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Confluent singularities and the correction-to-scaling exponent for the d = 3 fcc Ising
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The susceptibility of the spin-s nearest-neighbor fcc Ising model is studied at zero magnetic field by
twelve-term high-temperature series. We find that the data near criticality are consistent with

)( = A (s)t ""[1+ B(s)t '], t = 1 —T, (s)jT The c.orrection-to-scaling exponent has the universal

value 4, = 0.50 ~ 0.05 in good agreement with &-expansion estimates. The confluent amplitude B(s)
vanishes at s = l/2 to within uncertainties. Values of the critical parameters are tabulated for a variety
of spins.

I. INTRODUCTION

It has long been appreciated that the pure power
laws which characterize the "ideal" scaling be-
havior of thermodynamic functions near enough to
criticality 's are subject to corrections. s In addition
to so-called background terms, we distinguish
singularities at values of the temperature and field
variables QtoQQ ft'082 the crtttcal point, f = (T —T~)/
T, = 0, It = 0, from those ("confluent" ) singularities
which occur at (= h=0 but are masked by the dom-
inant, scaling singularities. As an example of the
former we may cite the "antiferromagnetic" singu-
larities which occur at T = —T, (It = 0) in loose-packed
(two-sublattice) ferromagnetic Ising models. "
Such corrections are unrelated to the critical fluc-
tuations and are generally negligible near critical-
ity. The confluent corrections, on the other
hand, are a direct byproduct of the same fluctua-
tions responsible for scaling behavior. They may
be large (even divergent) near criticality and are
only unimportant relative to the scaling contribu-
tions. The focus of this paper is the determination
of the critical exponent characterizing these con-
fluent corrections in the three-dimensionaL (d = 3)
Ising model (n= 1, i. e. , one-spin dimension).

Early, more or less phenomenological effortss
found a variety of correction exponents, related by
scaling laws to the ordinary critical exponents.
Wegner was the first to study corrections to scal-
ing in the renormalization-group context. He
showed how confluent corrections arise through
the dependence of the thermodynamic functions on
the fields associated with irrelevant operators.
The leading correction comes from the leading ir-
relevant operator, i. e. , the irrelevant operator
associated with the least negative' eigenvalue

y = —
I y t = —v of the linearized renormalization-

group equations. The corresponding corrections
to the (reduced) free energy per lattice site are of
the form

[f= (T —T,)/T„h=IH/ks T,] near criticality, with"

The corresponding expression for the (reduced)
zero-field susceptibility is

=At~(1+Bt + ~ ~ ~ ) . (3)
If=0

The exponent ~ has been calculated' ' in the g ex-
pansion (e = 4 —d) through order s, giving for rt = 1,

&c =e -~str e a+1.618es+0(a'), (4)

which is not well converged at e = 1 but is estimated
by Pade methods to givets &o = 0. 8 or [using (2)
with' v = 0.638] n, t = 0. 6. Additional calculations
of 6, at d =3 by recursion-relation methods have
very recently been repoxted by Swift and Grover'6'
and by Golner and Riedel. '6~

The first observation of the correction exponent
6, was reported by one of us, 'v in 1970 (before its
theoretical significance' was fully appreciated) in
the course of a study of the zero-field susceptibility
of the spin-s Ising model on the fcc lattice using
twelve-term high-temperature series. This study
has remained unpublished until the present. In the
interim there have been several related develop-
ments, Barouch et al. ' have calculated analytically
the leading correction to the zero-field susceptibil- .
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ity of the d=2, s= —,
' Ising model on the square lat-

tice. They find a result of the form

~1= 0. 50+0. 05 (5)

in agreement with (4) and previous estimates. "'2'
In addition, we give values for the critical tem-
perature ks 7, (s) and the critical amplitudes Isee
(3)]A(s) and B(s) for spins s = 2, 1, . . . , 5—,', and

The correction amplitude B(s) is an increasing
functionof spin, with B(&)=Otowithinuncertainties.

II. CALCULATIONS

A. Series derivation

The Hamiltonian of the spin-s nearest-neighbor
Ising model is (in reduced units)

(7)

in good agreement with previous numerical results
of Sykes et a/. ' Equation (5) is consistent with
the correction factor in (3) being analytic at f = 0
and might be interpreted as 4, = 1. Actually, there
is good evidence in both two and three" dimen-
sions (as we shall show below) suggesting that
s = —,

' (as opposed to s & —', ) is a special case and

favoring B(s)=0 at s=-,' (only) with 0«, &1 and

independent of s. Thus (5) probably does not con-
stitute an evaluation of 4, in d=2, m= 1. Very
recently (in work quite independent from ours)
Camp and Van Dyke ' ' have analyzed high-tem-
perature series for the susceptibility of the spin-s
Ising model on a number of lattices (d= 2 and d= 3)
including the fcc. Their series are shorter than
ours (10 terms in place of our 12); however, they
reach conclusions which are fully consistent with
ours, "using analytical methods which are some-
what different. Finally, we note that Greywall and
Ahlers have found it necessary to introduce con-
fluent corrections into the analysis of He data near
the X line. He finds 0. 4 ~ &, -0. 8 in crude agree-
ment with our conclusions and the & expansion (4).

In this paper we report a detailed study" of the
susceptibility of the spin-s nearest-neighbor Ising
model on the fcc lattice, based on twelve-term
high-temperature series. Although we have such
series for a variety of other lattices and thermo-
dynamic functions, 23 we choose the fcc suscepti-
bility because (a) d= 3 series are better converged
than corresponding d=2 series of the same length,

(b) the analysis of loose-packed lattices is com-
plicated by the presence of antiferromagnetic sin-
gularities on the circle of convergence, ' and (c)
susceptibility series are, among available series,
typically the smoothest and best converged. We
conclude that for d = 3, v= 1 the correction index

has the universal value

The noninteracting free energy is easily evaluated,

m(K=0, k) = in(2s+ 1)++-
))=1

s 2k '!

(B~ are the Bernoulli numbers' ), which gives
h= 0 values of the unrenormalized semi-invari-
ants, ~ for example,

M2 (s) = (s+ I)/3s. (10)

Established computer codes26'28 now Bllow us to
generate 12 terms (k = 1, . . . , 12) in the high-tem-
perature series for the zero-field correlations
and (reduced) susceptibility

8 K
X

=SS,'(s)
(S Qs, (s)s'),

k=1

where v=KMz(s). High-temperature series for
the spin-s fcc Ising model were first calculated
by Domb and Sykes. 2' They obtained the coeffici-
ents through k= 6 as finite polynominals in the
variable X= s(s+ 1). The polynomials ' k = 7, 8

and k = 9, 10 h3ve been added recently by Camp
and Van Dyke. Numerical valuess of the coef-
ficients a „(s)and ' a,z(s) are listed in Table I
for a variety of spine. The coefficients a» (—,')
and a,2(—,') were previously available from Ref. 31.

B. Series analysis

Analysis of the series (11) was initially carried
out by standard ratio-Neville and log-derivative-
Pade techniques. "3 It becomes apparent in any

standard analysis that the s = & series behaves
differently from (better than! ) those with s & —', .
This is well illustrated in Fig. 1 and Table II,
which compare s = —,

' and s = ~ (typical of s & &) be-
havior under ratio analysis. If it were exactly
true that l)'(v) =A(1 —v/v, )

~ =A.t~, then' the coef-
ficients ak could be deduced from the binomial ex-
pansion

where N is the number of lattice sites, (12) stands
for a nearest-neighbor pair of sites, and the di-
mensionless coupling K is related to the exchange
interaction J by K= PZ= J/ks T. Each operator S*
takes onthe (2s+ 1) values 8'= —s, —s+ 1, . . . , s —1,
s, so the variable S~/s always lies in the interval
—1 to + 1. All thermodynamic functions may be
derived from the (reduced) free energy per lattice
site,

1
a) (K, k) =- lim —ln Tre 8~)))' .



CONF LUENT SINGULARITIES AND THE. . .

0.5
1.0
1.5
2. 0
2. 5
3.0
3.5
4. 0
4. 5

5.0
5.5

10 aug {s)

1.581 830 429 21
2.318 982 137 38
2.586 064 135 21
2.710 401 91161
2.778 056 387 30
2. 818 876 226 51
2. 845 377 705 11
2. 863 549 825 13
2. 876 549 374 95
2. 886 168 087 57
2. 893 484 16145
2. 931975 653 96

10-"a„(s)'
1.581 351984 73
2.418 844 615 73
2.731228 837 28
2. 878 097 285 01"
2. 958 380 297 10
3.006 942 763 34
3.038 520 086 10
3.060 194905 28
3.075 711154 74
3.087 197 937 22
3.095 938 230 81
3.141970 324 02

~ref erence 31.
"This coefficient is given incorrectly in Hef. 30.

TABLE I. Coefficients aff(s) and a&2(s) for the near-
est-neighbor fcc Ising susceptibility, as defined by (11).
Lower-order coefficients are available in Refs. 20, 21,
and 29. The coefficients are determined numerically
and suffer from roundoff error, despite the use of double
precision arithmetic, so the tenth figure and beyond may
be unreliable.

(y
—S,)(y

—6, 1) (y
—6, +k —

1)

I (y)
k large k~& I" (y —4, )

and the ratios go as

p = (I/v, )( 1+ (I/k)[y —1 —D BR (y, & )]

+ O(k-')+O(k-'-'i)j, (»)

so the leading correction to (13) varies with k ' ~~,

which dominates k, provided 0 &+j & 1. Cor-
rections like (14) are naturally incorporated by a
Neville extrapolation, which effectively fits p~ to
a polynomial in k ' (see s = -', in Table II). On the
other hand, the presence of singular corrections
as in (I 7) makes polynomial approximations poor
and leads to slow monotonic trends in the Neville
tables (see s=~ in Table II). It is common, for
example, to form successive estimates y„ofthe

exponent y fr'om the local slope of the ratio plots

p vs k '. When singular corrections are present,
it is clear from (17) that for large k,

and the ratio of successive coefficients would be
which converges to y from below (B») more
slowly than any integral power of 0 '. This effect

p~ —= a ~ /a ~, = (1/v, ) [I+ (y —1)/k ], (i3)

The actual structure of y(v) is, of course, more
complicated; however, (13) remains asymptotically
true for large k, provided'4 that (a) y(v) At~ nea-r

v„(b)there are no singularities inthe disk
~ v~ & v„

and (c) there are no singularities on the circle of
convergence iv) = v, stronger than (a). The form
of corrections terms to (13) depends on the be-
havior of y(v) on the circle of convergence. If y(v)
=A(v)t~+ B(v), with A(v) and B(v) analytic in the
neighborhood of v, and throughout the closed disk

I v I
~ v„then there is a theorem due to Darboux,

which guarantees that the correction terms go as
integral powers of k ',

1+ + 5~k +53k + ~ ~ ~
1

1.05

1.04

1.05

1.02

1.01

and the coefficients b„bs,. . . can be deduced
from the expansion of A(v) about v, . On the other
hand, if there are additional singularities on the
circle of convergence, then the correction terms
will in general contain nonintegral powers of 0 '.
In particular, a single confluent singularity of
form (3) gives

2 p~ =Pv," 1+BR y, ~q

where

1.00 0.05 0.10

I / I(

0.15 0.20

FIG. 1. Normalized ratio plots for the s = ~ and s =~
fcc Ising susceptibility. Critical temperatures are taken
from Table VI. Dots show the data points. The solid
line follows the asymptotic expression v~p& = 1+ {y—1)/k,
which is exact when X =At . The dashed line shows the
ratios derived from the s =~ mimic function {19),which
has the same asymptotic behavior but contains a conflu-
ent correction. Note how closely the dotted line fits the
s =~ data and how slowly it approaches its asymptote.
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TABLE II. Sample Neville tables for s =~ and s=~. Shown in the first column are the biased ra-
tio estimates from (13)

(&-,')„"~=(a,r, (s)/Zm, '(~))," =@I,(s)/(0+~- 1)

(y)q = 1+k (z,(s)pg, (s) —1),

using y=+4, vc (g) =9.7953, and v, (~) =10.5236. Subsequent columns give the linear, quadratic, and
cubic extrapolants. The rule of thumb in interpreting Neville tables is to read the bottom of the col-
umn which is most nearly constant. Note that for s =y the left-hand columns are already well con-
verged, while s =~ contains slow monotonic trends out to the cubic extrapolants.

6
7
8

S=yl

10
11
12

6
7
8
9

10
11
12

9.7905
9.7912
9.7918
9.7922
9.7925
9.7927
9.7930

10.4520
10.4667
10.4768
10.4842
10.4898
10.4941
10.4975

9.7921
9.7956
9.7957
9.7953
9.7952
9.7953
9.7952

10.5647
10.5545
10.5479
10.5433
10.5398
10.5373
10.5353

9.8017
9.8045
9.7960
9.7940
9.7948
9.7956
9.7951

10.5336
10.5291
10.5280
10.5269
10.5262
10.5258
10.5254

9.8248
9.8083
9.7820
9.7898
9.7966
9.7977
9.7936

10.5319
10.5231
10.5263
10.5248
10.5245
10.5246
10.5245

l.2469
l.2470
1.2471
1.2471
1.2471
1.2471
1.2471

1.2075
1.2108
1.2133
1.2154
1.2170
l.2185
1.2196

1.2453
1.2473
1.2475
l.2472
1.2471
l.2471
1.2471

1.2297
1.2305
1.2312
le 2317
1.2321
1.2325
1.2328

1.2482
1.2522
l.2479
1.2462
1.2466
1.2473
1.2468

1.2328
l.2325
1.2332
1.2336
1.2338
1.2341
1.2343

1.2578
1.2576
1.2407
1.2427
1.2476
1.2493
1.2452

1.2351
1' 2322
1.2345
1.2342
1.2343
1.2348
1.2350

is vlslble in the s = ~ rat1os of F1g, 1.
The s & & data are, then qualitatively consistent

with the hypothesis of a confluent singularity of
the form (3). To test this hypothesis and to make
quantitative estimates of the parameters of (3), we
developed a very simple generalization of the ratio
method. 36 The ratio method in its simplest form
uses three successive coefficients a~ to construct
estimates of v, ', y, and A on the basis of (13).
In the method of "four fits" 3'3' we accept as uni-
versal the value"'" y = +4(see, however, Sec.
IIIA) and use four successive coefficients a,

„

a~, a~„,and a~,2 to solve (15) for estimates
(n, ')~, A„B„,and (&,), of the critical parameters.
It is easy to show that this procedure is conver-
gent as k-~, provided that (a) there are no sin-
gularities within the disk (g[ & v, and (b} there are
no singularities on the circle of convergence
stronger than (3). The rapidity of the convergence
is expected to be good, if singularities in addition
to (3} are weak and far outside the circle of con-
vergence. Table III shows some typical examples.
Note that the estimates of g, ', in particular, are
extremely rapidly convergent as 0 increases (cf.
s = ~ in Table II). Even the confluent amplitude
and index, B, and (A, )~, are quite stably deter-
mined for s & &, although small long-term trends
are still apparent, due presumaMy to competing
singula. rities in y(n). We interpret the good con-

2
3

5
6
7
8
9

10

1

3

6
7
8
9

10

1

3
4
5
6
7
8
9

10

-I
t'c

9.7977
9.7912
9.7905
9.7904
9.7900
9.7963
9.7938
9.7945
9.7959
9.7949

10.3163
10.2220
10.2186
10.2279
10.2285
10.2288
10.2292
10.2293
10.2296
10.2298

10.6667
10.5115
10.5195
10,5216
10.5204
10.5210
10.5212
10.5214
10.5216
10.5218

0.9754
0.9790
0. 9793
0.9793
0.9795
1.0204
0.9748
0.9704
0.9970
0, 9630

0.7333
0.8840
0.8882
0.8704
0.8683
0.8674
0.8654
0.8647
0.8631
Q. 8616

0.4737
0.8005
0.7876
0.7826
0, 7861
0.7840
0.7833
Q. 7824
0.7812
0.7799

0.0252
—0.0025

0. 0000
0.0000
0.0000

—0.0368
0.0216
0.0156

—0. 0153
0.0218

0.3638
0. 1868
0.2065
0. 1488
0.1471
0.1461
0. 1438
0, 1428
0.1407
0.1388

l. 1111
0.2963
0.3014
0.3025
0.3034
0.3017
0.3009
0 ' 2996
0.2976
0.2953

1.0275
2.0061
8.6183
6.9290

—11.6670
—0.0819

0.7752
0.3567

—0. 1553
0. 1924

0.3254
0.8330
0.8972
0.6233
0.5992
0.5874
0.5624
0.5530
0.5319
0.5127

0.2375
0.6553
0.5949
0.5701
0.5902
0.5767
0.5717
0.5655
0.5562
0.5468

TABLE III. Successive four-fit estimates of the pa-
rameters of (3) for spins s=y, 1, and ~. v, (s)=A~Tc(s)/
JM2Ig) with 342(s) = (8+1)/3s. A{s) and 8 (s) are the dom-
inant and confluent amplitudes and A~ is the correction-
to-scaling index.
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8 = p ratios
actual mimic

12.0 12.2441
11.0 11.0197
10.6061 10.6116
10.4029 10.4075
10.2797 10.2851
10.1984 10.2034
10.1409 10.1451
10.0978 10.1014
10.0642 10.0674
10.0373 10.0412
10 0153 10 0179
9.9970 9.9994

s =~ ratios
actual mimic

12.0196
11.4 11.4664
11 1789 11 2011
11.0413 11.0525
10, 9510 10.9578
10.8875 10.8921
10.8405 10.8439
10.8042 10.8070
10.7754 10.7778
10.7520 10.7541
10.7326 10.7345
10.7162 10.7180

TABLE IV. Observed series ratios compared with

those derived from best mimic functions for g =~ and s
Ratios are defined by (13). The mimic functions are

given in the text at (19) and thereafter.

appears to differ by 2-3% from the "four-fit" val-
ues used to form C(v). A preliminary check of the
s =~ model on the bc@ lattice indicates similar be-
havior. One does Dot fare so well in attempting to
Rpply 1116'thod (11), wlllcl1 foI'ces t116 col'1"ection to be
exactly confluent. For example, in the s =- ~ case
the low-order diagonal and near-diagonal approxi-
mants indicate 4, —Q. 54, but approximants beyond
[3/4] are plagued by real zero-pole pairs lying very
close to p, producing defective estimates for 4, .
The s = 1 CRse 1s siQlilar 1D this regard. These ex-
trapolants may be providing an indication that the
structure of the singularity is in fact quite com-
plicated, A more systematic Pads analysis has
been carried out by Camp Rnd Van Dykea in the Rc-
conlpRnylng pRper.

IIII. RESULTS AND CONCLUSIONS

A. Universality

vergence as confirmation of the Ansats (3). In
16Rd111g tile 16sults qlloted tn iSec. III B (TRMB V),
me have extrRpolRted 11nearly Rga1nst 0 Rnd hRve
taken the last (k = 10) such extrapolant with an
assigned uncertainty equal to one-half of the net
extrapolation. ' This procedure is admittedly
ud hoe, but the magnitudes of the extrapolations
are rather small, anyway,

To illustrate how well the form (3) fits the
ser1es dRtR %'e compare 1n TRble IV the actual
8 = ~ ratios p, (8) with those derived by expanding
the best s = ~ mimic function

~(v) .—O. 256t-'"(I+ O. 275t '"),
t= (1- IO. 5236v) .

The corresponding normalized rRtlos Rre shown Rs
the dashed line in Fig. 1. The fit which (19) pro-
vides for the s = ~ ratios is fully as good as the fit
which y(v) = 0. 972t '~', t = (1 —9. 7953v), provides
for the s= —', rat1os.

While not entirely free of ambiguities, a straight-
forward Pads analysis lends some support to the
ratio methods discussed above. One may consider,
fol' example, Pad6 Rpproxlmants to (1) (d/dv)111(dC/
dv) and (ii) I (v, —v)(d/dv)ln(dC/dv)]„„, where C(v)
=(v, —v)'t lt(v). According to hypothesis, dC/dv
-(v, —v) "a&'. Method (i) not only yields an esti-
mate of 6, but in addition tests the confluence of
the correction term. In Table V me show estimates
of 6, and p,*, the position of the correction singu-
larity, in the cases 8 = 1 and 8= ~. In forming C(u)
we have used the values of p, from the "four-fit"
ratio method; these values (shown in Table VI) are
not greatly different from those determined in R
"naive" ratio analysis. The estimates of 4, are
somewhat greater than the proposed 4, = —,

' and the
location of the singularity of the correction term

TABLE V. Pad@-approximant estimates of the position
and power of. the correction singularity for the g = 1 and
s =-~ fcc Ising model by method (i) described in the text.
IIl forming C(o) we have used 'U~ (1)= 10,2316 and pc ()
= 10.5236.

2/2
2/3
3/2
3/3
3/4
4/3
4/4
4/5
5/4
5/5

12.1990
10.9553
10.8711
10.7840
10.6131

10.6157
10.6132
10.5273

G. 79
G. 70
0.68

10.6177
10.6408
10.'9124
10.6997
10.7191
10.7134
10.7164
10.7206
10.7143
10.6535

G. 54
0.56
G. 63
0. 57
G. 57
0.57
0.58
0.58
G. 57
G. 54

'The real pole splits into a compl, ez pair in t;hese entries.

Earlier work on the spin-s Ising model~ '33 using
eight-ten-term series noted a small spin depen-
dence of the susceptibility exponent, with y(s =-', )
= 1.25, y(8= ~) =- l. 23, and y(8) for other spins at
intermediate values. This trend 1s clearly present,
when the twelve-term data Rre analyzed by con-
ventional methods, Rs seen, for example, in Table
II, Such a, continuous spin dependence, if real,
would be in violation of the principle of universal-
ity'o and inconsistent with the renormalization group
approach, Our analysis shows that the @reive-tenn
Rgb. -tepBpexQtgt'e sQsceptt5$Ht)) seYles Qpe coBsls-
tent suit& the universal value y=- joe el/ s, provided
Not 0 cotlflB8nt Col"t'88tlotE of th8 fot'NE (3) ts As-
sumed. Since such corrections are, indeed, pre-
dicted by the renormalization group analysis, ' the
inference in favor of universality would seem
strong,

It would be more satisfying to have concluded for



TABLE VI. Critical temperatures, amplitudes, and exponents of the susceptibility of the nearest-
neighbor spin-s Ising model on the fcc lattice. The model is defined by Eqs. (7)—(11). Parametrization.
of the critical behavior is given by (3). Unless otherwise noted, numbers are obtained from four-fit
analysis with ')i=4. Asslgnmenf of uncertainties js outlined Rt the en' of Sec. ILH. Entries for the con-
fluent exponent Qg are defined in Sec ~ QIH.

O. 51(O.34)
o. 54(o. 4o)
o. 55(o.44)
o.55(o.44)
o.55(0.44)
o. 55(o.45)
o. 55(O. 45)
o. 55(o.45)
o. 55 (O. 45)
o. 55(o.46)
0.55 (0.46)

s M2(s) v, (s) la~ T„(g)/J' A (s) 8( s)
WIW~ I

0.5 1 9.7953 go. 0005 9.7953 +0.0005" o. 972 -I- 0„002~ 0. 00 -L0, 02" . . .C

1.0 3 10.2316 g o.0009 6.8211y 0. 0006 0.565 y 0.005 0. 122 g 0.009
1.5 g 10.3647 y 0.0010 5.7582 y 0, 0006 0, 452+ 0, 004 0„178y 0. 012
2.0 y 10.4233 y 0.0014 5.2117y 0.0007 O. 400 y 0.003 O. 214 g, 0.012
2. 5 ~(~ 10.4546 y 0.0010 4. 8788 y 0.0004 0.368 y 0.003 O. 229 y 0.012
3.0 +& 10.4731 g 0.0010 4.6547 y 0. 0004 O. 348.-- 0.003 0.241 ~ 0.011
3,5, 10.4851~ O. 0010 4. 4936 y 0. 0004 0.334 ~ 0.003 0.248 ~ 0. 011
4.0,, 10.4932-,-0.0010 4.3722~0. 0004 0.324~0. 003 0.254~0. 011
4.5 ~)7 10.4990 go. 0010 4. 2774 ' 0.0004 0.316 g 0.002 o.258-,-0.011
5.0 +) 10.5033 + 0.0010 4. 2013 y 0. 0004 O. 310y 0. 002 0.261 y 0. 011
5.5 ~33 10.5066 ~ o. 0009 4. 1390g 0, 0004 0, 305 y 0.002 0.263 y o. 011

10.5996 + 0.0009 8.5079 z 0. 0009 0.956 z 0. 009 0.275 = 0.010
1INLgVSRK IWN~%%4N

'This value from direct ratio analysis compares with 9.794 go. 001 from I~ef. 16 and 9.7950 ' 0.0005
from Ref. 31.

"This value from direct ratio analysis compres wjth 0. 9750 pO. 0003 from Ref. 28 jbased on a slightly
different T~(p)] and 0, 963yO. 002 from Ref. 31.

There is no evidence of a confluent singularity in the data of Table III for. s.= g, a conclusion in agree-
ment %'lth Ref, 31.

fixed s & —,
' that (3) makes 1.25 a better susceptibility

exponent than j., 23. Unfortunately, we have been
unable to do this. The four-fit analysis described
in Sec, IIB assumed y=~4, in accordance with well-
established s--- —,.' results. ' '3' If we assume instead
y= 1.23, following the apparent ratio estimates for
s = ~, the convergence of the 8 = ~ four-fit estimates

does not become noticealy worse than that shown

ln Table III. %e have also tried leaving p free
and Using five successive 6& s to extract five-fit
estimates for (v,.)„A„B„(&,)», and (y), via (15).
The' t d t' f f'fthp t rle d t
suits with noticeaMy more scatter than is evident
].n Table DJ., and no firm conclusk. on can be drawn.
It is reassuring, however, to find (see Sec. IIIB)
that, under the assumption y=- for all s, the cor-
rection exponent 4& doing turn out universal.

0.9—
A(s) / M'(s) 8. Parameters of the critical susceptibility

0.8 I-~+ $ %~K

~ 06-
= 0.5—
CL

E

0.4—

0.5(-
Bjq (~

B(s)

o.o
G.O Q. l 0.2 0,5

(s(s+i)] '

Table VI shows our four-fit evaluations~~ of the
parameters (3) of the critical susceptibility of the
nearest-neighbor fcc Ising model (7) for a variety
of spins, as based on tgrelve-term hjgh-temperature
series. Numbers are derived from data such as
Table ID. Extrapolation and uncertainties aI e dis-
cussed at the end of Sec, IIB. The column giving
the correction exponent 6, lists both the last (k =- 10)
estimate (A, )~ and the corresponding linear extrap-
olant (bracketted). We conclude conservatively
that the correction-to-scaling exponent (2) has the
universal value

h~- O„5Q+O,O5 for all s& 2

FIG. 2. Leading and confluent amplitudes for the spin-
8 fcc Ising susceptibility, as defined by Eq. (3). M2(s)
= {s+1)/3s. Data are taken from Table VI. s =g is not

shown. Dashed straight lines emphasize the linearity of
the data for large s.

in agreement with renormalization-group re-
sults. " "

The amplitudes A(s)/M, '(s) and a(s) are exhibited

in Fig, 2. Both show rather linear behavior when
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plotted versus Is(s+1)I"'. The confluent amplitude
vanishes at s= 2 to within uncertainties,

s(-'.) = o. oo+ o. o2.

If it is true that 8(—,) vanishes identically, it is cer-
tainly an intriguing "accident. "

We close on a note of warning: The (fcc) suscep-
tibility series are particularly clean. Similar anal-
ysis of other fcc series23 (e. g. , second-moment
series) does not yield results of equal clarity.
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