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A Kkinetic Ising model with a vacancy mechanism of relaxation is introduced. This model is believed
to give a realistic picture of the critical dynamics of binary alloys while existing models do not
represent the actual microscopic mechanism of ordering. The initial decay time of the relaxation of the
order is calculated exactly and the existence of critical slowing down is proved. A Monte Carlo
calculation indicates that although the order parameter and the energy are not conserved quantities, the
critical index of the order parameter relaxation A, is different from that of the one-spin-flip kinetic
Ising model. In the temperature region 0.074 < (T — T'.)/T, < 1, the Monte Carlo estimate yields
A, =1y + 7%, with 7y being the critical index of the susceptibility. In the same temperature region the
nonlinear relaxation time cannot be described by a single exponent.

I. INTRODUCTION

One of the most attractive features of second-
order phase transitions is the property of univer-
salityl; critical behavior does not depend on such
details of the Hamiltonian as the interaction strength
but only on fairly general properties of the system
such as the symmetry of the order parameter, the
dimensionality, and the range of interaction.

Concerning static critical properties, Wilson’s
renormalization-group treatment? has greatly im-
proved our understanding about the universality
classes. The method has been extended to dynamic
phenomena,3 but the classification of dynamic criti-
cal behavior is far from complete. From works
on the most extensively studied continuum analogs
of different kinetic Ising models,*® it has been de-
duced that every static universality class is divided
into dynamic universality classes according to the
conservation laws in the system and the symmetry
of coupling of the order parameter to the slowly
varying quantities. The multicomponent Bose-gas
model® and the lattice model with an infinite number
of displacement components7 show more diversity
of critical behavior.

The experimental situation is rather sparse:
firstly, because the expected differences between
the dynamic classes are so small that they can
hardly be distinguished by present techniques and
secondly, because there are only a few systems
exhibiting an Ising-like interaction.

The best examples of Ising systems are the bi-
nary alloys. Their dynamics are governed mainly
by the motion of the vacancies® which is a quite dif-
ferent mechanism of relaxation than the spin-flip
dynamics of the kinetic Ising model. Since it is not
clear to what extent critical dynamics is affected
by the relaxation mechanism, we were led to intro-
duce a new kinetic Ising model with a vacancy
mechanism of relaxation.

It turned out that the critical dynamics is quite
sensitive to this change of the relaxation mecha-
nism. From the point of view of conservation laws
the model belongs to the class where neither the
order parameter nor the energy is conserved, but
still the critical index of the order-parameter re-
laxation time differs from that of the corresponding
kinetic Ising model.® It should be pointed out that
the results concerning the critical exponents were
obtained by the Monte Carlo method and should be
interpreted with the usual caution due to the limi-
tations of every computer experiment. o=t

In Sec. II we explain the physical ground for in-
troducing the model, while in Sec. III the initial
decay time is calculated and the existence of criti-
cal slowing down is proved. Finally Sec. IV con-
tains the discussion of the nonlinear and linear re-
laxation time of the order in the temperature region
0.074<(T -T,)/T.<1 calculated from a computer
experiment.

II. MODEL

Concerning the static properties of binary alloys,
the Ising model is a reasonable starting point. 12,13
It is not so obvious, however, how to describe its
dynamic behavior. In the Kkinetic Ising model in-
troduced by Glauber!* only one spin is permitted to
flip at once and, since in an alloy an atom of type
A never turns into atom type B, this mechanism
clearly does not correspond to any real process in
a binary alloy. Kawasaki’s model*® might be more
suitable; this is an Ising model where the dynamics
is introduced through interchange of spins on neigh-
boring sites. This is a physically possible process;
it corresponds to the atomic exchange mechanism
in binary alloys. However, there are a number of
other physically possible processes (ring, inter-
stitial, interstitialcy, crowdian, vacancy, divacan-
cy, etc.) which can contribute to diffusion in alloys
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and when the diffusing atoms are approximately the
same size the dominant process is the vacancy
mechanism,® It is believed that most of the com-
monly studied order-disorder processes in alloys
are controlled by this vacancy mechanism. The
aim of the present paper is to construct a kinetic
Ising model with a vacancy mechanism of relaxa-
tion.

The vacancy mechanism itself is very simple;
the vacancy moves through the crystal exchanging
position with one of the neighboring atoms. A ques-
tion arising is what is the rate of these exchanges.
To answer this question, let us consider the poten-
tial (Fig. 1) in which the atom moves when jumping
into the adjacent vacancy.

One can note at once that the activation energy for
the process, which is called the migration energy
E,, , depends only very weakly on the configuration
around the vacancy and the jumping atom. That
means that the frequency of jumps is actually inde-
pendent of the configuration. Of course, the small
differences in E,, play an important role since they
underlie the thermodynamic force driving the sys-
tem to equilibrium,

The situation will be approximated by separating
the role of the small differences in migration energy
and the average migration energy

(i) We assume that the frequency of jumps vg is
determined by the average migration energy E,, so
it does not depend on the configuration. For sim-
plicity we also assume the frequency to be temper-
ature independent although it has a well-defined
smooth dependence on temperature!® which has to
be taken into account in experiments. !’

(ii) The deviations from E,, depend on the config-

FIG. 1. Potential profile for an atom neighboring the
vacancy. The dashed line shows how the potential de-
pends on the configuration. The migration energy E,, is
usually of order 1-2 eV while the change in the migration
energy AE, = |E, —E} | due to changes in configuration
is of order of the interaction energy of the atoms in their
equilibrium position (£, 0.1 eV).
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uration {o}, where {o} is a set of variables 0;=%1
depending on whether an atom of type A or B is on
the site ¢ and 7 denotes the site where the vacancy
is situated: o0,=0. These deviations determine the
probabilities w,({c},) that the vacancy moves to the
neighboring sites 7 +a in unit time 7¢=1/vy. The
probabilities are subject to the condition that they
must bring the system to the equilibrium of the Ising
system with vacancies. To avoid quite complicated
questions about the static properties of the dilute
Ising model, we introduce our last assumption,

(iii) There is only one vacancy in the system and
the unit of time is rescaled by a factor N, where N
is the number of atoms in the system

T=(1/N)7¢ . 1)

Apart from a scale change of time, physically this
situation corresponds to the limit when the density
of vacancies is so small that their interaction can
be neglected (actually at this point we neglect the
divacancy mechanism of relaxation).

Having the condition (iii), the static properties
of the model in the thermodynamic limit will be that
of the standard Ising model.

To find a concrete form for w4 {o},), let us con-
sider the master equation for the time dependent
distribution function of configurations p({o},:¢)

T bk 0= = 5 wal{ob)p (ol 51)

+3" wol{oh o ohmas ), (2)

where the sums are over the vectors pointing from
the position of the vacancy (7) to the nearest-neigh-
bor sites, T determined by (1) sets the time scale,
and the configuration {o},,, differs from {o}, by ex-
changing the vacancy and the atom at site » +a. The
first sum on the right-hand side of (2) describes the
hopping out of state {o},, while the second sum is
the “hopping in” term.

There are two obvious conditions restricting the
choice of w,({o},):

(a) The equilibrium distribution function p,({c},)
does not change in time, i.e., it is a steady-state
solution of the master equation

7% bl o)== 3 wal{ol) bl o)

a

+Z w _a( {O}r + a)peq( {0}7‘ -(-a)

=0, (3)
where po({0},) is the canonical distribution
be{o}y)= (1/2)eeE (4)

Here B, Z and E({0},) are the usual notations for the
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inverse temperature, the partition function, and

the energy of configuration {0}, . The number of

linear homogeneous equations given by this condi-

tion is equal to the number of configurations K.
(b) The conservation of probability

2 peh;0)=1, (5}

rs{o),

yields one more equation for w,({o},) if we differen-
tiate (5) by ¢ and use (2)

S (- wob ot

7y {0},

+ Z w-w({o'}r..a)p({o'}rm; t)) =0 . (6)

Since the number of transition probabilities
w,({o},) is of order kK, where k is the number of
nearest neighbors (there are % probabilities for
every configuration except when the vacancy is on
the boundary), they are not determined uniquely
by the two conditions (3) and (6).

If there was no more restriction on the choice of
wa({o},), one could easily find a suitable form. It
is a matter of substitution to verify that for example
the transition probabilities

wi({o},)~ exp{- 3B[E{o},.0) - EQo})]} , (1)

used by Kikuchi®® in his path probability treatment
of the dynamics of interacting two level systems,
satisfy both conditions (3) and (8).

In our model we have, however, a third condi-
tion:

(c) The vacancy moves every unit time deter-
mined by 7 so the sum of probabilities that the va-
cancy leaves a certain site must be one

3 wal{oh)=1 . (8)

a

This normalization gives K linear equation but now
the conservation of probabilities (6) is automatically
satisfied. There is still arbitrariness in w,({o},)
because (3) and (8) yield 2K equations for the kK
transition probabilities and 2 > 3 in every lattice
where the relaxation can take place by the vacancy
mechanism.

The normalization condition (8) gives rise to
problems in finding a form for w,({c},) which would
satisfy both (3) and (8). The difficulty stems from
the following: (3) is satisfied if one requires the
detailed balance condition and in (3) not only the two
sums cancel each other but the terms from the sums
in pairs also cancel

wﬂ({o}f)p BQ({O}T) = w-a({o}roa)p QQ({O}T -l'a) . (9)

Then in these equations only the transition proba-
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bilities w,({o},) and w_,({o},.,) are coupled and this
makes it possible to find a solution (7) which de-
pends only on the configurations {0}, and {o},.,.
With the additional equation, (8), all the w,({o},) be-
come coupled and a simple solution depending only
on a few configuration does not seem to be at hand.

One can, however, reverse the question and ask
what will be the equilibrium distribution function if
the normalized form of (7),

__wilol) _ _exp[- 3BE{o}.,)]
weloh)=5 witfef,) * Seexn = LB (lohs ool

is used as the transition probability,
Putting (10) into (9) one can see that the detailed
balance condition is satisfied by choosing

Falloh)=3 3 expi- 61E((oh)+ B} o} .
’ (11)

Since in the thermodynamic limit this distribution
function leads to the same equilibrium properties
as the canonical distribution, the transition proba-
bilities (10) can be used as an approximate solution
of (3) and (8).

Summarizing this section, as a model for binary
alloys, we have a nearest-neighbor Ising antifer-
romagnet with a vacancy in it, The dynamics of
the system is governed by the master equation (2)
with transition probabilities given by (10).

(10)

III. CRITICAL SLOWING DOWN

Critical slowing down means that as we approach
the critical point the decay time of certain nonequi-
librium states becomes longer and longer. Since
these states usually involve the order parameter or
energy perturbations, the critical slowing down
manifests itself in the divergence of the relaxation
times of the corresponding physical quantities, or
if these quantities are conserved, in the singularity
of certain transport coefficients.

In binary alloys the order can be characterized
by the difference in the number of atoms on their
“own” and “other” sublattice, i.e., using spin ter-
minology the order parameter is defined as the
staggered magnetization

n:% Z M:0%
i

where 7;=+1 on one sublattice and -1 on the other,
The dynamics introduced by the master equation

(2) does not conserve both the order parameter and
the energy and the existence of critical slowing down
can be investigated by examining quantities like the
relaxation time of the order parameter. In this
paper only properties in the high-temperature phase
are considered, although extension to temperatures
below the critical temperature should be straight-
forward.

(12)
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Having a solution p({o},; ¢) of the master equation
satisfying certain initial condition p({d},;0), the
time development of the order parameter is com-
pletely determined

n(t)="3" upo},;1) (13)

{o},

and the relaxation time in the high-temperature
phase ((n)=0) can be defined as

“ n(t)
Tp= J' . 1(0) dt
This definition is meaningful only if there is a
prescription how the initial state in which »(0)#0
is prepared. If for ¢ <0 an infinitesimal field 64
conjugate to the order parameter is switched on
then at { =0 the system is in equilibrium under this
field so the initial distribution p({c}, ;0) to order
Ok can be written

poty; 0)=poq{o},)(L + BndR) | (15)

where f,({0},) is the equilibrium distribution func-
tion without the field (11), With this initial state
(14) is the conventional definition of the order param-
eter relaxation time in linear response. 19 If the
same procedure is used to prepare the initial state
but with finite conjugate field, then (14)is called
the relaxation time in nonlinear responsezo and is
denoted by 781,

The existence of critical slowing down is proved
by calculating a lower bound for the relaxation time
(14) and showing that it diverges at the critical
point. The calculation is based on Kawasaki’s meth-
od? applied to the relaxation time. 223 1ts essence
is the following: the relaxation time can be ex-
pressed as the expectation value of the inverse of
an operator W, and in purely relaxational systems
Wis a positive semidefinite operator. In this case
for the expectation value (f, W‘lf) the following in-
equality holds:

(f, WY)F, W)= (f, ) (16)

and since (f, Wf) is calculated quite easily, one has
the desirable lower bound.

To show that the model introduced in Sec. II is
also a purely relaxational model, let us rewrite
the master equation in operator form:

(14)

d -
a7 PQoks == Lol 1) (17)
where the operator L is defined by comparing (2)
and (17).

Then the relaxation time in linear response is
expressed as

2

P
T = r,(u)tnL Deght
Zr,(u)rnpeqn
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E(nz-iﬁ n) (np1/2ﬁ,-1~1/2 ) (18)
(npeqn) (1npegm) ’
where
W=p&/2LPY? . 19)

From the detailed balance condition (9), it follows
that for arbitrary functions f({c},) and g{o}, ),

(f; Wg)=(g, Wf) ) (20)

i.e., W is a Hermitian operator which means that
all its eigenvalues are real. The stability of the
system guarantees that (17) has no infinitely grow-
ing solution so all the eigenvalues of W must be
positive or zero. This proves the positive semi-
definiteness of W and the purely relaxational char-
acter of the model.

To find a lower boundforthe relaxation time, one
calculates the initial decay time 7!,

1 1 d
e wo a?|
(an ) (npl/z 1/2 )
=~ B (np,qn) @1)

and comparing (16), (18), and (21) concludes the in-
equality valid for every purely relaxational system?®

Ty 2T,

(22)

The denominator of the right-hand side of (21) is
the fluctuation of the order parameter which is pro-
portional to the susceptibility so what remains to be
calculated is the numerator. Using lemmas anal-
ogous to those of Abe® it is found to be a tempera-
ture-independent constant:

(pquw o) )=ﬁ2—

where in the last equation we have used the normal-
ization of the transition probabilities (8).

Substituting (23) into (21), the inequality (22) takes
the form

(nLp o (23)

(n?)
P rew

T2 Th=BND = (24)

where (n® ;.. =1/N is the fluctuation of the order pa-
rameter in the noninteracting (infinite temperature)
limit. Since {#® is proportional to the susceptibil-
ity, (24) implies that 7.~ ¢™ where €= (T -T,)/T,,
T.being the critical temperature, and y is the
critical index of the susceptibility. It also implies
that the relaxation time diverges at T, and if its
divergence can be characterized by an exponent 7,
~¢™®n, then A, > y. This completes the proof of the
existence of critical slowing down.
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IV. MONTE CARLO CALCULATION

The Monte Carlo (MC) method has proved to be
a useful tool in analyzing the critical dynamics of
the two-dimensional kinetic Ising model, *1*% In
addition to the high-temperature expansion®'?” and
Wilson’s expansion, 34 it provides a third indepen-
dent way of estimating the critical exponents.

The method is based on the ergodicity of the ki-
netic Ising model, '?® the dynamics of the model
is simulated by a computer and the ensemble aver-
ages are calculated by averaging in time,

In the vacancy model discussed in the previous
sections, the magnetization (the number of A- and
B-type atoms) is conserved so phase space consists
of subspaces in which the magnetization is con-
stant and the system is ergodic in these subspaces.
Since in an antiferromagnet the magnetization is
not a relevant quantity, ! one can neglect its fluctua-
tion by an investigation of the critical properties of
the system by means of the MC method in the sub-
space where the magnetization has the equilibrium
value.

We have performed the MC calculation on a 64
X 64 square-lattice version of the vacancy model.
The lattice was subjected to periodic boundary con-
ditions.

The computation is performed in the following
way. Initially a completely ordered state with a
vacancy at a randomly chosen lattice site is stored
in the computer and the temperature is given as the
only input parameter, Then the four probabilities
w,({o},) of interchanging the vacancy with the neigh-
boring atoms are calculated. In order to move the
vacancy according to the probabilities, the interval
[0, 1] is divided into four parts representing the
values of the probabilities. Then a uniformly dis-
tributed random number is picked from [0, 1] and
the vacancy moves according to which part of [0, 1]
the number is from. The resulting new state serves
as the initial state for the next step.

Repeating the process N times a MC step per
atom is considered to have been performed and the
value of the order parameter is taken as output.
Since according to (1) the MC step per atom is pro-
portional to the time unit in this way the time de-
velopment of the staggered magnetization is gen-
erated,

Let L be the number of MC steps necessary for
the system to reach equilibrium. Since in equilib-
rium the order parameter fluctuates around its
equilibrium value #= 0, the integral determining
the relaxation time (14) can be approximated by a
finite sum

wan_ [(T20) L35 nlti)
w )‘Jo n(o)dt",}:; n(0) ’

where 7(#;) is the value of the order parameter after

(25)
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the ith MC step and this sum determines the non-
linear relaxation time (7{"**)) since the completely
ordered initial state can be prepared either by an
infinite field (6% =) or by a finite temperature
change (AT=T).

The fluctuation in n(#) restricts the accuracy in
determining 7!+, Near T, the error goes roughly
as the susceptibility. ' In order to have an idea
about the accuracy of the method, four independent
runs were performed and the “statistical error”
was calculated from the results of those runs.

If initially the system is in equilibrium with an
infinitesimal field 6% which is turned off at £=0,
the relaxation time is calculated not directly from
(14) but rather from a formula equal to it to order
(6R)? for T>T,:

I RO CIOTI0)
Ty = L 2(0) dt= fo ) dt+ o6n?) ,

where the thermal averages are calculated as time
averages

(26)

1 M
PIREAR

0t @0
M=i

Oty = = D nltntyet) . (28)
M i L i=L

In calculating (27) and (28), one faces the prob-
lem of uncertainty in the limits (L, M) of the sums,
It is not trivial to determine how many MC steps
are needed to reach the equilibrium starting from
a completely ordered state, For example, the fact
that the order parameter is settled to its equilib-~
rium value does not necessarily indicate that the
system is in equilibrium,

An equally difficult question is how long the time
sequences should be, in order that the time aver-
ages give a reasonable approximation for the en-
semble averages, !!

At this point the MC calculation is more like an
experiment, One sets a starting point in the region
where such quantities as the staggered magnetiza-
tion and the nearest-neighbor correlation have al-
ready settled to their equilibrium value, Then
longer and longer time sequences are tried until
the results of several (in our case, four) indepen-
dent runs converge. ?°

Fortunately it turns out that, as in the kinetic
Ising model, !° the normalized correlation function
n(0)n()) /(n?) converges faster than (n(0)n(f)) or
(rn?) alone. In the light of this observation Fig. 2,
where (#%) is compared with the extrapolated high-
temperature series, ®* looks encouraging. The
agreement is very good though the error bar at the
nearest temperature to the critical point is large.
This gives confidence in the reliability of the esti-
mate of 7,, although there is one more approxima-
tion in (26), the infinite integral is replaced by a
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FIG. 2, Temperature dependence of the susceptibility
calculated from the order-parameter flucutation (7%
= (n?)/ (*)p.). The solid line corresponds to the infinite-
lattice case calculated from the extrapolation of the high-
temperature series. v=tanh(2J/kT) is the natural vari-
able of the high-temperature expansion, but the normal
temperature scale is also indicated. The error bars
are calculated from the results of four independent runs.

finite sum., However, the sum always can be ex-
tended so far that actually (2(0)n(£))/{#?) ~0 and the
effect of finiteness of the sum is negligible,

There is another source of inaccuracy following
not from the finiteness of the calculated time se-
quences but from the finiteness of the system and
the existence of the vacancy in it. However, for
a 64x 64 lattice and for the temperature region
0.074<€<1, even the largest effect, the shift of
the critical temperature®!

AT,/T,=-0.36/ NN ~0.006 , (29)

is so small that none of the conclusions are altered
if it is neglected.

The results of the calculation of the relaxation
time in linear and nonlinear response are displayed
in Fig. 3. The consequences can be summarized
in the following points.

(i) In the temperature region 0,074<€<0.5 the
relaxation time of the linear response is proportion-
al to the susceptibility

Ta~ (n¥)~X . (30)
Therefore, taking into account the accuracy of the
calculation, one concludes that the effective critical
exponent of 7, (1,~ €7 in the considered tempera-
ture region) is given by
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A'e‘ﬂ:.},effir?% , (31)

where v**! is found to be 1.6 if the susceptibility
is plotted as a function of €= (T -T,)/T,. It has
been pointed out, however, by Stoll et al. ™ that in
the high-temperature phase the correction terms
are smaller if the quantities are considered as func-
tions of 1-v/v,, where v =tanh(2J/kT) is the nat-
ural variable of the high-temperature expansion.
Plotting x against 1 -v/v, (Fig. 2), it can be seen
that in the region 0.074<€<0,5 ¥°"*=1,7 which is
only slightly less than the limiting value of 1,75,
So (31) yields the following estimate:

AM=1,7+0.1, (32)

The fact that 7,~ x suggests that there is no
kinetic slowing down in this model, although one
might argue that for € <0, 074 there can be a change-
over from A,=7 to A,>7Y, This question can never
be settled finally in a calculation of finite systems.
One can hope only that, similarly to the kinetic
Ising model, if there is kinetic slowing down it will
show up quite far from T',.

Indeed, in the MC calculation of Stoll et al. ! the
kinetic slowing down is found in the region 0,02
< €<0.2 while Ogita et al.® found it already in the
region 0,2<€<1, The result of Ogita et al, T+
~ €™ has been interpreted as A=A =y, In
fact in this temperature region x~ €™ with y°ft
varying from 1,0 to 1.5 which clearly indicates that
AB) >y It is remarkable that if 781+ is plotted
as a function of 1 -v/v,, the resulting A,‘,“'l')z 2.1
is close to the high-temperature expansion esti-
mate® A1) -9, 0,

(ii) The relaxation time is greater in the nonlinear
regime than in the linear regime

TR s (T>T,) . (33)
T
nl.
soF*n
’ ¢
o
I
€—‘rc |
? (2
| 1 { L | | [<n2>T=(1)
5 10 50 100 ¢
1 1 1 L 1
© I 05 0.24 oll4 0074

FIG. 3. Relaxation time of linear (r,) and nonlinear
response (r.™!+)) plotted against the order-parameter
fluctuation. The slope of the solid line is one. The unit
of Tis 2.5 Monte Carlo steps.
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This shows that the intuitive expectation® that

7{*!* < 1. cannot be valid in general. In the tem-
perature region 0.24<€<1
1,.,(1x1,1. )NX , (34)

but nearer to T,, 7!+ approaches the value of
7,. This approach is expected since close to T,
the diverging fluctuations will submerge the dif-
ference between the linear and nonlinear perturba-
tions. Clearly -r“"l *) cannot be characterized by

a single exponent,

V. FINAL REMARKS

In the vacancy model there is only one conserved
quantity, the magnetization. Since the magnetiza-
tion is not a relevant quantity, one expects that as
in the case of a uniaxial antiferromagnet,* this
conservation law does not effect the critical dynam-
ics, i.e., it is the same for the vacancy model
and for the one-spin-flip kinetic Ising model® where
there is no conserved quantity at all, The MC cal-
culation described in the previous section indicates
that the critical index of the order-parameter re-
laxation time is different in the two models. So, if
the difference cannot be ascribed to the conserva-
tion of magnetization, one is left with the conclusion
that the change from the spin-flip mechanism to the
vacancy mechanism has changed the critical dynam-
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ics. This means that the classification of dynam-
ic critical behavior is not exhausted by specify-
ing whether the relevant quantities are conserved,

The above statement is also illustrated in the
infinite-component Bose-gas model® and in the lat-
tice model with an infinite number of displacement
components.” The statics in both models is equiv-
alent to the spherical model and the critical dynam-
ics is reduced to scaled free-field behavior in
both cases. However, since the Bose field is com-
plex while the displacement is real, the dispersion
relations for the critical modes are w~ %% and
w?~k? correspondingly, i.e., the dynamic index is
different in the two models.

Finally we would like to mention a problem in the
vacancy model. In the vacancy mechanism in-
troduced in this paper, the vacancy moves with a
certain frequency independent of the configuration
around it, i.e., the probabilities of jumps are
normalized (10). It would probably shed some light
on the nature of the kinetic slowing down if one ex-
amined the question of whether lifting this condition
would alter the critical dynamics.
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