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The effects of a finite substrate-helium interaction and of the crystalline structure of a substrate

potential on the liquid phase of a monolayer of helium are explored for models of three systems:

helium physisorbed on a basal-plane surface of graphite; 'He adsorbed on graphite preplated by a

close-packed layer of neon; and 'He adsorbed on graphite preplated by a close-packed layer of argon.

The ground-state energy as a function of the areal density is calculated for each of these models by

introducing a class of trial wave functions which have finite extent orthogonal to the substrate, possess

the same translational symmetry as the substrate, and include short-range correlations between the

helium atoms. The results for He on bare graphite are virtually identical with previous results for the

model of 'He atoms in a two-dimensional structureless box, with very small quantitative differences.

The indications for 'He on bare graphite are that the liquid is not self-bound. In contrast to the

bare-graphite substrate, the other two substrates exert a strong influence on the liquid, substantially

increasing the equilibrium density.

I. INTRODUCTION

The physics of quasi-two-dimensional quantum
fluids has recently been explored experimentally
in the form of single layers (monolayers) of helium
physisorbed on the basal plane of graphite. ' The
remarkable property of this graphite substrate is
that, with the exception of a few discrete densi-
ties, the experimental results can be understood
in terms of the helium alone; i.e. , the only role
of the graphite is to confine the helium to a two-
dimensional layer. The periodic structure of the
graphite surface provides no qualitative effect ex-
cept at the discrete densities where the helium
settles into a lattice-gas phase. This situation is
in marked contrast to other substrates which ap-
pear to dominate the properties of the adsorbed
quantum fluids.

While the theoretical understanding of many of
the properties of helium adsorbed on graphite can
be obtained qualitatively and semiquantitatively
from the model of helium in two dimensions, an
analysis of the role of a structured substrate and the
finite extent of the monolayer in the third dimen-
sion (perpendicular to the adsorbing surface) is
useful on several grounds. First, it should be
shown explicitly that the graphite substrate does
not play an important qualitative role. Second,
there may be some weak quantitative effects of the
substrate. Third, it is of interest to study the
effects of substrates other than graphite on ad-
sorbed quantum fluids. With regard to this last
point, physisorption of quantum fluids should play
an important role in the characterization of sur-
faces.

In this paper we focus on the ground-state ener-
gy of the adsorbed helium as a function of its
structure. The structure of the ground state will
be closely related to the structure of the adsorbed
system at very low temperatures. We view our
calculation as a determination of the T= 0 'K iso-
therm of the phase diagram. The effects of finite
temperature require a more detailed study includ-
ing an analysis of the excited states of the system.

In Sec. II we develop a theory which is capable
of describing the ground state of an inhomoge-
neous quantum fluid. This is accomplished by
introducing a class of trial wave functions which
include the correlations between helium adatoms
as well as structure of the substrate potential as
seen by the helium atoms. The Schrodinger equa-
tion is replaced by Euler-Lagrange equations for
the wave function by using the variational princi-
ple. The equations then are solved approximately.

The operational aspects of the problem are
described in Sec. III, where we specify the helium-
helium interaction and the interaction of the heli-
um ad3toms with the various substrates under
consideration. Uncertainty concerning the latter
interactions as well as dynamic effects of the sub-
strate require us to classify our results as pre-
liminary. Section IV contains the numerical re-
sults for He adsorbed on the basal plane of graph-
ite with a brief discussion about 3He on the same
substrate. Section IV B contains somewhat cruder
numerical results for He adsorbed on neon-plated
graphite and on argon-plated graphite. Though we
plan to return to a more detailed consideration of
these latter substrates at a later time, the results
shown here are adequate to exhibit the sensitive
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dependence of an adsorbed quantum fluid on the
nature of the substrate, and by contrast the utility
of the graphite substrate as an extremely smooth,
nearly two-dimensional adsorbing surface.

We conclude in Sec. V with a, brief discussion.

II. THEORY

The helium adatoms are confined to a plane near
the planar substrate surface by the substrate-ad-
atom interaction. It is assumed that the zero-
point motion of the adatoms perpendicular to the
substrate surface is small compared to their aver-
age interatomic spacing, in which case they form
a quasi-two-dimensional system. The interaction
of the adatoms with the substrate is described by a
time-independent single -body potential U(r, z),
where r is a two-dimensional vector which locates
the adatom in a plane parallel to the surface, and
z locates the adatom in the direction perpendicula. r
to the surface. Adopting the convention that z is
positive outside the substrate and negative inside,
the potential U is attractive for la.rge positive z,
repulsive as z tends to zero, and has a periodic
dependence upon r which reflects the crystalline
structure of the substrate surface. The adatom-
a.datom interaction is given by a. two-body potential
v(p), where p is the distance between the adatom
pair. Then the Hamiltonian for this system is

@2 82
"
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a=+ ——v,'+, +U(r„z,) +Qv(p(g), (I)

where N is the number of adatoms, p;;=6;&+@2;,
r~& = r~ —r» z&& =a& -z» m is the mass of the ad-
atom, and ~2 is the two-dimensional Laplacian.

The ground-state energy is obta, ined varia. tion-
ally. A great simplification in the calculation is
achieved by ignoring correlations in the z depen-
dence of the trial ground-state wave function:

z'( „z„.. . , „, z) =
( II (Mzi)) (z(P» z) .

i=1 (2)

M(z) describes the "localization" of the adatom
near the surface, and its shape should depend upon

both adatom. adat-om, correlations and local (micro-
scopic) density variations caused by the crystal-
line structure of the substrate surface. The vari-
ational estimate for the ground-state energy is
E = ()I)' I & I @)/(@I @)with the variational param-
eters in 4' properly optimized. With correlations
in the fz&} variables absent, it is convenient to de-
fine an effective two-dimensional substrate poten-
tial U2D and an effective two-dimensional adatom-
adatom potential v»..

00 8
Uz ( z)= dzM(z)" ——~+U( q, z))M(z), (8)

2m Bz

var)(+(i) dz, lM(z, ) l'v(p, , ) lM(z, ) l' . (4)

Given a particular form for M(z), these integra-
tions define two-dimensional potentials which re-
duce the three-dimensional problem to a, two-di-
mensional one. The effective two-dimensional
Hamiltonian is then

(t)an=]Qe 4o(r). ) ~ ~ ~ z rN) z (7)

where go depends only on the set of interparticle
spacings I r& —r& ) .

The statistics of the total trial function 4 are
contained in go, since the remaining factors are
symmetric in the coordinates. For boson adatoms
( He), the go must also be symmetric. The sim-
plest choice for go which can account for the short-
range correlations between adatoms is the well-
known Jastrow function

0o(r» " r. ) = Qz"'"*"" (8)
i&j

where u(r) becomes large and negative as r be-
comes small in order to prevent the overlap of the

adatom repulsive cores.
The single-body functions Qo(r;) = e" '( have

the symmetry of the substrate in the liquid or va, -
por phase, and thus s)(r) is periodic. In the ab-
sence of two-body interactions, (t)o(r) would be the
lowest Bloch state for the potential Uzn(r ).

For adatoms with Fermi statistics (e.g. , 'He),
the appropriate symmetry may be inserted by in-

h2
Uz. =Q(- —vzz+U, (r,.))+Qv, (r„);

j 5&j

so the ground-state energy is given by

&cz-.
l z. i&an)&&tznlczn )

This procedure is not equivalent to separating the
substrate potential into a, z and r part, since the
effective two-dimensional Hamiltonian depends
upon M(z). It is, however, a, projection of the
three-dimensional problem into the two-dimen-
sional pla, ne.

The two-dimensional problem defined by H2D

has been considered previously in two limiting
cases: (i) the low-density limit, where the effects
of the two-body potential can be ignored (i.e. , the
one-body problem)' ' or treated by a low order
cluster expansion"'z; (ii) the smooth substrate
limit, in which the periodic substrate potential is
ignored. '~3'~ Here we include both the effects of
the substrate periodicity and the short-range ad-
atom-adatom correlations which should be im-
portant at liquid densities. These two effects can
be accounted for in the simplest way by choosing
the ()zn factor in 4' to be
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eluding a, ground-state Slater determinant of plane
waves as a factor in go. 12 This has the effect,
however, of ignoring the dependence of the peri-
odic part of the Bloch functions on k; i.e. , we use

e.="""~o( ),

where

Eo =
&Oo I

&o l(o &/ &Oo I to &

00 e'
dz«drrdzlr) zz lr) ——««lr))

0 4m,
(14)

which should suffice for a highly mobile band.
More generally for Fermi systems, the single-body
prefactor multiplying the Jastrow function should
be a Slater determinant of Bloch functions.

The primary focus of the remainder of this paper
is 2He, and thus Bose statistics apply. (We re-
turn to the 'He problem in Sec. IV A. ) Thus, to
obtain (1)2n and E, consider a two-dimensional box
of area A containing N bosons, with Hamiltonian
H2n. The expectation value of H2n in (2n requires
knowledge of the one- and two-body distribution
functions for gzn. The kinetic energy is given by

82
dr(o, (F)v2w(F)

2

dr1dr2 P2(r» F2)v1 u(F'12),

and the potential energy by

dzd1(z)U« (z) +2f dFzdr«P«( I Fz)zz (rlz) (10)

where the l-body distribution function is given by

P,(r„.. . , r, )

U2n(F) = Uo+Q U(F e'
GQO

(18)

w(F) =g w(Fe' ",
GPQ

where

U(F = — dr e ' ' dz M(z)* U(F, z)M(z) (18)
A A

and Hp ls the "uniform" part of K».
N g2

H, ——V2+ (15)
i~i k&j

There is a wide literature on the accurate deter-
mination of go(r) from u(x). In particular, this
procedure has been used to obtain the ground-state
energy of He on a smooth substrate, ' using the
bare two-body potential v(r) instead of the effec-
tive two-body potential defined above.

To include the effect of periodicity of U2n(F) by
minimizing E with respect to w(r), Uzn and w are
expressed in terms of their Fourier transforms

Ã fq2n(F„. . . , r„)dFFd1 dig
(N —I) t f(f)2n(r» . . . , r„)dr1 ~ ~ ~ dr„

Note that P, (r) is the number density and is a
periodic function of r when 2o(r) is periodic. The
two-body distribution function P2(r1, r2) is like-
wise a periodic function of the "center-of-mass"
variable —,'(r1 + r2).

As a convenient first step in the calculation of
these (luantities, note that setting w(r) = 0 (i.e. ,
using (o instead of (2n) Provides an uPPer bound on
the total energy. In that case, the single-body
distribution function P1 (r ) = N/A = n is constant,
and the two-body distribution function depends only
on the magnitude of the interparticle spacing:

QU2n(FF) = f))'Uo+g U(FPd, (20)

wc= —
I dFe ' 'w(r) .
A

Here {G}is the set of reciprocal-lattice vectors.
Restricting the Fourier components of w(r) to be
zero except for reciprocal-lattice vectors means
that only trial states with the full symmetry of the
substrate are considered here. States of reduced
symmetry will be considered elsewhere.

The functions w(r ) and U2n(F) enter the problem
as sums over all coordinates:

P2 (rl r2) n +o(~ rl gw(r, ) =gw,-p,-,
GAP

(2i)

where go is the radial distribution function for (o.
Then the periodic potential U2D contributes only
its average value Uo to the expectation value:

g2 82
Uz= — d ZZ(z) ——~ r rr(, z))M(z),0

(12)
and the remainder of the energy is obtained from
a, one-dimensional integral over r:

(q, ~fi„~q,&/(q, ~q, & =XU, +E, ,

(go jli(F e "(1'(1 H2DIId e"(1'o ~2
~ go&

&qoi H; .."iso& (23)

It is shown elsewhere that expectation values

where pG is the density fluctuation operator
N.

g eiG'rF (22)
i&g

Then the energy expectation value can be expressed
in terms of seG by
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So(k, -k)=So(k) ) (28)

where So(»?) is the liquid structure function of state

0 ~

so(~'») =
N & (i)o

I
pkp kl (i)o &/&-(o I (i'o &

1

1+2&+ d&+ go & -1 Jo ~
~

27
0

where Jp is the Bessel function of order zero. In

addition to 8» there is another correlation function
tion v

&
which appears in the definition of Q&, and

depends upon Ho (the uniform part of Ho»)). v? is
defined by the Pth equation below combined with

the definition of 8& ..

&(i)ol pk»(Ho Eo)
I i&/(&)oqol i&(=)oNv't(k»), (28a)

((i)ol Pk Pk (Ho -Eo') I(i)o&/&(i)ol go&

= N V'&(k»)S»(ko)+N S»(k»)1'»(ko)+NV o(k» ko),
(28b)

with this kind of functional dependence upon p~ can
be evaluated as a simple power series in the func-
tions wG, with the result that

N 1E= Eo + NUp +N g (
p»o(». Q»)(G») ~ ~ ~ ) 4?))'G. GGg 1 ~ ~ ~ t Gp (24)

where Q?(G„.. . , 6?) depends only on p- and

(P —1)-order correlation functions of p.„in (i)o. The
correlation function S~ necessary to define Q& is
defined by the Pth equation in the following set of
equations~~:

& (o IPk»Pk, l(i)o&/&(i)o l(i'o &
= N's»(k~)s»(k. ) + Ns o(kl) k?) )

(25b)

& (i'0 Ipk»pkopko I
(1)o &/(go

I (0 &
= N S1(k»)S»(ko)Sl(k3)

+ NoS»(k»)S?(ko, ko) + N?S»(ko)Sk(k~, ko)

+N Sk(ko)So(k»ko)+NSo(k») ko) ko) ) (25c)

etc. That is, St(k„.. . , k?) is obtained fron
(II?»pk & by subtracting from the latter all possible
lower-order correlations, and thus represents the
fundamental p —p"„correlations. The factors of
N in this definition have been chosen so that all S~

are of order N = 1 in the number of adatoms. In

the case when (i)o is uniform, S? is zero for total
momentum different from zero:

S? (k») ' ' ') '?& k +"-+""k 0

Note that

&(ol p'pk p;(Ho-Eo) lso&/& (ol(o&

= N V'»(k»)S&(ko)Sq(ko) + N Sq(kq)V'»(ko)Sq(ko)

+ N'S, (k, )S,(ko)r, (k3) +p N' V', (k„)So(k, k„)

+ QN S»(k~) fo(ko, k„)+NV'»(k», ko, ko), (28c)

etc. That is, the definition of v'~ is obtained from
the definition of $&by replacing one 3 factor by

in all possible ways in each term of the defini-
tion of S . Thus the summations in (28c) are over
all distinct terms. Note that the E? vanish if (i)o is
the ground state of Ho with energy Eo.

With this lengthy set of definitions, the coeffi-
cient of II& ~wG. in the expression for the energy

t
expectation viue E is

Q?(G&, . . ., Gt)

NvE= Eo+ NU()+ —~»oo»o-(»Qo(G, —G), (30)

where

Q.(G G) = &Col-p.p .(Ho Eo)-I q, &/-(q, Iq, &

+ (Uo/~;+ U;/~;)So(a)+ (ff'/4m)G' .
(31)

Extremizing E with respect to w 6 gives

~ q (~)
+'&', (»Dlaoo (~o ~0))(0))-
4m N(qo i qo &

and energy (32)

UG)= V't(G», .. ., Gt)+ „' St(G», . . . , Gt)wo.

2h
8
—G» ~ G»S») )(G», . . ., G»+G», . . . , 5?),

iaaf'j

(28)
where the arguments of 8& ~ in the last term ex-
clude G» and G» but include P»+ 6», and St »vanishes
if any of its arguments are zero, with the excep-
tion that S~(0) = 1. Note that the second term con-
tains wo& and would be included with the P —1 co-
efficient if a strict power series in wG were in-
tended in the expression for E. It is expected,
however, that UG and ~ will be comparable and
that the ratio should be treated as order unity.

The infinite series for E in terms of w is trun-
cated at finite order under the assumption that the
product »»)?Q? is small beyond some value of P. In
particular, consider the truncation w'here only the

P = 2 term is retained. Then, the approximate ex-
pression for E is

k Ng (» lUpi So(G)

[@'G'/4m+ ((i)o I P5P (»(Ho —Eo) i (i) o &/N &go i to &1

(33)
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E = Eo+ NUo+ 2N Q U opo
GQP

(36)

We can make use of an identity to show that in a
special case this approximation for E is equiva-
lent to the inclusion of the contribution of single
Feynman-phonon states to the ground-state energy
in second-order perturbation theory. The neces-
sary identity is

& to I
P-i(Ho Ez)piI (o &

=
& qo I p g p;(Ho -Eo) I yo& + N a'k /2m . (36)

Now the normalized single Feynman-phonon state
defined in terms of go is

Ik& = PiI(o&/[NS (~)]'"; (s7)

so the energy shift obtained above can be reex-
pressed using Eqs. (33), (36), (37), (26a) and
(26b) as

I &lola I G& I

[2&G/ Po —Eo/ G) —ff Gz/2mSo(G)] '

where

H, =Q Uopd .
Gcp

This expression has the form of second-order per-
turbation theory if

&G IHo -Eo IC & = ~'G'/2mSo(G) = e»(G) (40)

which is the Bijl-Feynman form of the excitation
spectrum. Thus this equality holds when (o is the
ground state of Hp, but it also holds in the less
restrictive case when (o gives Ho its minimum
expectation among all Jastrow functions. ~8 We
assume in the remainder of this paper that go is
sufficiently close to the optimum Jastrow func-
tion that we can approximate & Gi Ho -Eo l G) by
eaF(G). This also leads to the replacement of the
denominator in Eq. (34) by KoGo/4m.

Note that in the zero-density limit (n-0), So = 1,
and &E is the energy shift for a single adatom on
the surface. Since Sp can be either greater than
or less than 1.0, depending upon density and G

value, the effect of the periodic potential can be

The condition that this extremum be a minimum is
that the denominator be positive. The value of pG

in state |cion can be read directly from (24), (31),
and (32) as the coefficient of U o. In the lowest
order in so this gives

PG (I/N)& 42D I PG I 42D &/& ORD I tC 2D &

h G &g ip" p 6(H —E )I g )
4m N&go[go&

(s4)
in which case the energy becomes

M(z) =g C'M "(z) (42)

dz M(z)' = 1 .

The C" are treated as variational parameters, and
the minimization of the ground-state energy with
respect to these C" parameters leads to an eigen-
value equation for the C". This process could be
complicated by the fact that not only Up but also
Ep and 5E are functions of C". The terms Up and
6E depend upon C" via the definitions of Up and
UG, while Ep depends on C" through v». At this
stage in the calculation, the dynamics of the lat-
eral and perpendicular motions are partially de-
coupled by varying only Up and 5Ewith respect to
the C". Since the term 6E depends upon C" in a
nonlinear fashion, the term Up+5E is minimized
in an iterative manner, using an initial set of pG
to generate values of C", using these new values
of C" to generate a new set of pG, and continuing
this cycle until stable values pG are found. The
set of C" and pG used for the calculation of z» is
that set found for zero density. This is in keeping
with the decoupling procedure. The physical in-
terpretation of this decoupling is a statement that
the zero-point oscillations perpendicular to the
surface are little affected by compressing the
liquid in the lateral dimensions.

The eigenvalue equation for C" is found by in-

either to increase or decrease the liquid binding
energy. To see this, it is convenient to write the
liquid binding energy to second order, noting that
the "vacuum zero" is a single adatom on the sur-
face. The liquid binding energy per adatom is
e(n), where

5 G-~(n)= —Eo-PIU; I' [S,(G)'-1.0]

(41)

The binding is enhanced when the adatom-adatom
interaction is such as to form a structure which
allows all adatoms to sit in potential wells formed
by the substrate. However, if the match is not
close, then the binding energy wi11—in general —be
decreased since some adatoms will be in regions
of high potential energy. Thus there is a com-
petition between the substrate-adatom interaction
and the adatom-adatom interaction to determine
the structure of the liquid.

All that is needed to complete the calculation is
to find the optimum values of the variational
parameter(s) in u(r) and the optimum functional
form for M(z). To accomplish the latter, the
function M(z) is expanded in an orthonormal basis
set M" with
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UP@
I dr dz M "(z)

w e

@3 83
x — --- +Ur g M" z

serting (42) into the equations for Up and Ud, and
then differentiating with respect to C" with g(C")s
= 1 as a constraint. Noting that 5E is a quadratic
function of C", the resulting equation for C" is

g(c'~"" +QpgP Ic-" =Bc",

where Uo~ and UG& are given by

Bare He-He
interaction

4.638 x10'
0.4556
2.71
4.39
3.746 x 10 4

1.00685 x 104

Effective He- He
interaction

on the basal plane
of graphite.

3, 819 x10'
0.2212
1.93
4.35
3.746 x10 '
1.00685 x 104

Energy units: K. Distance unit:

TABLE II. Beck potential parameters.

1
Up' =— dr dzM"(z) U(r, z)e ' 'M" (z)

A

Once stable values of C" have been determined, Uo

and 6E are calculated using

U =g C" U""'C'

values of &o and po. Details of the actual calcula-
tion of the substrate potential are found else-
where. ' '

The helium-helium potential is the Beck poten-
tial

v(p) =he '"""' — -';~ 1+—;

III. OPERATION ASPECTS OF THE HELIUM PROBLEM

The substrate is modeled by a rigid array of
substrate atoms having a well defined crystalline
structure and an ideal surface. ~ 9 The plane of
substrate surface atoms forms the z =0 plane, with
the substrate occupying the entire negative-z half-
space. The interaction between the substrate and
a given helium adatom is calculated by using a lat-
tice sum of a two-body potential. The form of this
potential is Lennard- Jones with

l'(p) = ~&I(p&/p)" 2(p&lp)—']

and the values of eo and po depending upon the par-
ticular substrate atom. Three substrates were
studied: graphite with a basal plane surface; graph-
ite preplated with a monolayer of close-packed
neon; and graphite preplated with a monolayer of
close-packed argon. Table I contains the various

TABLE I. Lennard- Jones potential parameters.

14.5
3.34

16.7
3.0

25.4
3.40

U-, =QC" Pg'C"' .
PP

When this has been done, there remains but to
minimize (1/X)E = (1/N) Es+ Us+ (1/N) 5E as a func-
tion of the variational parameters in u(r). This is
done at constant density. The ground-state energy
is the optimized energy for density n, minimized
as a function of n.

This is an excellent representation of the helium-
helium potential in vacuum. In using this poten-
tial, the assumption is that the substrate does not
affect the interaction between the adatoms. This
is not strictly true, '8 ~o but the picture is not clear
enough at present to attempt to include this effect.
The size of this effect is probably about 10%.'
The potential v» is strictly to be had in tabulated
form only, but this is inconvenient. Therefore
once v» mas calculated, the tabulated values mere
used to fit a function having the form of the Beck
potential, but with A, c., P, as, and B determined
by a least-squares fit to v~o. To insure that mao- g
as r- ~ the value of C6 was not varied. The values
of all parameters for both v and v» are to be found
in Table II. The least-squares fit to eaD is excel-
lent. For instance, with 2. 0 A & r & 6.0 A, the
fitted function and vzn are indistinguishable (devia-
tions 10 K).

The functional form chosen for ti(r) is the usual
WKB (Lennard-Jones)

s(~) =- (n/~)' .
This allows a simple scaling with density for gn(~)
and S,(Q).z' Thus c is the only true variational
parameter in (t,.

The basis set M"(z) is the set of bound energy
eigenfunctions for the helium atom in the one-di-
mensional Morse potential~a

(z) D(e-2sis-ss) 2e s(g ss))--
The method of choosing the best values of D, P, and

Zo are described elsewhere. '3 The values are to
be found in Table III. The expansion in the set
M"(z) usually involved a truncation at four or six
states. This means that the calculated heats of
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TABLE III. Morse potential parameters.

Q 0

He-C
310

3.115
12

He-Ne
95.0
2.8
6

He-Ar
106.0

3.09
6

IV. RESULTS

The results of the calculation described above
as applied to helium adsorbed on several different
substrates are contained in this section. The
quantity of interest is the binding energy of the
condensed phase (the quasi-two-dimensional liquid)
represented by the trial function. It must therefore
be calculated relative to the ground-state energy
of the single adatom on the substrate. This invokes
the familiar difficulty of comparing the energy of
two different phases (vapor and liquid in this case)
when only the approximate energy of one or both of
the phases can be determined. An immediate ca.-
sualty of such a procedure is the variational princi-
ple: The calculated binding energy is no longer a
variational lower bound on the exact binding energy.

The chief approximation in the above analysis of
the condensed phase is the use of a trial function
which is separable in the z and r coordinates.
While a similar approximation is of no real calcu-
lational advantage for the single-adatom ground
state, it is nevertheless used in that case to make
more valid a comparison of the two energies to de-
duce the binding energy. For the case of helium
adsorbed on graphite, an additional 0.3 'K binding
energy can be realized for the vapor phase by using
a nonseparable wave function. While this is a very
small fraction of the heat of adsorption, it is com-
parable to some of the lateral binding energies

adsorption are in error by one or two degrees Kel-
vin. Considering the uncertainty of the substrate-
adatom interaction, this is a very small uncertainty.
However, the effects of the truncation on quantities
like the liquid binding energy are much smaller,
since the standard reference for all results is the
energy of a single adatom on the surface.

The effects of truncating the M" basis set will
largely cancel and can be ignored as long as the
M(z) functions used are the same for both the single
atom (zero density) and liquid states. Also, the
energies of both states should be calculated to the
same order as in Eq. (41) to avoid truncation er-
rors due to the plane-wave expansion. With the set
of M" used, adding or deleting a basis function of
two would change Uo(and thus the binding energy) by
a few per cent. The effects of truncating the plane-
wave expansion are much smaller.

listed below, and is therefore a source of uncer-
tainty in the numerical results.

A. Helium adsorbed on the basal plane of graphite

The Morse parameters for the determination of
M"(z) for H. single He atom on the basal plane of
graphite are given in Table III. Six eigenfunctions
of the Morse potential provided rapid convergence.
Using these M" functions, the zeroth and first Fou-
rier coefficient of U2n(r) were

Uo = —150.8 'K,
U-= —156 K

The contribution of the periodic potential to the
single adatom energy is obtained from Eq. (38) by
setting So(k) equal to 1:

@2 Q25E=- UG = —0.27 'K . 50
Q 2@i

To determine the binding energy of the condensed

phase, E, and So(k) must be calculated from vzn(r),
which is in turn dependent upon the function M(z)
which is to be determined self-consistently at zero
density. In the case of He adsorbed on graphite,
the effects of self-consistency are negligible.
Then vzD(r) is fit by a Beck potential with parame-
ters shown in Table II. The only effect of M(z) is
to slightly soften the core compared to the bare
potential, which will only show up at very high den-
sities —well into the solid range.

The binding energy z [Eq. (41)] depends upon the
variational parameter a through both Eo and So(k).
The results of the minimization are shown in

Fig. 1. The binding energy of 0. 62'K at equilibri-
um density 0.0365 A 2 is in close agreement with
previous calculations for a uniform substrate' '
[although those calculations use a slightly different
v(r)]. The effect of the periodic potential is very
small, as can be seen from Table IV. The only
real effect manifested in this calculation is a peri-
odic variation in the density. The density varies
from 135% (at the adsorption site) to 82% (over a
carbon atom) of the average density. This is in
good agreement with single-particle calculations,
where the variations were slightly larger due to
the nonseparable wave function.

Note that a major effect of the substrate may be
one which is not included in this calculation, i.e. ,
the effect of substrate mediation of the interaction
such as via the exchange of substrate phonons. '
To test the sensitivity of the binding energy to
changes in the adatom-adatom potential, the above
calculation was repeated using an interatomic po-
tential which differs by about 10%%u from the Beck
potential at the minimum. The result of that cal-
culation was a binding energy of about 1 K at a
density of approximately 0.04 A, indicating a
large sensitivity in the binding energy.
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FIG. 1. Negative of the binding energy [-e (pg)] for he-
lium adsorbed on the basal plane of graphite. Arrows
indicate the equilibrium densities. Dashed line ap-
proaching the 3He curve is the energy per particle for
noninteracting 3He.

While it can be concluded that He forms a self-
bound quasi-two-dimensional liquid in preference
to a two-dimensional. vapor when adsorbed on the
basal plane of graphite, experimental' and theo-
retical ' considerations indicate the possibility
of several other phases of He on graphite. In
particular at high two-dimensional densities there
may exist a solid-like phase with lattice spacing
largely uncorrelated with the periodicity of the sub-
strate. At intermediate densities there seems to
be one or more superlattice phases where the heli-
um atoms form a two-dimensional lattice which is
a superlattice of the basal plane structure, i.e. ,
whose invariant translations also leave the sub-
strate lattice unchanged. An important question
is the location of the phase boundaries of these
various phases. To determine this one is required
to do an accurate calculation of the ground-state
energies of each of these phases. While one of us
has calculated the ground-state energies of the
superlattice state, ' the approximations necessary
in that calculation differ sufficiently from the ones
invoked here so that a comparison of the energies
is not meaningful due to the very small energy dif-
ferences. We should point out, however, that the
formalism developed here is capable in principle
of describing transitions of this type. It would be
necessary to include functions zo(r) which have the
symmetry of the superlattice phase (or the solid
phase) and then to include terms from EIl. (24) be-
yond quadratic terms in the new Fourier coeffi-
cients so-„which arise because of the reduced sym-

metry. This is beyond the scope of our current
study.

The effects of mass and statistics upon the liquid
state were determined by repeating the calculation
for He. The effect of lowering the mass to mass
three is of course to increase the zero-point ener-
gy of the condensed phase. The (fictitious) mass-
three-boson problem gave a binding energy of
0.05 'K at a density between 0.015 and 0. 02 A

i. e. , at about half the density of He (see Fig. l).
Introducing the Fermi statistics also must reduce
the binding energy. Indeed, the lowest-order cor-
rection is just the energy of the Fermi sea, which
when added to the Bose energy gave a positive en-
ergy per particle at all densities. The energy to
this order is shown in Fig. 1. This leads us to
conclude that He is probably not self-bound in two
dimensions. Our conclusions at very low densities
are based upon extrapolations in the variational
parameter a and therefore cannot be completely
trusted. There are also second-order correlated
basis-function corrections which may change these
results. " Futhermore, we have not investigated
the effects of changing the two-body potential. It
is clear, however, that since the He fermion
ground-state energy must lie above the 'He boson
ground-state energy, the liquid must occur at very
low densities if it occurs at all. This theoretical
conclusion agrees with the experimental conclusions
of Eckardt et al. ,

~ although it must be noted that
their substrate —He liquid —is very different from
the solid type considered here.

TABLE IV. 6E/N for He adsorbed on the basal plane
of graphite.

0.02 0.03
0.01 0.01

0. 04 0.05 0.06 0.07
0.02 0.03 0.04 0.05

B. Helium adsorbed on neon-plated graphite

We report here some preliminary results con-
cerning the effect of preplating the graphite by a
close-packed layer of neon or argon. This addi-
tional layer is assumed to provide the entire peri-
odic part of the substrate-adatom potential, which
in both cases is more strongly varying than for
pure graphite. We do not determine the C" in M(z)
self-consistently, which is a cruder approximation
than above because of the increased importance of
the periodic potential. For van(r) we use that ob-
tained for bare graphite. Finally, Eo is minimized
as a function of a and then the correction 5E due to
the periodic potential is added.

The number density of the neon layer is 0.122
and 0. 079 A ~ for the argon layer. The results
are shown in Fig. 2. For the neon-plated system
there is an equilibrium indicated near density
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FIG. 2. Negative of the binding energy [—&(n); solid
lines] and the substrate contribution to the energy [6EjN;
dashed lines] for 4He adsorbed on graphite preplated by
a close-packed layer of neon (Ne) and by a close-packed
layer of argon (Ar).

0.04 A . We note in passing that the density of a
superlattice of He occupying one triangular sub-
lattlce of adsorption sites (the triangular lattice
gas") would be 0.04067 A ~. The relationship of
the equilibrium configuration of our present calcu-
lation to the superlattice structure needs to be ex-
plored further.

The energy minimum on close-packed argon oc-
curs at high densities, where our calculation is

inadequate primarily because the simple variational
parametrization of our Jastrow function cannot
properly represent the structure of the wave func-
tion at these densities. Furthermore, the contri-
bution of 0E (shown in Fig. 2) overwhelms the re-
maining terms. Nevertheless, we may take the
present calculations to indicate that the periodic
potential dominates the energetics of helium ad-
sorbed on argon-plated graphite and forces the heli-
um to high densities which would ordinarily be
characteristic of a solid helium phase. Similar
conclusions may be drawn from experiments on
helium adsorbed on argon-plated copper.

V. MSCUSSION

We have investigated the effect of the structure
of the substrate on the ].iquid-]. ike condensed phase
of adsorbed helium. We have included the effects
of the finite thickness of the monolayer and the ef-
fect of the periodicity of the substrate. For helium
adsorbed on the basal plane of graphite the sub-
strate effects are nearly negligible and the helium
may be considered as seeing a nearly perfect two-
dimensional environment. We conclude that He
has a weakly bound quasi-two-dimensional liquid
phase, while He is probably never self-bound in
its ground state. A preliminary investigation of
helium adsorbed on neon-plated graphite and argon-
plated graphite produces substantially different re-
sults. In both cases the substrate drives the con-
densed phase to higher densities, probably solid
densities for the argon case.

The primary sources of uncertainty in the results
described here are the adatom-substrate potentials
used and many-body corrections to the helium-
helium interaction due to the presence of the sub-
strate.

*Work at Brookhaven performed under the auspices of
the U. S. Atomic Energy Commission. Work also sup-
ported in part by the National Science Foundation
(grant No. NSF-GH-43836) and by the Research Cor-
poration.
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