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One-dimensional ferromagnetic classical-spin-field model
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A continuum generalization of a one-dimensional classical ferromagnetic Heisenberg exchange-coupled

spin model is solved. The field-dependent susceptibilities, specific heat, and correlation lengths are

determined. The zero-field susceptibilities and correlation lengths in the presence of single-ion anisotropy

energy are also calculated. The field-dependent properties are determined for the case in which the field

is parallel to the single-ion anisotropy axis, and the anisotropy energy is positive. The model

approximates the low-temperature behavior of the discrete spin system in the region in which spins

become correlated over distances large compared to a lattice constant.

I. INTRODUCTION

There are a number of magnetic materials in
which the molecular geometry is such that the ex-
change coupling between spins along certain one-
dimensional chains is much larger than the coupling
between the chains. ~'2 Above a three-dimensional
ordering temperature determined by the interchain
coupling, these systems can be described in terms
of one-dimensional models. ' Another consequence
of the geometry of these pseudo-one-dimensional
systems is that the exchange coupling along a chain,
although it is much larger than the interchain cou-
pling, is often sufficiently weak that the Zeem3n
energy can be made compar3ble with it. This cir-
cumst3nce makes it possible to investigate the non-
linear magnetic-field dependence of the magnetiza-
tion, specific heat, and correlation lengths. A

particularly interesting region to study this field
dependence is that in which the temperature is suf-
ficiently low that there are well developed short-
range spin correlations due to the exchange cou-
pling.

Here we propose to treat the low-temperature
field-dependent properties of such one-dimensional
ferromagnetic exchange-coupled systems in terms
of a classical-spin-field model. ' This model is a
continuum approximation of the classical Heisenberg
model discussed by Fisher. s Mathematically it
represents a limit in which both the spin and the
correlation length become infinite. Physically, it
provides a useful description when S & —,

' and when

the correlations of the spins extend over several
lattice spacings. Moreover, the statistical mechan-
ics of the spin-field model in Bn external magnetic
field can be calculated using the same functional in-
tegral techniques which have been applied to the
Ginzburg-Landau field. In this approach, the clas-
sical statistical mechanics problem is reduced to
the problem of calculating the first few eigenvalues
and eigenvectors of an effective HBmiltonian.

In Sec. II, the spin-field Hamiltonian is obtained
as the continuum limit of a classical discrete spin

system. The interactions include an isotropic ex-
change coupling, a single-ion Bnisotropy energy,
and the Zeeman coupling to 3n external magnetic
field. Using this spin-field Hamiltonian, the v3r-
ious physical quantities of interest are expressed
in terms of functional integrals over the spin field.
The evaluation of these functional integr3ls is then
shown to be equivalent to the solution of the quan-
tum-mechanical problem of a hindered rotor.

In subsection A of Sec. III, numerical solutions
are obtained for the case in which the single-ion
anisotropy energy vanishes. Results for the field
dependence of the magnetization, susceptibility,
specific heat, and spin-spin correlation functions
are given. It is possible to plot a number of these
results in terms of the single dimensionless vari-
able kT/v'2JgpH, where Z is the exchange coupling,
and g p,H is the Zeeman energy.

The effect of the single-ion anisotropy interaction
is discussed in subsection B of Sec. III. Results for
the zero-field spin-spin correlation functions and

susceptibilities are given. The field and tempera-
ture dependence of the magnetization 2nd correla-
tion length for the case in which the external field
is parallel to the anisotropy axis are discussed. A
summary and conclusion is given in Sec. IV.

II. THEORY

The functional integration techniques developed
in the study of the one-dimensional Ginzburg-Lan-
d3u problem are applied to calculate the statistical
mechanics of a one-dimensional classical spin field
in an external magnetic field. We are specifically
interested in the low-temperature properties where
the spin field is slowly varying over a distance of
many lattice spacings.

For a system of discrete exchange coupled clas-
sical spins the Hamiltonian is

K, = ~ 2JS, S,,~ gpHQ S„.yDQ (S-„) . (1)
i

Here S; are classical spins of unit magnitude oc-
cupying discrete lattice sites and J & 0 (ferrotnag-
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netic coupling). The second term represents the
Zeeman energy, and the last term is the single-ion
anisotropy. For D& 0, the external field points
along the hard axis of magnetization. The exchange
term in Eq. (1) can be written, to within a constant,
as

g 46EL Q e ()-EIIL

with

4E =/zTln(P2J„) —2J„ (12)

Qa(Ja) 0 (2)

In the limit where the length of the chain I- is large
compared to the spin-spin correlation length, the
lowest eigenvalue determines Z and

with a the lattice spacing. If S; is a slowly varying
function of the site index, we can approximate the
discrete spin problem by the continuum limit. ~ In
this case IS;,~ —F, I/a can be replaced by Id%/dxi
and Eq. (1) becomes

eo, (!((x)1= )e Z x-IIS,(x)stl(e, (x)]s)
'A(x) '

(8)
Here we measure lengths in units of the lattice
spacing a and set h =g(JH. Furthermore, S(x)
=A(x), where &(x) is a unit vector at point x.

Now the statistical mechanics can be expressed
formally in terms of funtional integrals over the
continuous vector field S(x). The partition function
is given by

6S( )
-()x r.f((»

-0 (as+ Zo) I.

(S,) =(O cosS O) . (14)

Alternatively the magnetization per site normalized
by gp, is equal to (S,). Since the magnetic-field de-
pendent part of the free energy per spin is Eo,

1 8 ~Eo(s.) =-— E,=—
gp dII NE

the free energy per unit length is therefore simply
&E+E().

The expectation values of S((x) involve matrixele-
ments of S,= cos8, S, = sin9 cosp and S, = sin8 sing.
Again for I. large compared to the spin-spin correla-
tion length the results simplify and, for example,
(S,) is equal to the ground-state matrix element of
cos8

and the expectation values of physical quantities
such as S,(x) is

"Dxo[s(x) j
(S,(x)) = 6f(x) S,(x)

Z

The S,-S, correlation function is given by

g„(x)=Q )&nlcoselo))'e '""" 'o' .
n&0

(16)

In addition we will be interested in the correlation
functions

g,.(x) = (S,(x)S.(O)) —(S',)

and

g,„(x}= (S„(x)s,(0})

Because K is invarient under rotations about the s
axis, the excited states In) in Eq. (16) have mag-
netic quantum number m = 0. The large x depen-
dence of Eq. (16) is set by the lowest eigenvalue E,
a,nd a good approximation to Eq. (16) is simply

g„(x) =- )(1 cose)O))'e ""- . (1V)

where by symmetry g„„(x)=g»(x), Here

-0 LS(x) 1

(s,. (x)e, (o)) = f(te(x)S,. (*)e,.(o)
'

g (8)

Here the correlation length E„ is given by

&
'= P(Eg —E()) (18)

In the same approximation, the g„„correlation is

g„„(x)—= 2 &1'
l
sins cosy

l
o) 'e "'", (1.9)

These functional integrals over one-dimensional
fields can be evaluated by transfer matrix tech-
niques. In the usual way, e this reduces the compu-
tational problem to finding the eigenstates and eigen-
values of an effective Hamiltonian

2

IC ) =, —I cone+(Icos'e))n) =Z„)n) . (II)

Here Z is the angular momentum so that

1 ~ ~ 1—sjn8 ——
sin6 88 86 sin 6 ~p

and K d.-"-., scribes a quantum-mechanical hindered
rotor. For a chain with periodic boundary condi-
tions the partition function, Eq. (4), is equal to

with

&.'=P(E& -Eo) . (2O)

where the integral is over the one-dimensional lat-
tice. From Eqs. (16) and (19) it follows that

The eigenvalue E~. is that of the lowest eigenstate
I
1') with m =+ 1 and the factor of 2 in Eq. (19) comes

from the twofold degeneracy of this level.
The susceptibilities of the spin field can be ex-

pressed in terms of the correlation functions,

p,Xfi-
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I.O = 0 1I1 Eq. (9) 1't follows that tile elgeIlvallle8 E„of
X can be written as

P'JE„= 6„(P'JII) . (24)

0.8

A
C3

Ii)
C)

D
/ 0.4

0 [

0 2
kTI~ZJ h

Here e„does not depend separately upon P, 2J, and
h but only upon the dimensionless combination p JII.
The magnetization per spin (normalized to giI) is
just (S,) which can be obtained by differentiating Eo
with respect to h [see Eq. (15)],

(S,) = —
—,„E,= —6,'(p'JII) . (25)

Thus when D = 0, (8,) depends only upon the variable
P JII. In presenting our results, we have chosen to
use the reduced temperature AT/v 2/le = (2p'Jk) II2.
In Fig. 1, (8,) is plotted versus this reduced tem-
perature. It attains its zero-temperature value
linearly as kT/&2Jlz goes to zero.

In the absence of a magnetic fieM the spin-spin
correlation length is determined by the eigenvalues
of Z~/4P J: I(1+1)/4P J with I = 0, 1, . . . .

(26)

FIG„1. Plot of (S~)=- (0 Icose I 0) vs kTjl2JA with
D=O and h & 0.

X„=- " 2 Z[P{E„—E,)] I)(n~cos9~0)~'

= g —2g„[(I [cose
)
0)[',

y„„=-- — 4$„„((l'
~

sin8 cosp
~
0)

)

III. CALCULATIONS

(22)

Thus for A =0, we obtain the well-known result that
E diverges as T ~ for k T«J. In the presence of an
external field, the quantities f„vh/2J and $ v'II/2J
depend only upon the reduced temperature 0 T/v'2JII.
Plots of $„v'II/2J and $„„v'II/2J versus the reduced
temperature are shown in Fig. 2. At reduced tem-
peratures greater than unity, the correlation lengths
appl"each tile field-111depeIldeIIt I'esul't of Eq. (26) .
For /~T/v'2Jh less than unity the correlation lengths
saturate. In order to see more clearly how the
spin-spin correlations are modlf led by Rn exterQRl
field, we have plotted F„,and )„„versus kT/J for'
various II/J ratios in Figs. 3 and 4, respectively.
As the temperature is lowered („drops below its

In order to evaluate the quantities discussed in the
previous section we must calculate the ground-state
and low-lying-excited- state eigenvalues and eigen-
functions of Eq. (9). This is readily accomplished
by constructing a matrix representation of K in a
basis of spherical harmonics and numerically diago-
QRllzlng it. The rotRtlonRl, lQVRllRQce of K Rbout the
~ axis leads to a block-diagona& form for X in which

states with different m values form separate
blocks. The ground state E is in the manifold m
=0 as well as the excited state E,. The only addi-
tional manifold which we will consider is the rn = 1
manifold whose lowest energy state is E&.. Ade-
quate convergence was obtained using 25 ~25 ma-

trices

s.

A. Zero singh. -ion anisotropy (D = 0)

O. l

0.2
r («I

0.5 ].0
kT/~2J h

4.0

First we consider the case in which the single-
ion anisotropy energy can be neglected. Setting D

FIG. 2, Plot of $~ v'A;/2J' (solid line) and („„v'h./2J'
(dashed line) vs kTjl2J'h for D=0 and k& 0.
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FIG. 5. Plot of ()(,g/g IJ )he'h/2J (solid line) and

(X„„/g p, )kTv'h/2J (dashed line) vs kT/42Jh for B=0 snd
h&0.

0
0

kT/J

FIG. 3. Plot of $«vs kT/J' for various h/J ratios with
D = 0 and h & 0.

I

h/J=O

h =0 value and through a maximum. This maximum
occurs when k(-kT and corresponds to the point at
which the Zeeman energy of a group of spins cor-
related over $ -2J/kT becomes equal to kT. At
still lower temperatures the spins are sufficiently
polarized by the external field that („should be
viewed as a healing length. This healing length for

a disturbance of the spins from the polarized state
decreases as the thermal disruption associated with
k T goes to zero. The saturation of $„„atlow tem-
peratures shown in Fig. 4 is a reflection of the or-
dering of the spins along H.

In Fig. 5, the parallel and perpendicular field-
dependent susceptibilities per spin are plotted ver-
sus the reduced temperature. Note that y, and

X„„for each temperature are decreased from their
zero-field values which diverge as 1/7 at low tem-
peratures. This is further evidence of the suppres-
sion of spin fluctuations due to the external field
alignment. In the presence of a field, y„goes to
zero linearly as T vanishes and y„„approaches a
constant.

The free energy per unit length (or per spin) Es
gives the change in free energy due to the presence
of the external field. Calculating the specific heat
associated with ED leads to the change &C in specific
heat per spin due to the magnetic field

92
&C= —T 3EO (27)

This change in specific heat per spin in units of 0
multiplied by the factor v'2J/k is plotted versus the
reduced temperature in Fig. 6. For kT/v'2Jh &2.0,

OB I I I I I I I

oi

0.2

0
0

kT/J

0
0 0.4 0.8 1.2

kT/J2Jh
2.0 2.4

FIG. 4. Plot of $» vs kT/J for various h/J ratios with
D = 0 and h & 0.

FIG. 6. Plot of Q,c/k)v'2J/h vs kT/42Jh for D = 0 and
5 &0.
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FIG. 7. Plot oft of $«v'D/2J (solid line) and $„„gD/2J
(dashed line) vs kT/42ZD forH=0 and D& 0

~Co'2J/k&k varies as 2(2Jk)s)a/(kT)'. The
thef' l- The peak in

e ie d-dependent specific heat occurs when kT
=- 2Jk/k T.

B. Nonvanishing single-ion anistropy (D 40)

ln this part, results for the zero-field (@=0) cor-
relation functions and susceptibilities in the pres-
ence of single-ion anisotropy (DIO) are discussed
Also, the order parameter (8,) and the correlation

the axis of the single ion anisotropy are calculated
for B&0. For h=0, it follows from the Hamilto-
nian, Eq. (9), that

p'JE„= e„(p'JD). (2g)

Thus the appropriate reduced temperature variable
is kT/$2J'IDI .

The @=0 correlation lengths ),„and $«are plot-
e versus kT/$2JIDI for D&0 and D&0 in F'

0
0

kT/g2 J )D[

(XggkT/g p, )QD//QJ for D) 0 ( l d l )

and (&»/& 2),) line) vs k T
&2~ lD I for &=0.

'I and 8, respectively. For D&0 „„zsgreater
than $„and a,s the temperatures goes to zero $„„
diver es whereag eas "„approa, ches a constant value.
ForD & 0, )„„isalways lessthan)„and at low tem-
peratures )„„approaches a, constant while $„di-

occur when the anisotropy energy of the spins con-
zs of ordertained in a, coherence length $

- 2J kT '

kT i.e. , D$ =2JD/kT=kT)'. At lower tempera-
tures, the anisotropy produces a crossover from

eisenberg- to Ising-like behavior for 0& 0 and
I.s re uction ofplanar x-y behavior for D&0. Th' d

the rotational symmetry is responsible for the
rapid growth of $„for D&0 and $„„for D&0.

The zero-field susceptibilities X„„for D &0 and

y« for. B&0 are plotted versus the reduced tem-
perature kT/g2JI DI in Fig. 9. This corresponds
to the magnetic susceptibility in the hard direction.
The susceptibilities for the easy axis egg for & &0
and easy plane y» for B &0 are shown in Fig. 10.

10.0

I

0 2
0

3

02 1.0
kT/~2J ] D)

10.0

FIG. 8. Plot of $«&ID I /2Z (solid line) and $~ZI~D/2Z
(dashed line) vs k T/~~2J' [D ) for H = 0 and D & 0

kT/v 2J(D)

FIG. 10. Plot of (X,PT/g )J. }4 ID~I2J for D& 0 (solid'
line) and (X kT/ St)VD 2J o/ for D&0 (dashed line) vs
kT/v2J ID I for k=-0.
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(g) )' 1+~(&)
3uT 1-~($) ' (30)

where u($) = coth$ —1/$ with $ = 2J/kT. Expanding
this for ( large gives

(ZP) (31)
kT 3

which is the continuum spin-field result for X.
In addition to the requirement that k T & 2J, T

must be larger than the critical temperature T,
associated with interchain ordering in order that
a one-dimensional description be applicable. The
critical temperature T, can be estimated in terms
of the interchain coupling J, and the number of in-
terchain near neighbors z,

p I

0
I I

I 2
kT//2 Jh kT,

8 z IJI
3 J (32)

FIG. 11. Plot of (S~) = (0 I cos6 I 0) vs kT/42Jh for
various ratios of D/h &0.

These figures indicate that the zero-field suscepti-
bility and correlation functions are greater in the
directions in which the anisotropy energy most
favors spin alignment.

We conclude by discussing some results obtained
when a magnetic field is applied parallel to the
anisotropy axis and D is positive. The magnetiza-
tion per site normalized to gp, is equal to (0I coseIO)
which is plotted versus kT/v'2J &for variou's D/ft
ratios in Fig. 11. As D increases, spin alignment
along the s direction is suppressed and the mag-
netization is reduced. For D/h&1 a, peak in the
magnetization versus kT/$2JN appears. Fig. 12
shows the behavior of the g«correlation length for
increasing ratios of the anisotropy to Zeeman en-
ergy. Consider a fixed value of the reduced tem-
perature kT/$2JIt less than unity. As D increases
from zero, the )„correlation length at first in-
creases, then passes through a maximum for D= h.
As D increases beyond I3, $« decreases.

IV. CONCLUSIONS

We have calculated the low-temperature prop-
erties of a one-dimensional ferromagnetic spin-
field model in the presence of various combinations
of external magnetic field and single-crystal an-
isotropy terms. The spin fieldprovides a useful ap-
proximation of the behavior of a one-dimensional
chain of classical spins when the correlations ex-
tend over several lattice spacings,

Therefore, when s, I J, I/J«1 there is a range of
temperatures

8 ~, IJ, I

3 J
where a, continuum spin-field approximation is ap-
plicable.

We consider that one of the most important prop-
erties of the spin-field model is the facility with
which one can handle various types of interactions
of exchange coupled spins to obtain at least a quali-
tative indication of the low-temperature behavior
of these types of systems. The spin-field model
has been used to fit the low-temperature magnetic
properties of the one-dimensional ferromagnetic
material CsNiF, . ' Unfortunately our theory, as
presently developed, does not adequately treat the
antiferromagnet in an external field to yield signifi-
cant corrections. But the zero-field properties of
the antiferromagnet in the presence of a single-ion
anisotropy term have been calculated.

I.p~' Ipr

IS—
2.0

(U

5.0
N
N 8.0

I p —0.9
0.5
0.3
P. I

0=
(U

N
N

5 =2J/uT &1. (2S) P. I ~i I

O. l 0.5

For example, in the absence of an external mag-
netic field and zero anisotropy, Fisher' has shown
that

Ffo. 12. Plot of $«~h2Z vs kT/v'2' for various ratios
of D/h &0.
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