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In the belief that the study of heat transport requires the study of the transport equation, we present

an approach to the problem of the Kapitza conductance h ~ between two materials which involves the

solutions of the Boltzmann equation. One of our purposes is to investigate the origin of the apparent

temperature discontinuity h, T that is associated with this phenomenon. The hydrodynamic solutions of
the Boltzmann equation, which (by definition) are describable in terms of local thermohydrodynamic

variables, can transfer heat but are not at all responsible for AT; whereas the nonhydrodynamic

solutions are completely responsible for AT but do not transfer heat. An effective temperature T is

defined which approaches the thermodynamic temperature T far from the interface, and which is

assumed to be continuous across the interface. With this assumption, formal expressions for h, T and

h~ are derived. In the limit as the properties of the two materials become identical, R~ (=h~')
approaches zero, as should be the case. Further, this approach has a natural generalization to finite

frequencies and includes lifetime effects. It is pointed out that thermometers do not measure T but

rather TI, which reflects, in a complicated fashion, the presence of the nonhydrodynamic modes, whose

amplitudes fall off exponentially as one moves from the interface. In He II, determination of the

exponential damping lengths (as a function of temperature and pressure) ~gould provide information

about phonon dispersion and phonon interactions which is at least as detailed as could be obtained by
other means.

I. INTRODUCTION

This paper is concerned with two phenomena-
the Kapitza conductance h& between two materials,
and the temperature gradients in the vicinity of a
heated surface —which are usually treated as dis-
tinct and indirectly related. [Other names for the
first phenomenon are Kapitza resistance A» (= h»1)

and thermal boundary resistance. ] We have found

that there exists a direct and intimate relationship
between these phenomena, since they must be de-
scribed by using the same solutions of the Boltzmann
equation. The implication for h~ calculations is that
the traditional "independent-phonon" approach to
energy transfer (to be discussed in Sec. II) must be
abandoned in favor of a more rigorous approach in-
volving the solutions to the Boltzmann equation.
Unfortunately, the difficulties with applying this
approach may not easily be overcome, so for the
time being it will primarily be of conceptual,
rather than practical, value.

Our research into these questions began with a
study of temperature gradients in He II, using the
formulation of linear-response theory„ It wa. s found

that they fall off exponentially in space, with a
characteristic distance

g = (Kp/p2s 2T)1/ 2

where z is the thermal conduction coefficient, p is
the mass per unit volume, S is the entropy per unit
mass, and T is the temperature. Here

A= 3 p, „+(z+p f, —2pf, ,

where p, „ is the viscosity of the normal fluid, and

the &'s are the coefficients of second viscosity.
It should be noted that Kronig and Thellung derived
a simila, r result much ea.rlier.

The difficulty in applying this formula is that the
transport coefficients ~ and A are dependent on the
wave vector R. In fact, they are functions of I kl

, and the problem must be solved self-consis-
tently. It turns out that use of I kl =0 for g and A

(the hydrodynamic approximation) yields values for
6 which are smaller than a characteristic mean
free path. Therefore, &he use of hydrodynamics is
not consistent. Further, the self-consistent solu-
tion of Eq. (1) does not appear to be feasible. It is
difficult enough to solve for hydrodynamic transport
coefficients, let alone nonhydrodynamic ones (as
a function of wave vector}.

For this reason, it became clear that another
approach was necessary; specifically a study of the
solutions to the Boltzmann (or transport) equation.
For most systems this would be as difficult a task
as the original one but, fortunately, solutions to
the Boltzmann equation for a relevant model recent-
ly became available. Ma has obtained a class of
eigenvalues (and their eigenfunctions) of the Boltz-
mann equation for the weakly interacting Bose gas
at low temperatures. ' This class corresponds to
the longest-lived temporal transients. Using these
solutions as basis functions, we were able to ob-
tain the spatially most extended solutions of the
eigenvalue equation for the modes relevant to
steady-state heat transport. (The details of this
work will be published elsewhere. ) With these
solutions at hand, it was then possible to consider
the problem of heat transport in some detail We
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concluded that these solutions transport no heat but
do simulate a rapid spatial variation of tempera-
ture. Those properties are the central themes of
this paper.

In Sec. II we present a critique of previous the-
ories of h~ and of temperature gradients in He II.
In Sec. III we discuss the relationship between tem-
perature gradients near an interface between two
media, and the solutions of the Boltzmann equation.
An effective temperature T is defined which we sug-
gest is continuous across the interface. In Sec. IV
these ideas are applied to the h~ problem, and the
resulting approach is found to eliminate a number
of difficulties that exist for the "independent-pho-
non" approach. Section V contains a summary,
some discussion, and our conclusions. The Appen-
dix contains a discussion of the properties of the
Boltzmann equation and of its solutions under vari-
ous circumstances.

II. CRITIQUE OF EARLIER WORK

In order to discuss the difficulties of the inde-
pendent-phonon approach, ' it is app~opr iate to
define the theoretical problem. We consider
steady-state heat flow between two materials (each
treated as a continuous medium) separated by a
perfect planar surface. There are no imperfec-
tions or impurities and there is no roughness: the
surfaces are considered to be perfectly smooth.
This neglects the atomicity of matter. For long
wavelength phonons, it should be reasonable to do
this. The independent phonon approach assumes
that heat is transferred by phonons of momentum

p (with infinite lifetime) whose transmission coef-
ficient so~ is obtained by matching the acoustically
or microscopically determined stresses and veloc-
ities across the interface. By giving the phonon p
the (Boson) thermal weighting n~, and accounting
for the component of velocity normally incident on
the interface, the energy of the phonon h&~, and
the transmission coefficient re~, one can deter-
mine the heat flux from one material to a second,
in thermal equilibrium. By detailed balance, an
equal flux should be going from the second to the
first. Considering the two materials to have a
small temperature difference ~T, one can then de-
termine the net heat flow from the hotter to the
cooler material. Most theoretical work has con-
cerned itself with the determination of values for
m~, assuming the correctness of the approach (just
described) which employs m~

The first difficulty with this approach was pointed
out by Little, who showed that the existence of a
finite temperature discontinuity DT across the in-
finitesimal barrier between the two materials im-
plies that the acoustic mismatch value for the
Kapitza resistance R~ does not go to zero as the
properties of the two materials become identical.

Hence, the independent yhonon value of R~ does
not have the correct behavior in the limit of zero
mismatch. In order to resolve this difficulty,
Little pointed out that in the limit of identical
materials, the two points between which 4T occurs
must be separated by a finite distance on the order.
of a phonon mean free path. However, in estimat-
ing this separation distance he employs the long-
wavelength thermal conductivity, which is inap-
propriate because of the short wavelength involved.
As with the work of Ref. 1, which was discussed
in the Introduction, the separation distance must
be determined self -consistently. Therefore, we
consider Ref. 10 to have presented a qualitatively
correct resolution of the problem, but we feel
there is a need to find a quantitative one as well.
Although this paper does not give such a quantita-
tive resolution, it does indicate the direction such
work should take.

A second difficulty with the independent phonon
approach is that there is no natural way of formu-
lating the h~ problem at finite frequencies. How-
ever, experiments have been performed at finite
frequencies (i. e. , second-sound transmission
through metal foils" ) and the results differ from
those obtained by the usual steady-state measure-
ments. (Note that different sample preparation
probably explains this discrepancy in measure-
ments. ) A complete theory must account for
finite-f requency effects.

A third difficulty is that it is unclear how to in-
corporate phonon lifetime effects: the work of
Peterson and Anderson~ and of Haug and Weiss,
attempts to do this in an ad hoc fashion. Vuorio
has discussed some difficulties with this approach.
Our particular concern is with the fact that this ap-
proach does not obviously satisfy reversibility.
In Sec. III it will be shown that the transport-the-
ory approach is manifestly reversible.

A fourth difficulty is that the role of surface
(Hayleigh) modes is unclear. If the modes are
short lived (long lived) they are expected to con-
tribute (not contribute) to the heat transfer. ~' It
should be noted that this is, in some sense, a life-
time effect.

A fifth difficulty is that the independent-phonon
approach does not cope with the question of how
much of AT is due to a rapid variation in tempera-
ture near the interface, and how much is a discon-
tinuity (except when viewed on an atomic scale).
In this sense, it does not explain the origin of AT.

In short, we have reason to believe that the ap-
proach of summing the contributions of independent
and infinitely long-lived phonons is fundamentally
inadequate. One of the purposes of this paper is to
outline, using the solutions to the Boltzmann equa-
tion, what we consider to be a correct approach.

We note that our original work on temperature
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gradients in He II was motivated by an interest in
studying a mechanism, within the framework of
the independent phonon approach, which would in-
crease the theoretical value of h» (bringing it more
in line with experiment). We concluded that the
rapid change in temperature of the He II near the
surface of a heater would not require one to make
significant corrections in estimating the discon-
tinuity in T. We now believe this conclusion to have
been erroneous. Indeed, it will be argued that the
rapid change in temperature (in both substances)
near the interface between He II and a solid is an
inseparable part of the apparent temperature dis-
continuity AT. Further, these rapid changes in
temperature occur at the interface when heat flows
between any two materials, even for two solids
placed in contact. As noted in Ref. 1, such spatial-
ly rapid changes in temperature have not been ob-
served in He II (and, a fortiori, in other condensed
materials) because the scale over which they oc-
cur (on the order of an appropriate mean free path)
is usually too small to measure with a macroscopic
thermometer How. ever, for He II (at T~ 0. 5 K)
and for rarified gases, the effect should be observ-
able. The primary difference between our earlier
paper and this one (in their conclusions about tem-
perature gradients) is that we now believe that tem-
perature falls off, in principle, as the sum of an
infinite number of exponentials. This point will be
discussed in Sec. III. In terms of the self-consis-
tent solution of Eq. (I), there is no unique solution
6 but rather an infinite number of solutions 6.

III. HEAT FLOW AND TEMPERATURE VIA THE
BOLTZMANN EQUATION

We restrict our considerations to materials with

only one significant type of excitation: phonons.
We do not consider metals, although we believe
that this general approach will apply to all materi-
als. The Boltzmann equation that we discuss is,
therefore, the Boltzmann equation for phonons.

The Boltzmann equation has as many solutions,
for a disturbance of given frequency, as there are
modes of motion in the absence of collisions. '
Almost all of these are nonhydrodynamic in nature
(i. e. , the distribution function cannot be described
as arising from deviations in local temperature,
pressure, and velocity of the material in question. )
Such modes either grow or decay spatially in a
distance on the order of a relevant mean free path,
with an exponential law for a uniform medium (see
Appendix). They can be generated by the flow of

heat, so that within a mean free path of a heater it
is not correct to speak of a local temperature,
etc. Nevertheless, at zero frequency, despite the

fact that these nonhydrodynamic modes are pres-
ent, they do not contribute to heat flow, as will
now be shown.

At zero frequency Se/St=0, where & is the ener-
gy density. Therefore, the divergence of the ener-
gy current density q must be zero, by

Nom for heat flow generated by a perfect infinite
planar heater, the energy current density must al-
ways point normal to the heater surface. Hence

Since all quantities associated with nonhydrodynamic
modes have a finite spatial derivative (see Appen-
dix), q, must be zero for all nonhydrodynamic
modes (otherwise aq, /aza 0. ) By using the appro-
priate conservation laws, one can similarly show
that the nonhydrodynamic modes do not transport
either mass or momentum. On the other hand,
they do contribute to quantities like &.

Now consider heat to be flowing through an inter-
face with an apparent temperature discontinuity
~T. Further, note that there are three scales of
spatial variation in this problem: (a) macroscopic
(i. e. , thermohydrodynamic description of the pho-
non distribution function), (b) collisional (i. e. ,
nonthermohydrodynamic description of the phonon
distribution function), and (c) quantum mechanical
(i. e. , associated with the interface on an atomic
scale). Since it is experimentally well known that
4T does not occur over a macroscopic scale, we
eliminate that possibility. Next, we note that there
is some overlap of the collisional and the atomic
scales, since many of the nonhydrodynamic modes
have characteristic damping lengths on the order
of or smaller than the atomic scale. A proper de-
scription of such modes mould require a detailed
knowledge of atomic scattering processes at the
interface. We cannot prove that AT does not oc-
cur over this scale, but for the purpose of treating
the interface like a mathematical boundary (so that
boundary conditions may be employed), we assume
that AT occurs over a scale on the order of a
characteristic damping length which is Inuch larger
than an atomic scale. The question is how.

To answer this, we consider the problem of de-
fining an effective temperature which: (a) includes
the effect of the nonhydrodynamic modes, (b) ap-
proaches the hydrodynamic temperature far from
the interface, and (c) is continuous at the inter-
face. First, note that far from the interface, the
nonhydrodynamic modes may be neglected, so that
changes in the energy per unit mass E(= e/p) are
given by

dZ = Tds + (P/p ) dp,

where 8 is the entropy per unit mass, I' is the
pressure, and p is the mass density. For heat
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flow without mass flow, I' is constant, so

dE =— dT —= Cg dT,
BT

(6)

dE~cr„= [T dS+ (P/p )dp]a„.
We therefore believe it natural to define T by

(8)

dE~.„=C,dT . (9)

We use C~ because o„=P+O(q,), and the energy
flux density q, is considered to be a small quantity.
Comparing with Eq. (6), we find that

dT = dT+dE/C~ (io)

Since C~ is nearly constant over the (small) scale
for which dE is non-zero,

T(z) = T(z) +E(z)/C, .
Since E(z)- 0 far from the interface, T(z)- T(z)

far from the interface. However, it is not clear
that T is continuous at the interface. Neverthe-
less, because it reflects the presence of the non-
hydrodynamic modes (which help smooth the tran-
sition at the interface), T should be more continuous
than T. We assume that T is continuous at the in-
terface. Note that if T turns out to vary on an
atomic scale (due to the presence of nonhydrody-
namic modes whose characteristic damping lengths
are on such a scale), then it would not be appro-
priate to employ this boundary-condition approach.
Therefore, a more precise approach, such as that
outlined in Sec. V, would be necessary. With this
proviso, we continue to develop the boundary-con-
dition approach, with T continuous at the interface.
Then, if the subscripts 3. and 2 apply to the regions
to the left and right of the interface, we have

T, (o) = T,(o),
or

T, —T, = (E/C, ), -(E/C, ), .
Here T, 2 and E~ 2 are evaluated at z = 0. For heat
flow from left to right we expect that T~ & Tz, E&
&0, and Ez&0, so

T, T, = ~(E/C, ), ~+ -(E/C, ), .
Certainly, Eq. (ii) requires microscopic justifi-

cation, but is is not clear how one should proceed
to obtain this. Note that if the two materials are
identical (e. g. , two identical pieces of electropol-
ished copper) the discontinuous transition at the in-

thus defining CI, . When the nonhydrodynamic-mode
contribution E to the energy per unit mass is in-
cluded, one has

dE = T dS+ (P/p ) dp+dE .
Now, for heat flow without mass flow, the stress
a'„(=P far from the interface) is constant, so

terface will cause a thermal boundary resistance.
This is because the fit will not be perfect, and non-
hydrodynamic modes can be expected to be gener-
ated. On the other hand, if the fit is perfect (i. e. ,
the boundary is purely a mathematical device),
then no nonhydrodynamic modes are generated,
there is no temperature discontinuity, and R&= 0.
This is in agreement with the discussion given in
Sec. II.

We note that a thermometer is unlikely to read
T. In the case of a resistance thermometer, a
resistance (with which is associated the effective
temperature Tz) is measured C.ertainly the re-
sistance as a function of the amplitudes of the non-
hydrodynamic modes is not proportional to the ~E
coming from the nonhydrodynamic modes. Never-
theless the resistance 8 will reflect the presence
of the nonhydrodynamic modes. By plotting R(z),
and trying to fit it to a sum of exponentials, one
may find the damping lengths of the most impor-
tant nonhydrodynamic modes:

R(z) =Ro+QA, e '

In the above, the A s may vary with the measuring
device, but the 6 s are a property of the medium.
Figure I contains a schematic diagram of T, T,
and T~ as functions of z.

It is appropriate to make two additional com-
ments. First, note that if there is any scattering
at all (which is certainly the case at finite tempera-
tures), then we expect nonhydrodynamic modes with
characteristic lengths which are infinitesimally
small. This is implicit in the work of Ref. 6,
where only a few of the longest characteristic
lengths are exhibited. Decreasing the scattering

FIG. 1. Solid line: thermodynamic temperature T;
dotted line: effective temperature T; and dashed line:
thermometer temperature 2'z, all as functions of g. We
have draw'n the diagram under the assumption that T&~
&Tz& at the interface.
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Let us now apply these ideas to the problem of
the Kapitza conductance A~. It is usually defined
as

k» = Q/AhT, (l4)

where Q = (qQ) is the magnitude of total heat flow
across the interface, A is the area of the interface,
and AT is the apparent temperature discontinuity
between the two materials. (Note that when calcu-
lating A~ by the independent-phonon approach it
is most convenient to assume ~T known, and to
compute Q. By the transport-theory approach it
appears most convenient to assume Q known, and

to compute &T. ) Inlight of the previous section an
equivalent definition would be

This can also be written as

—(h i+& a)

where

(16)

A (hE/C p )q, a

Since CI ~T' for phonons at low temperatures,
then if Q/r E is only weakly temperature dependent,
one can explain the observed approximate tempera-
ture dependence of h~. The key to solving this
problem (besides determining the properties of the
nonhydrodynamic modes) lies in a determination of
the amplitudes of the nonhydrodynamic modes gen-
erated by the heat current. This is a difficult
boundary-value problem, and we have no particular
insights into its solution. Some aspects of the
problem will be discussed in Sec. V.

In regard to the second difficulty mentioned ear-
lier, we note that, unlike the independent-phonon
approach, the Boltzmann-equation approach has a
natural generalization to finite frequencies. It
would, in principle, enable one to compute hz's
appropriate to those determined in second-sound
measurements. However, for finite frequency the
nonhydrodynamic modes contribute to the heat cur-
rent q, so the problem becomes more complicated.

cross section changes the scale of the character-
istic lengths, but it does not exhaust the infinite
number of characteristic lengths which can "peel
out" of the zero limit point. Therefore, we believe
the transport-theory approach is appropriate even
to systems whose phonon mean free paths are
limited by surface scattering. Second, note that the
transport-theory approach is manifestly reversible:
a change in the direction of heat flow simply causes
the amplitudes of all modes (hydrodynamis and non-
hydrodynamic) to change sign.

IV. APPLICATION OF KAPITZA CONDUCTANCE

V. SUMMARY, DISCUSSION, AND CONCLUSIONS

We have studied the problem of Kapitza conduc-
tance h~ between two uniform materials with a per-
fect planar interface, using the properties of the
relevant solutions of the Boltzmann equation. We
found it essential to define an effective temperature
T which was assumed to be continuous across an
interface, despite the fact that the thermodynamic
temperature T is not. From that definition, an ex-
pression for h& was derived. This approach has
the advantages that: (a) h» —-0 if the properties of
the two materials become identical; (b) it has a
clear generalization to finite frequency; (c) it in-
cludes lifetime effects for both bulk and surface
modes (the surfa, ce modes will be considered
shortly); (d) it is manifestly reversible; and (e) it
elucidates the origin of the apparent temperature
discontinuity.

On the other hand, this approach has the dis-
advantage that it requires a knowledge of the appro-
priate solutions of the Boltzmann equation and at
the boundary conditions with which to match the
solutions in both materials. This latter problem is
particularly difficult, for a complete theory would

determine the boundary conditions from a knowledge
of the microscopic coupling between the two ma-
terials. Only recently has progress been made on

the microscopic theory of coupling between pho-
nons in liquid He and a solid. This work is still
at an early stage of development but in the future
it should yield answers to the problem of boundary
conditions for the hl, problem. Clearly, it is
desirable to discuss what information should be
contained in more advanced work of the type ini-
tiated by Ref. 19.

Let us therefore consider the coupling between
an insulating solid and liquid helium. Near the sur-
face of the solid, the atomic sites will have a spac-
ing which differs slightly from the spacing of the
bulk. This effect, known as relaxation, will de-
pend on the interactions of the solid atoms with one

another and with the atoms of the liquid. Most
likely it will be sufficient to treat the solid as
consisting of classical particles. On the other hand,

liquid He is distinctly quantum mechanical, and
this must be accounted for at the start. The (time-
averaged} density profile of the liquid will conform
to the shape of the solid at the surface (i. e. , it will
be periodic parallel to the surface, with the peri-
odicity of the solid substrate), approaching the bulk

liquid density a few atomic distances from the in-
terface. The relaxation of the solid and the density
profile of the liquid He will have to be determined
simultaneously and self -consistently. This point
was not treated in Ref. 19. Of course, the effect
of temperature complicates this problem consider-
ably, so it is implicit that this work be done at T= 0.
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The next step is to find the normal modes of the
system, in the absence of collisions. Clearly,
they will be coupled modes of both the liquid and
the solid. Besides bulk modes, there will also be
modes localized near the interface (surface
modes).

Both of the above steps would be taken by advo-
cates of the independent-phonon approach. It is in
what follows that the Boltzmann-equation approach
differs from the independent-phonon approach.

The third step is to find the appropriate trans-
port equation for the coupled modes, in order to
include the effect of collisions. Separate Boltz-
mann equations for each system will not do. The
inhomogeneous nature of the problem will prevent
Fourier analysis perpendicular to the surface.
Most likely a transport equation resembling that
for the Wigner distribution will be found, compli-
cated by the effects of the inhomogeneity of the sys-
tem. However, the equation, if soluble, will yield
the modes describing transport processes in the
system. All the boundary conditions will be built
into this equation describing the real system, so
only one particular hydrodynamic mode will be
generated by heat flow in the absence of matter
flow. Clearly, lifetime effects for both bulk and
surface modes, and effects associated with the in-
terface on an atomic scale, will be accounted for.

It should be noted that, for the problem with ideal
surfaces and nonmicroscopically determined bound-
ary conditions, an enormously large number of
combinations of nonhydrodynamic modes could be
responsible for a given static value of h~. If h~
were known as a function of frequency, the number
of possibilities would be vastly decreased. As a
practical matter, one would hope that only a few
nonhydrodynamic modes are generated to any sig-
nificant extent. This is probably the only practical
working hypothesis —otherwise, analysis of any ex-
periment using the Boltzmann-equation approach
would be virtually impossible.

We now consider the experimental consequences
of the nonhydrodynamic modes. First, they pro-
duce a rapidly varying "temperature" in the vicinity
of any heat source, as qualitatively indicated in
Fig. 1. Such an effect can be seen in the work of
Ref. 20. This paper discusses a computer experi-
ment on heat transfer in anharmonic linear chains.
At the edges, where the chain interacts with thermal
reservoirs, Fig. 3 of that reference shows a rapid-
ly varying "temperature, " just as one would ex-
pect there were nonhydrodynamic modes being gen-
erated. In real systems, a rapidly varying "tem-
perature" can probably be observed in He II for
T~ 0. 5 K and perhaps in rarified gases. (The ther-
mometry problem in this latter case is a formidable
obstacle. However, attempts to measure the tem-
perature profile in such systems have been made. ~~)
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APPENDIX

In this Appendix we discuss some properties of
the nonhydrodynamic modes appropriate to heat
flow. The Boltzmann equation for a uniform medi-
um is taken to be

9( 8$ dx 8$ dp—+—~ —+—~ —= J(g)+S .8t ex dt ~p dt (Al)

Here P = P(x, p, f) is the particle distribution func-
tion, which depends on position (x), momentum
(p), and time (f). J(g) is a linear functional (for
small amplitude disturbances) representing the
effect of collisions upon P, and S is a source term
which describes how an external agent can modify
g (e. g. , introduction of heat). The dp/dt term can
also serve as a source (e. g. , an external gravita-
tional or electric field). Here it will be dropped as
being inessential to our argument, but we note that
as a practical matter it is quite important in plas-
ma physics and for describing the excitations in
condensed matter.

We consider the situation near thermal equilib-
rium for which the source term drives the system
so that the distribution function has a part t/&

For He II, experimental determination of the damp-
ing lengths [via Eq. (13)]as a function of tempera-
ture and pressure for the first few important non-
hydrodynamic modes would provide information
about phonon dispersion and phonon interactions
which is at least as detailed as could be obtained
by other means (e. g. , sound attenuation). The
problem of phonon dispersion is of much current
interest. Second, nonhydrodynamic modes are
also generated in the vicinity of any pressure
source —indeed, they are associated with any bound-
ary. Perhaps generation of finite-frequency non-
hydrodynamic modes is responsible for recent
surprising observations on the generation and de-
tection of first and second sound. This possibil-
ity deserves further consideration.
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~exp[i(k ~ x —vt)]. The Boltzmann equation then
becomes

—i(v -k ~ v~)(~=8(g)+S . (A2)

det[i(v —k v~ cos8~)6», +J», ] = 0 . (A4)

This is a determinant of infinite rank, so one can
anticipate an infinite number of solutions k. We
will discuss two of the properties of these solutions.

First, the collision integral J». has complete
rotational symmetry, so that the solutions to (A3)
can be labeled by the azimuthal "quantum number"
m. The &erm in vp cos8 destroys the "quantum
number" l, but m, is not affected. We expect that
a heater can only generate the m = 0 solutions.

Let us now restrict ourselves to zero frequency
and rewrite (A3) as

cTpp. &kp ——Avp cos8p fp, (A5)

Here we use v~ =dx/dt, where v~ is taken to be the
group velocity of an excitation of momentum p, and

P~ is the deviation from thermal equilibrium of the
distribution function for such an excitation. For
static Kapitza-conductance (hr) measurements v=0;
for second sound measurements of h~, v is finite.
Since the heater surface is taken to be perfectly
smooth, by symmetry k must point along the nor-
mal to the heater. Therefore we take k- vp
= k vp cos8p, with 8p measured with respect to the
normal.

The modes generated by the heater may be de-
termined by solving (A2) with the source term set
to zero Fi.rst we write J(P) explicitly as J~~. g~. ,
where summation on p' is implied. We then have

t(v —k 'vp cos8p) ljfp = clp~a /pi

Since p takes on a continuum of values, this can be
considered to be a matrix equation. If v is fixed,
then k can be determined by solving

where A=ik is to be determined. [X=6 of Eq.
(1).] This is a "weighted" eigenvalue problem,
with the weighting factor vp cos8p. With a suitably
defined inner product, Jpp. can be made a self-
adjoint operator. [This statement is true, to the
best of my knowledge, for all collision integrals
that have so far been studied. Specifically, this in-
cludes the gas of Maxwell molecules (intermolecu-
lar potential varying as r 4)~ and the weakly inter-
acting bose gas at low temperatures. '] It is
straightforward to show that the eigenvalues of a
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