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Magnetic resonance and spin waves in the 4 phase of superfluid *He
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Extending an idea due to Leggett, that the longitudinal resonance in the 4 phase of superfluid *He is
considered as an internal Josephson effect, we discuss the nuclear magnetic resonance as well as spin
waves in the A phase of superfluid *He. The spin-wave dispersion in the hydrodynamic regime is

determined explicitly.

I. INTRODUCTION

Recent longitudinal resonance experiments!’? in
the A phase of liquid *He confirmed a theoretical
prediction of Leggett.®* Prior to these experi-
ments, exploiting Leggett’s* idea that the longitu-
dinal resonance is considered as an internal
Josephson effect, we had shown the existence of the
longitudinal resonance in a simple manner and pre-
dicted the transient behavior of the magnetization
after sudden application of magnetic field.® The
latter prediction is borne out in a recent experi-
ment by Webb et al,® However, the above work is
limited to a spatially homogeneous situation. In
this paper we will study more general situations,
where the spin current is nonvanishing in general.

As in the previous work, we imagine that the A
phase of superfluid ®He in the presence of a mag-
netic field along the z axis consists of two super-
fluidities associated with the up-spin atoms and the
down-spin atoms, The corresponding order pa-
rameters are given by A, and A,. Furthermore,
these two superfluidities are completely indepen-
dent of each other but for a small dipole interaction
which transfers one superfluid to the other,® In the
absence of the dipole interaction and in the low-fre-
quency limit (i.e., in the hydrodynamic limit) we
have two conserved currents: the up-spin super-
current and the down-spin supercurrent, However,
it is more convenient to write these two supercur-
rents as the ordinary supercurrent associated with
the mass flow and the new supercurrent associated
with the (z component of) spin flow. Introduction
of the dipole interaction breaks the conservation
of the latter current weakly, while the former cur-
rent is still conserved. We are not interested here
in the former current, since the behavior of the
mass current in the superfluid 3He is already well
understood.

The hydrodynamic equation for the spin current
yields a differential equation for the relative phase
¢(=¢, - ¢,), where ¢, and ¢, are phases of A, and
A,. In the limit of small amplitude oscillation, the
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oscillation of ¢ is described in terms of spin waves,
while in a more general situation, the oscillation of
¢ is described in terms of solitons. Therefore,

the present theory predicts existence of both spin
waves and solitons in the hydrodynamic regime of
the A phase. In Appendix C we will describe briefly
how the present approach can be extended for the
transverse resonance,

II. FORMULATION

As in our previous work,® we imagine that the
A phase of the superfluid *He consists of two inter-
penetrating superfluids associated with the up-spin
atoms and the down-spin atoms. The total Hamil -
tonian is decomposed as

H=E,+E,+H,+E, , (1)

where E, and E, describe the free motion of the up-
spin quasiparticles and the down-spin quasiparti-
cles, H, is the spin exchange interaction given by

Hy=1 on, on, (2)

(in a more general situation H, describes the ef-
fective interaction term between quasiparticles as
envisioned in the Landau theory of Fermi liquid),
and finally E, is the dipole interaction energy of the
system. In particular, in terms of ¢, and ¢,, E,
is calculated for the P-wave pairs as (see Appen-
dix A)

Eq.=(H,) =-(m/?/20¢%)A%(T)[1+3 cos(p, - $,)], (3)

where ¢, and ¢, are the phases of the order param-
eters A, and A,, respectively, v is the gyromagnetic
ratio of the 3He nucleus, and g is the pairing inter-
action constant,

In the absence of the dipole interaction energy,
the superfluids associated with the up-spin atoms
and the down-spin atoms behave independent of
each other., Making use of the conservation law in
the absence of the dipole interaction, we obtain the
following relations for the densities of the up-spin
atoms #, and the down-spin atoms #,:
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where a dot implies the time derivative, and T. and
j, are the currents associated with the up-spin
atoms and the down-spin atoms, respectively. The
right-hand side of Eq. (4) describes the transfer

of the up-spin superfluid into the down-spin super-
fluid and vice versa due to the dipole interaction, 3
We can rewrite Eq, (4) as

n+Vi=0, (5a)
S, + ¥js,= - (31y%/20g%)A%(T) sing, (5b)
where
n=n,+n,  I=l+i,
S=30,-n), J5,=3G,-7),
and
d=b,— .. (6)

Equation (5a) implies the conservation of the total
atoms, while Eq. (5b) expresses the conservation
of the total spin weakly broken by the dipole inter-
action,

In the low-frequency limit (i.e., in the hydro-
dynamic limit), j, and J, are related to the super-
fluid velocity fields qu. and -V’¢. by

‘]"(I)Z(N/4m)(ﬁ;/p)(-v>¢i(l)) . (7)

As in an ordinary superconductor, where the super-
fluid density tensor ps is defined in terms of the
retarded product of j, and j,,

oS =lin(1]2<(i:,i:)>(0,w)
=1im 2G5, 7 )00, 0); (8)

we note also
((i’,,i))(O,w):O (9)

in the A phase. In the weak-coupling limit Eq. (8)
is explicitly calculated as (see Appendix B)

(&.)}_L33<k L.21T Y _.__é.z(n_)__>
Py i”y ;[w’z’+Az(Q”3/z ’
where K is a unit vector in the directions designated
by Q and (4) implies the angular average of A. In
particular, for the case of the P-wave pairs, ps/p
has the following asymptotic forms:

(10)

(ps)ll - 1; T , (ps)J. — 2 (1 _TL) for T = Tc ;

P ¢ p o (11)
(Ps)y a T 2 (Ps)y _ %(ﬂ)i ~

S —1—6(3A ' T =1 5 \3a for 70,

where the subscripts Il and 1 mean the components
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parallel and perpendicular to the symmetry axis of
the orbital wave function of the condensed pairs.
The spin current is given from Eq. (7) as

Ts, = V/8m)(B,/p) (V).

In order to complete the above equation we have to
relate the time derivative of ¢ to » which is easily
formed from the Josephsen relation®®

(,.5:— GH/G(‘IZ.sg) == Z(IJ'v - }J.,)+4IS;.

(12)

(13)

(Note that the conjugate variable to ¢ is 3S,.) In
deriving Eq. (13) we have assumed that the local
equilibrium is attained both among the up-spin
atoms and among the down-spi‘n atoms separately.

Finally, eliminating 3, and j, from Eq. (5), we
obtain

- 5 (1 -Di(V5,Ve)/p = - Q¢ sing, (14)

where @, =[(1 -T)6my%/5g%N(0)]*2A(T) is the longi-
tudinal resonance frequency.*’ For small ¢
(i.e., l¢l «<1), Eq. (14) predicts the existence of
the spin wave with the dispersion
W=+ 5 (1-T)%ap,a/p,
where v is the Fermi velocity.

At T=0 K, Eq. (15) agrees with the spin wave
dispersion determined previously within the ran-
dom-phase approximation®® (RPA). However, at
T+0 K, Eq. (15) differs significantly from the RPA
calculation. This is because in the present deriva-
tion we assumed that the thermal equilibrium is
attained in the up-spin states and the down-spin
states separately, which seems more physical for
low-frequency phenomena, On the other hand, the
RPA calculation®® was limited to the collisionless
limit, as the effects associated with the quasi-
particle lifetime are completely neglected.

So far we have neglected any dissipation term
which may appear in Eq. (14) for ¢. It is not dif-
ficult to introduce the dissipation terms phenom-
enologically. If we include the contribution from
the normal spin current as well as the spin lifetime
due to the spin-nonconserving scattering, Eq. (10)
would have to be generalized as

& = +(1 =Twi¥p,Ve/p - VDV - 77 = - R sing,
(16)
where D is the spin diffusion tensor and 7} is the
intrinsic-spin lifetime due to the scattering.
III. SOLITONS

In the following we will neglect dissipation terms
in Eq. (16) for simplicity. Furthermore, we limit
ourselves to the one-dimensional situation, where
the spatial variation in ¢ takes place only in one
direction (say the x direction), Then Eq. (16) re-
duces to

(15)

_ zi_ 2 s
¢-C Py =-Q7sing,
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where
C¥=5(1 = ¥Ps) e /p - am)

An equation similar to Eq. (17) has been encoun-
tered in the literature on the problem of the vortex
structure in the Josephsen junction. "' In partic-
ular, it is known that Eq. (17) allows moving so-
lutions (or solitons) in the infinite system. A
class of periodic solutions can be obtained by as-
suming that

Px,t)=pu), (18)
with

u=(x=—vt)/x
and

A=Q;1(Cz—’l)2)1/2, (19)

where we have assumed v <C. Then Eq. (17) be-
comes

2

9 .
;u-gq& =sing. (20)
The first integral of Eq. (20) is given as
2
(S%) - C-2cosd, (21)

where C is a constant. We have different classes
of solutions depending on C:

sin{ [¢(x, ) - 7]} =sn(w/k|k?) for C>2,
tan[; ¢(x,#)]=exp(-u) for C=2, (22)
sin{i [¢(x,t) - 7]} =k sn(u|k?) for C<2,

where k=2(C+2)% and sn is the Jacobian elliptic
integral. Furthermore, ¢ (u) satisfies

du+27)=du)+2m, (23)
where
T=kK(k) for C>2
=K(k™) for C<2, (24)

The local magnetizations associated with the above
solutions are then given by

9
s, 0)==3%,2, (25)

which yields
s,(x,t)=X0<§>k“dn[(u/k) |k?] for C>2

=Xo(v/ 1) sech(u)
= X (v/N)ken(u | k72)

for C=2
for C<2, (26)

respectively, where X, is the susceptibility in the
normal state, and dn and cn are the Jacobian ellip-
tic functions. These solutions represent a series
of identical peaks, a single peak and a series of

alternating peaks in sign moving in the x direction.
In the case v > C, on the other hand, the correspond-
ing solutions are easily constructed from those for
v < C by the following replacement as noted already
by Kulik'!:

&(x, )~ dplx,t)+m, 2m
A - X’ :Q;l(vz - c2)1/2'
1V. DETECTION OF SPIN WAVES

In this section we consider a possibility of de-
tecting the spin waves predicted in the present cal-
culation, For this purpose we will confine our-
selves to the case where the amplitude ¢ is small
[i.e., we will use the linear version of Eq. (14) ].
Furthermore, we consider one dimensional prob-
lems, where everything varies only along the x
axis. When a nonuniform magnetic field H(x) is
applied suddenly, the subsequent oscillation of ¢
is determined by Eq. (17) with the initial condition

$=28w,(x)=2|y|H(x) att=0. (28)

Assuming that the liquid is confined in a box with
the length b along the x axis, ¢(x,#) is given as

dx,t)= Z; a,,(z‘)cos-’ﬂbrﬁ , (29)

where a,(t) is determined as
a,(t) = a,sin(At),
A, = [ + Co(nm/b)P] 2,

2 b
aozmj; dx Awg(x),

b

a,,:l%"fo dwaL(x)cosn—;w-c- .
In expansion (29), it is assumed that no spin cur-
rent flows in or out at the boundary. (This assump-
tion may be modified if the container is made of
magnetic material.) Since C=10%~10° cm/sec in
the A phase of *He, the difference between A, and A,
becomes appreciable if b is smaller than, say,
1mm. Therefore, by choosing an appropriate
Aw,(x), it is possible to excite a standing spin wave,
Making use of Eq. (12), we can treat the decay of
the standing spin wave as well as the nonlinear in-
teraction between spin waves,
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APPENDIX A: CALCULATION OF THE DIPOLE
INTERACTION ENERGY

The dipole interaction energy is expressed as the
expectation value of H;:
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Ey=(Hyp
2 g i€
=2 { [t [ v Eror o) T
(a1)

where é=(r -1')/IT 1’| and ¥ is the gyromagnetic
ratio of the 3He nucleus. The above expectation
value can be expressed in terms of the Green’s
function as

BT Zf @y

ap’ - -
X f’(ég)_s T'{G(p, wn)aiG(p’n wm)aj} AH(Q’ Q,)y
(A2)
where A;(Q,9)=3nm; =8, 1=(p-0)/1p-71, a
are Pauli spin operators® in the four-dimensional
representation, and G(p,w,) is the Green’s function®
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given as

G-1(5$ wn) :iwn - [g + (Qo/z)os]ps - % {P+ [é (1 +0'3)A?

+3(1=0)Ar+p.[2(1+09)A,+3(1 —0y)a, ]}

and (43)
PE =Py %10y,
= (1/2m) p2 - t, @y = wy/(1 ~=T)= - yH/(1 =T),
(A4)

where w, and w,, are the Matsubara frequencies,
, is the renormalized Larmor frequency and p;,
0; are the Pauli spin matrices operating in the
particle-hole space and in the ordinary spin space,
respectively., The integrals over d°p and d°’ are
easily carried out by replacing them by N(0)(d2/
4m)dE and N(0)(dQ'/4m)dt’, respectively, as

dszdn' AFQ)A;(R,827)A,(R')
E;=(-3 )’a)[‘"TN(O)]sz"l ‘Z,; (w +TAz(Q )ifw,,, +A12(Q i72 = 27;73 AZZ (fil Ay lfj> (A5)
r
where A, =Agiorf (A8)

CHlaylhy - [ G r @)

X A“(Q" Q)fj(ﬂ)!

A2(9) = | a,(@)]2= | a,@)]2= 2% 72, (46)
Ay =(A, - A)/V 21, =(A,+A)/V2 ,

and
Ay =0,

In the above derivation we made use of the gap
equation:

1= ﬂTgN(O)Zf‘M

Finally, assuming that
A, = Ae“"f

and

Lf12

m*]ﬂ . (A7)

<[J.,J.>(0 0)= TZf(zﬂ)sT {1+031> 6B, w )(ILZ%)PJ-G(S, Wn) }

where G is the Green’s function already defined in
(A3). Substituting the Green’s function defined in
(A3), it is easy to carry out the integral over d3p
and we find

p,p, la, (2)12
+ AZ(Q))ﬂZ

([4%,7i1y(0,0) = nTN(of

=32 (x +iz)
for the axial solution, we obtain Eq. (3).

APPENDIX B: CALCULATION OF THE SUPERFLUID
DENSITIES ASSOCIATED WITH THE UP-SPIN
CURRENT AND THE DOWN-SPIN CURRENT

The up-spin current and the down-spin current
are expressed in terms of the electron field opera-
tors

T = (1/20) B3 () V9 (F) -

and

(Vi) @]
(B1)
1/ 20)[p: (7)o, (F) - (Vo (@)e, ()],

respectively. The static part of the retarted prod-
uct of the current correlation function is then given
as

@)=

(B2)

=3 mNTZ

A%(Q) )
1 w2+ AYQ)P7
and
k=p/15] .
Equation (B3) is identical to Eq.

(B3)
(10) in the text.
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We have an identical expression for {[4}i])(0,0),
since

la,@)]2=a@)]2

APPENDIX C: EXTENSION TO THE TRANSVERSE
RESONANCE

Generally speaking, the transverse resonance
involves an additional order parameter 4,, which
vanishes identically in the A phase in the presence
of a magnetic field along the z axis. However, we
can still exploit a close analogy between the longi-
tudinal resonance in the present consideration, We
have treated 3 ¢ = 6, as the conjugate variable to S,.
Although ¢ is interpreted as the difference to two
phases ¢, and ¢,, we can view 6, as an angle be-
tween d (i.e., the spin vector of the condensed
pair) and I, the symmetry axis of the orbital wave
function f defined in (A8). In the equilibrium con-
figuration (including the dipolar energy),we assumed
both T; and d are along the y axis. For the longi-
tudinal resonance the d vector rotates in the x=y
plane with angle 6, from the y axis, Let us con-
sider the case when an external rf field is applied
along the x axis, This exerts a torque on the d
vector, and in the presentcasethed vector begins
to rotate around the x axis, Then S, (the x com-
ponent of the total spin) and 6, (the angle between
the d and L vectors in the y-z plane) are the con-
jugate variables, as are S, and 6,. However, since
S, couples with S, through the Larmor term we have
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to take into account the motion of S, as well. With
these preliminaries we can write down the following
set of equations for this particular case:

& .  OH 8Ed(92)
S, wLb,+3—§;=wLS,+ 26,
(C1)
. 9H
Sy=—‘*’LSx+8_93—‘stx R
and
. oH .
0y = = 55 = AW -Xts, ,
X
where
E,(6,) = = (m2/20g %) A%(T)[1 + 3 cos(26,)] (Cc2)

where Aw}=lyl(AH,), and AH, is the change in the

transverse component of the field. Eliminating S,

and S, from the above equation, we have for ¥=26,:
o +wip + 9 sin) = 203(Aw]). (c3)

In the absence of the transverse rf field, ¥ obeys a
simple differential equation

b+ 0B+ Qfsing=0. (C4)

Especially when [§] <1, (C4) reduces to the equa-
tion previously obtained by Leggett, 4 In particular,
Eq. (C4) has an oscillatory solution with the trans-

verse resonance frequency w; when (| <1,
wi=w?+ Q2. (c5)

In general, Eq. (C3) can be used to describe non-
linear transverse response of the magnetization,
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