.35825
-52.81200

—495.00264

where y, ' is the closest pole to the origin; the dom-
inant singularity in 5'(f) cannot be located at y,

' =-, .
Now y, '= 5 is the closest pole to the origin on the
positive real ( axis, and poles with I y;1

~
& y1 on the

negative real axis would make an oscillatory con-
tribution to the series coefficients. Thus, the
cause of the sign change would seem to be associated
with the complex poles appearing in P($). For
larger values of & (~ 1) no sign change is found in
the first 11 coefficients of F($). However, the two
fewer terms for s ~ 1 could be significant in this
regard. In Sec. III 0 we construct model series
which lend further support to the idea that these
complex poles couM be due to nonconfluent singu-
larities. We can summarize the results of our
analysis using the Baker-Hunter transformation as
follows. We find strong evidence for universality
of the c11t1cal exponents. The analysis ploduces
a rather unbiased estimate that y, =1.250+0. 005
for all s. Furthermore, we would estimate y2
=0. 67 +0. 09 independent of s although evidence of
crossover to y~ =0.25 at =

& is evident. This lat-
ter 1esult 1s cons1stent %1th our 1 at10 analysis 1n

finally disappear (at systematically decreasing y
for increasing order & of the [k —I/O] approximant),
the resulting simple pole is at y =1.4 (y=0. 'I).
Although we were initially inclined to ignore these
as "defects" in the approximants, at this point it
seems likely that they are a manifestation of non-
confluent singular behavior in y which cannot be
described by Eq. (S.8). It is tempting to speculate
that the extra singularity has precisely the form
A(1 -K/K) o'7'. In Table XII we give the coefficients
of F($) (using y = 9.7912) for the & = 2 model. Note,
in particular, that the last three terms listed are
negative. Since the leading behavior is supposed
to be

We have constructed two model series y1 and y
whose parameters were obtained by directly fitting
the series coefficients k„ for the spin-infinity mod-
el. The parameters of these model series were
obtained by least-square fitting the coefficients h„
to the coefficients of the assumed model series.
The coefficients were not equally weighted in the
fitting procedure. Rather we proceeded as follows.
Estimates of the parameters of the model series
were obtained using the first X coefficients A0,
h ~ ~ ~ h „with k, being weighted in direct propor-
tion to its magnitude. Since the magnitude of k~ in-
creases exponentially with k this procedure very
heavily weights the higher-order coefficients.

In the first case we assumed a very general con-
fluent singularity form

and in the second case we explicitly assumed an ad-
ditive nonconfluent singularity. That is, we fit the
series to the form

TABLE XIII. Parameters of the least-squares fit to
Eq. (3.12) obtained using Pp Q$ ~ ~ QpJ'

a. Spin-~ Ising model on the foe net.

6
7
8
9

10
11
12

3.50748
3.50748
3.50734
3.50734
3.50733
3.50733
3.50733
3.50733

0.25852
0.25876
0.25894
0.25894
0. 25894
0.25894
0.25894
0.25894

0.06914
0.06746
0.06747
0.06747
0.06748
0.06748
0.06748
0 ' 06748

O. 01514
0. 02232
0.01753
0. 01742
0. 01744
0.01747
0.01748
0.01744

—0.006
—0.003
—0.009
—O. 009
—O. 009
—0.009
—0.008
-0.009

b. 82 set Identically

N y=Kc

to zero.

BI

8
9

10
11
12

3.50741
3.50738
3.50737
3.50736
3.50736

0.25883
0.25886
0.25888
0.25889
0.25889

0.06731
0.06735
0.06739
0.06740
0.06740

0.02328
0.02265
0.02211
0.02180
0.02173

(2. 13)

Consider first the model series y1 with only con-
fluent singularities. In Table XIII, part a we list
the parameters y, A, A, B„and B obtainedus-
ing the first N+ 1 coefficients as a function of Ã.
(We have used h» and h, 2 provided to us by Saul,
Wortis and Jasnow. '0) The apparent convergence
of these results is spectacular. Qn the basis of
these results alone, we would quote K, '= 3.50733
+ 0. 00001, A& = 0. 25894 + 0. 00001, and B1 = 0. 06748
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TABLE XIV. Mode1, series resul. ts.

a. Parameters of the fit to Eq. (3.13) using ho through kz for N= 8, 9, and 10.

y =E~ Ag Bg A2 B2

8 3;5070 0.25899 0.06821 0.0290 —0.003
9 3.5072 0.25896 0.06855 0.0288 —G. 003

10 3.5072 0.25895 0.06796 0.0275 —0.003

3.0975
3.1682
3.1693

b. End-shifted ratio analysis of model series X& and X2, and of the s = ~ susceptibility
X (g =~). X~ vras determined from the tenth-order fit to Eq. (3.12) vrith 82 & 0, and X2 from
the tenth-order fit to Eq. (3.13).

N

5
6
7
8
9

~10

y(l)
3.4550
3.5017
3.5066
3.5078
3.5081
3.5082
3.5082

Xi

y(l)
1.391
1.253
l.238
l.233
1.232
l.232
1.232

~(1)
1,99
0.96
0.80
0.74
0.72
0.71
0.71

y (2)
3.4942
3.5060
3.5080
3.5084
3.5084
3.5083
3.5083

X2

y(2)
l.268
1.237
1.232
1.230
l.230
1.230
1.231

~(2)
1.01
0.75
0.69
0.67
0.67
0.67
0.68

y (~)
3.4831
3.5053
3.5082
3.5079
3.5081
3.5081
3.5081

X(s =~)
y(~)
1.300
1.241
1.232
1.233
1.232
1.232
1.232

g(ce)
l.30
0.82
0 ~ 72
0.74
0.72
0.72
0.72

+0. 00002. However, even though they appear well
converged the parameters A2 and B2 are quite
"soft. " To show this we have set B~ equal to zero
and fit the series to Eq. (3. 12) just as above. In
Table XIII, Part b we showed the results obtained
by fitting the first %+1 coefficients with %=8, 9,
10, ll, and 12, The apparent convergence is still
quate good, but the est&mates for K,', A~, and B,
are slightly changed, while that for A3 is changed
by 25'%%uo. With B2=0, K =3.50736, A, =0. 25889,
and 8, =0.6740 are the best estimates.

Qne might feel that we are bound to get good ap-
parent convergence because in each order we

change the number of parameters fit by only 1.
Thus for N- 1 = 11 this is only one new parameter
out of 12. However, the Nth coefficient is assigned
approximately 3.5 times the weight of the (N-1)th
coefficient, 12. 3 times the weight of the (N- 2)th
coefficient, etc. , in the fitting procedure. Never-
theless to check our procedure, we have also fit
Eq. (3.12) with B, set equal to zero by exactly solv-

ing for the estimates of K,~, A~, B» and A2 ob-
tained using h~, k„~, A& 2, and k& 3 for %=V
through 12. The value of K, estimated using this
procedure is 3. 5073+ 0. 0001 independent of X for
N= 7 through 12. The estimates for Aj and B& are
somewhat more scattered, but yield A& =0.2589
+0. 0003 and B~ =0.06V+ 0. 001 in excellent agree-
ment with the above fitting procedure. A~ is found

to be 0.023+ 0. 005 which is consistent with the re-
sults of Table XIII. In summary, the inclusion of

Az and/or B2 seems to be important, although their
values are not well determined by fitting to order-
twelve series.

The results of fitting the nonconfluent form, Eq.
(3. 13) are presented in Table XIV, Part a. The re-
sults for E,~ are apparently well converged to K,~

= 3.5072 + 0. 0001; and A, is estimated to be A,
=0.2590+0. 0001, while B~ is found to be 0. 068
+0. 001. Although these results are not so well
converged, they are fully consistent with the con-
fluent-singularity results above. The nonconfluent
singularity is located about 10/o further from the
origin than the dominant singularity. Both its po-
sition and amplitude are quite "soft. " Different
"starting" values for the parameters to be fit lead
to different results for y and I3~, the range being
about 10%%uo in both. However the parameters y, A~,
and 8, are "hard, " i. e. , insensitive to change of
starting values.

To compare the two types of model functions we

first compare how well they fit the series coeffi-
cients h„. Both y, and y2 fit the higher-order terms
in )((s =~) with negligible relative error, but )(,
"produces a significantly better fit to the lower-or-
der series coefficients. In Table XIV, Part b we

compare the endshifted ratio analysis of y(s = ~)
with that of the model functions y, and y2 obtained
from the tenth-order parameters of Tables XHI,
Part a and XIV, Part a, respectively. The ex-
treme similarities among the three sets of results
is striking. The fact that y, is in somewhat closer
agreement with )((s = ~) than is g2 should probably
not be taken seriously. These fits were obtained

by fitting the series coefficients directly. Thus the
presence of such innocuous terms as De ~~~~

(which would have little effect on higher order ra, -
tios) could easily change the relative quality of the

fits of the two model series. Baker-Hunter anal-
ysis of the two model series also produces results
very similar to the analysis of y(s =~). However,
there are no complex poles in &[y~], whereas the
complex poles first appear in the [4/5] approximant
to F[y2] (recall that P[y(~)] had complex poles in
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TABLE XV. Pade analysis for D lnx(W) for various spin values on the sc lattice [5'=2KKc/(K+K )]. The resuIts
in row N reflect all [LjMj approximants with L+M —1=¹Within an N class the results are quite independent of L
(or M).

N KC

7 1,6644
8 1,6636
9 1, 6636

10 1.6639

1.224
1 232
l. 231
1.230

2. 2035
2, 2027
2. 2029
2. 2030

1.224
l. 235
1.234
l. 234

K-i
C

s=2

2.4615
2.4609
2.4610
2. 4612

l.234
l. 239
l. 237
1.236

2. 7129
2. 7123
2. 7126
2. 7127

l. 239
l.242
l. 249
l. 239

s=1, 5
K y KC

s —-1

3.1951
3.1949
3.1956
3.1957

l. 248
1.249
l. 247
1.244

K-'
C

S=21

4. 4992
4. 5055
4. 5060

l.273
l. 255
1.258

both the [3/4] and [4/5] approximantsj. We feel that the
lack of complex poles in the analysis of y, and their
presence in X lends strength to the hypothesis that
they arise from nonconfluent singularities.

This completes our discussion of the fcc series.
Using both ratio and Baker-Hunter analysis we have
found conclusive evidence that y = 1.25 independent
of +, the apparent spin effect being due to a weaker
confluent singularity with exponent y~= 0. 75+ 0. 08.
There remain subtle problems with the analysis as
discussed above. However, we feel that resolution
of these relatively minor difficulties would require
significantly longer series and/or new methods of

analysis. Based on all methods of analysis we
would claim that the leading singularities in y(s)
are of the form given in Eq. (3.13). For s = ~, we

estimate conservatively that K,' = 3. 5073+ 0. 0001,
A~ = 0. 2589 + 0. 0002, and Ba = 0 067+ 0 001

IV. ANALYSIS OF SERIES ON THE SIMPLE CUBIC NET

The simple cubic lattice is typical of loose-packed
lattices in that it may be divided into two identical
interpenetrating sublattices. For the Ising magnet
this has the effect that the antiferromagnetic singu-
larity is on the radius of convergence at K= —K„
where K, is the ferromagnetic critical point. The
location of a competing singularity at —K, leads to
cha, racteristic oscillatory behavior in the ratios.
This oscillation considerably degrades the apparent
convergence of the various ratio analyses. It may
be taken into account and partially removed by ex-
trapolating sequences of alternate ratios R„, R„2,
. . . , g„4, or of square- root alternate ratios. '
Nevertheless, apparent convergence is never as
good as on close packed lattices, such as the fcc
and THI nets.

Convergence of estimates based on Pads approxi-
mants to ding(K)/dK are likewise more poorly con-
verged on the sc net than on the fcc net. However,
the scatter and number of defects can be signifi-
cantly reduced by an Euler transformation to the
variable W=—2K,K/(K+K, ) which leaves K, unchanged

(W, =K,) but shifts —K, to W= —~, An error 5K,
in the estimate for K, used in the Euler transfor-
mation leads to a critical point Kc = K, ——,'5Kc
+O(5K,'), i. e. , with the same magnitude shift from
Kc as in the estimate used„More important, the

antiferromagnetic singularity is shifted to W* = Ka/
(5K„which is far from the radius of convergence.
Thus, our method consisted of estimating K, by
analysis of ding(K)/dK and using this estimate in

an Euler transformation to a series in O'. We then
used Padd analysis of ding(W)/dK to estimate W,

and y, The transformation was iterated until W,

obtained from Pads analysis agreed with K,. The
final estimates are listed in Table XV for a. number
of spin values. These estimates are the "best" es-
timates obtained from [f/m] approximants with
N -- l+ m —1 for N = 7, 8, 9, and 10.

The general trend of the estimates for y(s) is the
same as that described above on the basis of end-
shifted ratio analysis of the fcc series. Spin in-
finity corresponds to the best apparent conver-
gence, as above to y(~) = l. 23. Spin- —', is not well
behaved: on the basis of the last two orders (we
did not use the Sykes et al. eighteen-term series'
but rather to maintain consistency used order-ten
series) one would conclude y(2) = 1.25 —l. 26. This
also follows the trend found in the fcc series. The
[5/3] approximant is defective or nearly defective"
in all cases studied. The reason for this is not
understood. In all cases except spin- —,', the esti-
mates K,[l/m] obtained for the class (f+ m —1= 10,
f, m~ 3] agree to the accuracy shown.

We attempted to use the Baker-Hunter confluent
singularity analysis on the sc series. In contrast
to our experience with the fcc analysis, the sc anal.
ysis failed completely. The estimate for y, is
about 1.37 which is clearly unreasonable. The ob-
vious point is that the second most significant sin-
gularity on a loose packed lattice is not confluent
with the dominant singularity, but is rather the
antif erromagnetic singularity'2 [which behaves as
A ~ (K+K,) ~ with n=8 ]. This of course means
that a sophisticated form of analysis suitable to a
particular class of confluent singularities will not
do very well for this case. So, in retrospect, the
failure of Baker-Hunter analysis is unsurprising.

Although we could not analyze the confluent cor-
rection terms, we have no doubt of their existence;
nor do we doubt their essential similarity to those
found in the fcc case. Indeed, we can infer their
existence from the ma. rked similarity of the ap-
parent spin dependence of y(s) on the two lattices.
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X(V) =X.e '"+X~e '"+X.""+ ~ (5. 1)

where e = (V, —V)/V„and the coefficients X„X„
and y, confirm closely the previous numerical re-
sults of Sykes et al. " Of course, since Eq. (5. 1)
is an expansion about V„ it says nothing a,bout non-
confluent singularities. However, it does say that
for s =

& there are no nonanalytic confluent singu-
larities appearing, at least through order z'/4.
This result is in agreement with our conclusions
about the fcc susceptibility, for which we decided
that the term in e-"'/3 was absent for s = -,'.
though Eq. (5. 1) was derived for the SQ lattice,
previous experience with two-dimensional s = —,

Ising models indicates that it will also hold on other
two-dimensional lattices. Indeed, Sykes et gl. '8

using seventeen-terlYl series for X(V) on the TRI
net found

X{V)=Ae-"'+ Be-'"+Ce'"+ "., (5. 2)

with A = 0. 847086+ 0. 00001, 8 = 0. 1756 + 0. 001, and

C = 0. 0287+ 0. 01. We therefore expect to find no

evidence for non-analytic confluent correction term~
for s=p.

We have studied the spin-s susceptibility on the
triangular net. The series does not exhibit good
apparent convergence for any value of s. Sykes et
al. '8 note that on the TRI net s = 2 extrapolation be-
comes constant only beyond eleventh order. As

with the three-dimensional results, there is a
marked spin dependence in the apparent critical
exponent y obtained from endshifted ratio analysis.
In contrast with the three-dimensional spin effect,
the apparent value of y gncxeases with increasing
s. That is, using tenth order estimates y varies
from y = 1.V5 at s = —, to y= 1.89 at s = ~, the latter
value prevailing for s & 3.

By studying the Baker-Hunter series 5:(() we see
that there are strong nonconfluent singularities
masking the dominant behavior in y. In fact, these
nonconfluent singularities are significant enough
that they strongly affect, through the appearance of
complex poles, all but the dominant (y = l. 75) sin-
gularity in 5($). We have made no effort to iden-
tify and remove the nonconfluent terms, but only
note that we must keep them in mind when inter-
preting confluent singularity analyses which ignore
th eQl ~

V. ANALYSIS OF TRIANGULAR-NET SUSCEPTIBILITY

The spin- —', Ising model has been quite thoroughly
studied in two dimensions using exact analytical
techniques. '8 In particular y is known exactly to
be y=4, " and V„,[= tanh(K, )] on the TRI lattice is
known to be V, = 2 —uY ." Further Barouch et 441.

"
have recently obtained the leading terms in the
exact expansion of X(V) about the c4itical point on
the SQ net. They find that

TABLE XVI. Parameters of model series, X& =-A&j

(1-yAj' 4+&j(l -yE)' +A2j(1 -yK) and Xq=-A(j
(1 yZ)7/4 + P ln(1 yQ j(1 yZ') 5/4+A j(1 yZ)3/4
tained by fitting the first A) coefficients of the K-series
for the s =~ susceptibility on the triangolar lattice.

y=A ~

1.4363
&1.437
1.4319
1.4327
1.4311
1.4311

1.4279
1.4354
1.4274
1.4298
1.4286
l.4292

0.244
0.240
0.251
0.251

X2

A(

0.308
0.248
0.321
0.296
0.310
0.302

—0. 063

-0.136
—0. 122
—0.161
—0.161

0. 102
0. 046
0.117
0.092
0. 107
0. 098

0.210

0.292
0, 275
0.326
0.326

0

Ap

0.042
0.101
0.035
0.055
0.045
0.050

A4 Bln(l —yK) Az
X2 (1 yK)7/4 +

(1 yK)574 +
(1 yK)3/4 '

(5.4)
The parameters (A„A„B, and y for X„A4, A„B,
and y for X2) of the test functions are then chosen,
as above, to give the best fit to the first X terms
of the series for X(s). In Table XVI we list the fit-
ting parameters obtained using orders %=5 through
10 for the s = ~ series ~ There is little to choose
between X, and Xz, as far as smoothness of the se-

A. Si&Aviation by model series

We have attempted to fit the TRI susceptibility
series to two general kinds of confluent singulari-
ties, To motivate the choices we first recall the
apparent spin dependence of y(s). Namely, y(s)
increases with increasing s. Now we assume that
the amplitude of any nonnnalytit. " confluent correc-
tion term is zero for s =—, [in agreement with Eqs.
(5. 1) and (5.2)]. We have seen above that a con-
fluent correction B(l —K/K ) ', with a, positjve
amplitude 8, leads to an apparent exponent y,«
less than y. Thus, we expect that, for an apparent
exponent greater than y, B will have to be negative.
We do not present the argument here, but rather
only note that y,«& y could also be due to a con-
fluent correction of the form Bln(l -K/K, ) (1 K/-
K,) "'~ ', with B f/&siti&e.

With these points in mind we have chosen to fit
the coefficients h„(s) of the spin-s series to two
model forms

A~ B A
Xl (I,K)7/4 (I K)5/4 (I K)3/4
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TABLE XVII. End-shifted ratio analysis of the s= ~, triangular-net suscepti-
bility series, together with end-shift analysis of the model series X~ and X2 ob-
tained from the N =10 results of Table XIII.

4 0 O ~ 4 0 ~

1„350 2„78
6 1.402 2. 19
7 l.416 2. 03
8 1.421 1,96
9 1,424 1.92

10 1.426 l. 89

3.80
2.41
1.90
i.62
1.44
1 31

1,411
l.412
1.430
l. 420
1.426
1, 424
l. 426

2. 04
2, 03
l. 87
l. 98
1.91
1.92
l.89

1.78
1.74
1,28
1.65
l.37
l. 44
1.31

l. 390
1.413
l. 420
1.423
l.425
l.426
l.426

2. 21
2. 03
1.97
1, 94
l.92
1.90
1, 89

2. 17
1,78
1.60
l.49
l.42
1.36
1, 31

quence of fitting parameters is concerned. (Al-
though, it is somewhat surprising to find A2&A~ in
the case of )(, . ) Note that as predicted in the pre-
ceding discussion the estimates for 8 are all nega-
tive while those for B are positive. To see hom
well y, and g simulate y(s = ~) we list in Table 15
the endshifted ratio analysis for the three series.
Again, there is little to choose between the model
functions. Both simulate the s =~ results very
well. However, based on over-all fit (including
lower-order behavior) we would choose the second
form ~. On the other hand, there is validity in the
argument that one should not introduce more com-
plicated functional forms than needed to fit the se-
ries unless there is outside supporting evidence for
the more complicated function. In this case me
have no a Priori arguments that either function, y&

ox y~, is more appropriate than the other.
We have also used y& and y~ to simulate the sus-

ceptibility for s = 1, 2, and 3. In these cases the
sequence of fits to the parameters of y~~ is much
smoother than that to the parameters of ya.
Whereas for s =~ the last two (N= 9, 10) parameter
sets mere slightly closer to one another for y, than
for ya, here the differences is considerable. For
example, with + =3, the estimates for A~ obtained
using ninth- and tenth-order series are mithin
0. 3/q of one another while the ninth- and tenth-

order estimates for A, differ by more than 3' from
one another. The ninth- and tenth-order param-
eters are summarized in Table XVIII for s = 1, 2,
and 3. On the basis of apparent convergence for
these values of ~ we deflnltely would choose gy as
providing a better simulation of )C(s) than yz, al-
though the caveats concerning omission of correc-
tions discussed in Sec. IIID would apply here also.
As with + = ~, the endshifted ratio analyses of g,
and yz are very similar to that of y(s).

In the case of + = -&, no successful fit could be ob-
tained using either g& or ya. This was already ex-
pected in the light of the exact results on the SQ
net" and of the Sykes et al. numerical results" on
the TRI net. W'e sam no reason to redo the excel-
lent z =-, analysis of Sykes et al ~8

B. Baker-Hunter analysis

For s &1 the Haker-Hunter series 3'($) is replete
with complex poles and does not really do an ade-
quate job of estimating the exponent y of the dom-
inant singularity. There are tmo factors involved
here: (i) we do not know K, at all well for s & —'„
and (ii) there are evidently very strong nonconflu-
ent correction terms (which have much less effect
on the ratio and test series analysis than on Baker-
Hunter analysis). For s =-', we know V,[=tanh(K, )]
exactly and also have six further terms in the V

TABLE XVIII. Parameters of the model series X~ and X& defined in Table XIII, for various
values of spin.

9
10

10

2.675
2. 676

0. 580
0. 569

2. 096
2. 097

0.405
0.401

1.885 0. 348
l. 886 0. 347

—0.246
—0. 204

0.387
0. 329

-0.247
—0, 233

0. 445
0.424

—0.221 0.419
—0.214 0.409

s= 1
9

10

9
10

8= 3
9

10

2. 093
2. 094

1.882
1.883

0. 496 0.164
0.475 0.142

0, 015
0. 026

0, 430 0.147
0.415 0.131

0. 034
0. 042

0. 672 0.165 —0. 042
0. 635 0.126 —0. 022
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TABLE XIX. Baker-Eiunter results for y&, y2, Q& and
A2 using the & series for y (s=2). The exact critical
Point ~&= 2 —W~ has been. used in the transformation.

tl/2]
[2/3]
[3/4]
[4/5]
[5/6]
[6/7]
[7/8]

1.726
l.726
1.740
1.756
1.752
l.752
1.750

V2

0.633
0.631
0.749
0.904
0.846
0.850
0.789

Ag

0.892
0.892
0.866
0.829
0.841
0.840
0.846

Ap

0.108
0.108
0.134
0.170
0.160
0. 161
0.162

VI. SUMMARY AND CONCLUSIONS

We have presented a rather thorough discussion
of the spin-s Ising ferromagnet in two and three
dimensions. Our results are consistent with the
conclusion that the dominant behavior of the sus-
ceptibility is given by (e =1 —K/K, ).

(6.1)

with y=+4 and —,
' in two and three dimensions, re-

spectively. In all cases X& is found to be zero,
within the accuracy of our analyses, for s = —,, In
the case of the fcc lattice especially we found
strong unbiased evidence for y = 1.25 independent of
s using the Baker-Hunter confluent singularity
analysis. We found good evidence both from ratio
a,nd Baker-Hunter analysis of the fcc series that
the leading correction term has exponent y~ =y —~

with 5= 0. 50+0. 08, independent of s. We also

series. Thus we would expect Baker-Hunter anal-
ysis to provide more information for s = 2 than for
s &2. Table XIX lists the Baker-Hunter estimates
yi y2 A~ and Aa app p

g =A)/(1 —V/V, )~&+A2/(1 —V/V, )"2+ ~ ~ ~

These results were obtained using the exact value
2 —v'3 for V,." The convergence of y& to 1.750 is
rather good, and the estimate A, =- 0. 846+0. 005 is
in reasonable agreement with the accurate value

A& = 0.84701 given by Sykes et al. On the other
hand, the rather poor convergence of y~ to 0. V5 is
almost certainly due to the presence of nonconflu-
ent singularities [the approximants to 0(() are re-
plete with complex poles]. Nevertheless, A3= 0. 16
is within 10/0 of the accurate result Az= 0. 176 giv-
en by Sykes et al. These results are interesting
not so much because they lead to the estimate
y =1.75 in agreement with exact results, but rath-
er because they show how Baker-Hunter analysis
may break down (presumably because of the pres-
ence of nonconfluent correction terms). They per-
haps serve to put an upper band on our confidence
in Baker-Hunter analysis, when the analysis is
marred by complex poles.

conclude that in all cases studied there were non-
confluent singularities marring the convergence of
the confluent singularity analysis. These noncon-
fluent terms are evidently specially important in
two dimensions.

The conclusions drawn for the TRI lattice (d =2)
are much less certain than for the fcc case. Here
we had to resort almost exclusively to fitting model
series. That is, we assume a form like Eq. (6. 1)
and fitted the first N terms of the series to obtain
a model series. The parameters of the test se-
ries were found to exhibit rather good convergence
with increa, sing ~V, and they behaved smoothly as a
function of s. From such analysis we can draw no
stronger conclusion than that the THI series is con-
sistent with Eq. (6. 1). To do better would require
longer series (say 13 or more terms), and we have
no plans to generate such series.

For the loose packed lattices the series conver-
gence is degraded by characteristic oscillatory be-
havior due to the existence of an antiferromagnetic
singularity at -E, on the radius of convergence.
We were unable to carry out detailed confluent sin-
gularity analyses on loose-packed lattices, al-
though we found indirect evidence for the impor-
tance of confluent corrections in the case of the sc
la.ttice.

To extend the verification of the universality hy-
pothesis, we are studying other Ising-like models
(scalar order parameter models) such as the con-
tinuum models introduced by Wilson and others. ~

Further we shall apply the confluent singularity
analysis to the X-p, planar Heisenberg and isotro-
pic Heisenberg models. This work will be reportei
on elsewhere.
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APPENMX A

The bare vertex weights entering the high-tem-
perature expansion for the spin-s Ising suscepti-
bility have the form

$

f„=(2s+1)' g I" . (A1
m $

This form can be expressed as a, polynomial of de-
gree 2l in s. However, it has an even simpler ex-
pression in terms of X=s (s q 1)

f„=Pa„X".
n=i
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The coefficients a„are easily obtained by compar-
ison of the equations for s and & —1. It is first
noted that a, = 1/(2E+1). Then a~ is found recur-
sively for k=1- 1, I-2, . . . as

1Iq=3 X,
I, =~(sx'-x),
f, = —,', (sx'-sx'+x),
I =—(5X —10X +QX —3X),

(A4a)

(A4b)

(A4c)

(A4d)

Iio=~s~(SX~ —10X +IVX —15X + 5X), (A4e)

Ig2 g365 (105 X' 525 X + 1435 X

-2350X'+20VSX'-541X) . (X4f)

APPENMX 8

where l' is the smaller of l or 2k. The results
needed to find the series coefficients through order
10 are listed here:

f(K) =gf„K".
n=0

Then the coefficients of the series are given by

r (n+ y) Ar(n+ y —1)I'(y)
r(y) '

A, r(n+y)r(y —1)

(B2)

ar(n ~y —5)r(y)
A, r(n+y)r(y -5)

where I"(x) is the standard I" function (x —I)!. The
large-n asymptotic expression

r(n+y —5) g 5(2y —5 —1)
r(n+y) 2n

[3(2y —5 —1) +(5 —1)] 0( ') (B4)
5(5+1)

24n

(1 K-/K )" (1-K/K )"-' (I K/-K )'-' '

(Bl)
Here A, and Aa are the leading terms in the Taylor
series expansion of the amplitude of the dominant
singularity about K„and 8 is the amplitude of the
weaker confluent singularity. I et f(K) have a Tay-
lor series

Consider the function f(K) given by [with
y &max(I, 5}]

will form the basis of our analysis of the ratios
R„=f„/f„&. —Using (B4) we write f„for large n as

Y Y

x 1 — + + 32@-e—1'+5-l +On~ . 85&(2y —5 —1) 5(5 + 1)
2n 24n

To facilitate the calculation of R„we rewrite f„and f„, in a reduced form, namely,

f„= [K, "A r(n+y)/r(y)r(n+ I)] (1+y) and f„=[K,"'~A, r(n+y —I)/r(y)r(n)] ( I++ye) .
Here y and 6 are expressed as

0 0

y =A~ '+ a [n-'--.' 5(2y - 5 —1)n~-']+ O(n-2)

(B&)e=Ap'+a5n-' ' '. B5(5~1)(2y--5--2}n-' '+O(n-') .
0 0 0 0

We have introduced reduced amplitudes A2 and B given by Aa=A2r(y)/A r(y I); B=Br(y)/A r(y 5)
this point one may worry about our neglect of terms of order n ~ in y, since we certainly will want to keep
all terms of this order (and smaller) in R„. However, this is no worry because of the manner of which y
enters R„. That is, (1+y)/(1+y+ E) may be written as

( I)n&n

(1+y)" '

which means that the lowest-order contribution involving y" enters as ey . The first neglected term in this
product is of order n '~ "', which means that we may neglect terms of order n in y since this corre-
sponds to a neglect of terms of order n ' in 8„. We thus write A„as

Rn-Kn [1+ (y —I)/B] [1 —e+yE—y e+ O(e'

q y 6)] q

which, using (BV) and (BB), becomes



in which we have neglected terms o5 order n ~~'~", n ~~' ", n 3, or smaller.
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