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We present a detailed account of the transition from second sound to ballistic phonon flow in liquid

He II as a function of temperature (0, 1—1 K), pressure (up to the solidification point), and propagation

length (- 0.23—7.0 cm), Below 10 bar and 0.5 K, the phonon-phonon scattering time v'pp has the form

7
pp (7 + 3) &( 10 (T/8) sec, where 8 is the low-temperature Debye temperature. Above 10 bar,

vv„„&2 cm for T & 0.7 K, where v is the sound velocity. The strong pressure dependence of T is
PP

qualitatively consistent with the theoretical model of Jackie and Kehr. The phonon-roton scattering time

Tp is found to be nearly pressure independent and has a value —10 ' sec at —0.75 K in agreement

with the calculations of Khalatnikov and Chernikova. Evidence for separate roton second sound (at
high pressures) and phonon second sound at SVP is presented. An elementary excitation picture of
second sound in the entire gas of excitations in He II is presented and the close analogy with phonon

second sound in solids (bismuth) and in a gas of particles (He ) is experimentally illustrated. Estimates

for the number of collisions required for the formation of the collective mode from the

single-particle-like excitations are given.

I. INTRODUCTION

The possibility that temperature variations can
propagate as collective waves (second sound) was

first proposed by Tisza' and by Landau~' for the

case of superfluid He . Using two-fluid hydro-

dynamics, I,andau showed that the velocity of sec-
'ond sound, v«, in He II depended strongly on the
temperature T via the expression

v,', =(TS'/C) (p, /p„),

where 8 is the entropy, P the specific heat, and p,
and p„the superfluid and normal fluid densities.
He showed that v» depended markedly on the tem-
perature through the strong T dependence of the
different thermodynamic quantities occurring in

(1). The strong temperature dependence of C, S,
p„and p„(and hence v„)was postulated by Landau

to be due to the existence of a high-energy branch
(roton branch) in the He I excitation spectrum. At

high temperatures (above about 0. 7 K) v„is small
(-20 m/sec) because of the thermal population of

low-group-velocity rotonlike excitations. At low

temperatures, when the only excitations are pho-

nons, Landau showed that ezz is independent of tem-
perature and reaches the limiting value v» = v, /&3
[where v, is the velocity of first sound (-240 m/sec)
at saturated vapor pressure (SVP)]. In 1951, Ward

and Wilks4 extended some of Landau's ideas and

gave a nzicroscoPic description of second sound in

He II at low temperatures in terms of the elemen-

tary excitations (phonons). They assumed strong
interactions amongst the excitations and that these
interactions conserve energy and momentum.

Using these assumptions they solved the phonon

Boltzmann equation and showed that variations in
the number density of phonons could occur in a

periodic manner, traveling with a velocity v»
=v, /v 3. In their paper, Ward and Wilks also ex-
tended the idea of second sound in the phonon gas
in He II to the case of dielectric solids, where the
only excitations are phonons but where momentum-
destroying resistive processes make the observa-
tion of an undamped temperature wave more dif-
ficult. This subject lay essentially dormant till
the 1960's when the work of Krumhansl, Prohofsky,
and Guyer'6 put the concept of second sound in
solids on a firm theoretical foundation and showed

clearly the existence of a temperature (frequency)
window for the observation of this phenomenon de-
pending on the relative values of momentum con-
serving and momentum destroying collision pro-
cesses. They also briefly discussed' the close
analogy between sound propagation in a classical
gas (periodic fluctuations in the number density of
particles) and second sound in the phonon gas (pe-
riodic fluctuations in the phonon density).

It is important to point out here that the concept
of second sound as a mell-defined excitation as-
sumes strong scattering among the excitations rel-
ative to the frequency of study (propagation time

in the case of a. pulsed experiment), i. e. , er«1.
In the absence of scattering (&uT» 1), ballistic flow

of excitations (particles in the case of a gas) is ex-
pected. A study of the transition from the collec-
tive mode to the ballistic mode can yield valuable
information about the lifetimes v of the excitations
under study.

In this paper we wish to present a detailed ac-
count of (i) our studies of the tran'sition~ from sec-
ond-sound propagation to ballistic flow as a func-
tion of temperature and pressure (up to the solid-
ification point) in liquid helium II; and (ii) we wish

to illustrate experimentally the strong interrela-
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tionship between second sound in solidsa (bismuth),
liquids (He II), and gases (He' and He4). We use
the fast-heat-pulse technique for the study of the
above phenomena and present experimental criteria
for the observation of the collective mode in physi-
cal systems of interest. In addition, we give a
description of second sound in liquid helium II in
terms of its elementary excitations, which is valid
in a region where both phonons and rotons are
thermally populated. We show that we can get nu-
merical agreement with experimentally observed
second-sound velocities using this physically ap-
pealing elementary excitation picture.

As is well known, heat-pulse techniques have
been used extensively inthe past to study second
sound in liquid helium, particularly at SVP. The
velocity of such pulses above about 0. 6 K has been
determined accuarately. At low temperatures,
however, mean-free-path effects ' are known to
become very important, and in fact most of the
previous measurements were limited either by the
use of carbon bolometers with slow response times
or by the use of long narrow tubes where boundary
collisions were important. Under these conditions
most of the heat pulses at low temperatures had a
shape characteristic of diffusion. Part of the prob-
lem, namely, the influence of the chamber walls,
was eliminated in the very careful recent work of
Guernsey and Luszczynski" who, however, had to
still employ rather wide pulse widths because of
the continued use of carbon bolometers. The devel-
opment of fast and highly sensitive superconducting
bolometers' has enabled us to work with much
narrower pulses and shorter propagation distances,
so that the energy dissipated per pulse in our work
is substantially smaller than was possible previous-
ly. The importance of the energy dissipated (am-
plitude and pulse width) will become clear from the
results of this work. Finally, excepting the very
early work of Mayper and Herlin, '5 we know of no
previous work under pressure in the ballistic and

transition regions. As we shall see, the applica-
tion of pressure has an enormous influence on the
scattering rates of excitations and allows us to vary
the phonon and roton contributions to the heat flow
in a rather controlled way.

The paper is divided into four major parts. Sec-
tion II gives the theoretical background and the
elementary excitation picture of second sound in the
three states of matter. Our primary attempt,
here, is to give a unified view.

In Sec. III we describe the experimental tech-
niques. Salient features of our experiments are
discussed here.

Finally, Sec. IV summarizes our experimen-
tal results. The data shown are primarily for
liquid helium. We, however, present some data
for the solid (bismuth) and gaseous helium to il-

lustrate the experimental connection for the three
states of matter. In this section, we also give a
brief discussion of our liquid-helium results in the
light of current theories of the lifetimes of the
elementary excitations and present evidence for the
existence of a temperature "window" for observing
separate phonon and roton contributions to the heat
flow at elevated pressures.

II. THEORETICAL BACKGROUND

In this section we briefly review the salient fea-
tures of heat-pulse propagation pertinent to our ex-
periments. We present a general discussion of
second sound in terms of the elementary excitations
for the three states of matter and give, in particu-
lar, numerical calculations of the temperature
dependence of the second-sound velocity in liquid
helium II. We also discuss the effects of finite
lifetimes of excitations on the propagation of heat
pulses and finally discuss what is known about the
lifetimes of the phonon and roton excitations in
helium II.

A. Nature of heat-pulse propagation

1. General considerations

Recently, there has been considerable activity
in the study of the propagation, particularly in
solids of short-duration heat pulses. The usual
experimental setup in these experiments consists
of three elements: the heater, the sample, and the
bolometer detector. As pointed out earlier, the
fast-heat-pulse technique uses thin (- 1000-A-thick)
metal films which have extremely short thermal
relaxation times" (- 10 ' sec or less) as generators
and detectors. Furthermore, the use of supercon-
ducting films as bolometers provides one with an
extremely sensitive detector of thermal energy in
the temperature range below the T, of the super-
conductor. The heater is usually a metallic alloy
(constantan, AlMn, disordered Au, for example)
so that its temperature coefficient is negligible.
The experiment is started at time t = 0 by passing
a, short (- 10 ' sec) current pulse of amplitude I„
through the heater film of resistance R (usually
= 50 Q). The heat pulse is received by the detector
film after a time of flight t determined by the na-
ture of heat propagation in the sample under study
which in turn depends profoundly on the tempera-
ture.

At the lowest temperatures, the heat pulse gen-
erally travels ballistically and arrives at the de-
tector at times corresponding to rectilinear prop-
agation of the elementary excitations of the me-
dium under study (particles in the case of a gas;
phonons and rotons in the case of He II; and lon-
gitudinal and transverse phonons in the case of a
solid). The shape of the ballistic pulses is gov-
erned by the velocity spectrum of the excitations
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(group velocity since we are concerned with ener-
gy flow). This spectrum in turn depends on the
heat-pulse temperature T~. This quantity is ill-
defined in the ballistic region in most of the sample
but serves to parametrize the distribution of emit-
ted excitations in a small volume of the order of
An't adjacent to the heater. Here A is the area
of the heater, v an average velocity of emitted ex-
citations, and ht the pulse duration. The precise
value of T„may be affected by a variety of sub-
strate and sample conditions, but in general the
value of T„in a given experiment may be varied
by a large amount by varying I„and the dependence
of T„onI„will be governed by a Stefan-Boltz-
mann-type radiation law in most instances. Final-
ly, even in the ballistic region, if the detector sen-
sitivity is high, one can probe essentially the am-
bient excitations of the sample by working with
very small heater-pulse currents I„sothat T„=T„
where T, is the sample temperature.

The propagation of ballistic pulses will as men-
tioned earlier, only occur as long as the mean free
path of the excitations is long compared to the prop-
agation distance L. In the presence of scattering
mechanisms, the ballistic flow will be profoundly
affected. Neglecting, for the moment, resistive
(momentum nonconserving) processes, the effect
of collisions among the excitations can be briefly
described as follows. In the limit of frequent col-
lisions among the excitations (the mean relaxation
time 7„for normal scattering satisfies the condi-
tion e F„«1,where ~ is some mean frequency
characterizing the pulse) a true temperature can
be defined within the pulse and heat pulses will
travel as undamped second sound.

Several attempts have been made recently to
connect theoretically the kinetic (ballistic) to the

hydrodynamic (second-sound) region of heat-pulse
propagation. The simplest approach, and which has
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given a satisfactory and simple description of the
experimental data for solids, was that of Rogers. "
He used hydrodynamic equations and introduced a.

second viscosity which depended strongly of e T~.
Assuming plane-wave solutions for the temperature
(7 = Toe '~' ""), the heat-flow equation was solved
and the resulting dispersion relation for the tem-
perature wave was given by

l2 2 y IR 2 8 TN(vl —vII)
2 2 2

V~~= 3 V~ =(d +
1 —z&T~

(2)

Here v„is the second-sound velocity and v, is
the ballistic velocity. In the above it was implicit-
ly assumed that the single-particle-like excitations
could be characterized by a single isotropic branch
and that the ballistic velocity, corresponding to
this single branch, had no dispersion of its own.
In Fig. 1 we have plotted the real part of the phase
velocity (&ujk) derived from (2) as a function of
(d 7.~. It is clear that for small m7„one obtains
the limiting second-sound velocity v, /v 3, while
for large co%„oneobtains the ballistic velocity v&

as expected. There is considerable dispersion in
the heat-pulse velocity for values of e7.„-1. It
is important to point out here that in Fig. 1 the
values of ~ ~~ are plotted logarithmically. It is
clear that the transition region is quite broad; it
is necessary to span a range of about two orders
of magnitude in co r~ before the limiting behavior
described above is obtained. Even though one has
some latitude in varying co, the chief quantity which
can be changed is ~~ through its temperature de-
pendence. For typical variations of 7~ as T' or T
it is clear that one requires, again, a rather large
window in temperature for observing the full dis-
persion relation shown in Fig. 1. Experimentally,
as we shall see later, one can get a truly short
7„only in the case of a, gas of particles (where 7„
can be varied at will) and in the roton-dominated
region of He II where the density of excitations is
sufficiently high at a convenient temperature. In
other instances, one at best obtains an appmach
to the ideal behavior before other processes take
over.

It is worth reemphasizing that (2) is derived in
the hydrodynamic limit where the concept of sec-
ond viscosity is valid. Hence there is reason to
believe that the results are not strictly valid for
the region approaching ballistic behavior, although
the asymptotic limit v =v, is certainly correct.

1.0 2, Sound (heat-pulse) propagation in gas

10 10 10 10

FIG. 1. Dispersion relation for heat-pulse velocity v

as a function of covz obtained using Eq. (2). e&& is the
second-sound velocity and is reached only for very small
(d 'T~»

Even though the propagation of low-frequency
adiabatic sound has been well studied since the
days of I,aplace and Newton, it is only in the last
decade or so that one has been able to obtain, by
means of theoretical statistical mechanics, a de-
tailed microscopic description of the formation of
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the collective mode from the individual single-
partiele-like excitations, and hence the dispersion
law for sound in a simple monotonic gas at high
frequencies. This has been discussed recently in
the theoretical articles by Wang-Chang and Uhlen-
beck and by Foch and Ford who showed the con-
nection between the approximate dispersion law
for sound from hydrodynamics and the more rigor-
ous calculations using the linearized Boltzmann
equation and the collision-time approximation.

In a gas of interacting particles, both the hydro-
dynamic and the Boltzmann equation approach
yields, when one looks for "sound-like" solutions,
five normal modes to the eigenvalue problem.
These five modes in turn arise because there are
five independent constants of the motion: number
of particles, three components of linear momentum,
and the energy. Out of these five normal-mode
solutions, it turns out that the dispersion relation
for three of the modes yields imaginary frequencies
~ for real values of the wave vector k, i.e. , they
are nonpropagating modes which when excited damp
monotonically in time toward equilibrium, at least
in the long-wavelength limit when the solutions are
accurate. Two of these nonpropagating modes in-
volve mainly transverse-velocity motions (shear
waves) while the third is the so-called heat-conduc-
tion mode which involves mainly fluctuations in the
entropy. Finally, the remaining two modes axe
propagating modes (one going to the right and one
to the left) and involve primarily fluctuations in the
number density of particles and have mainly a
longitudinal component of velocity. These sound
modes have for very small k the linear-dispersion
relation

with the sound velocity at low frequencies being
given by

where P is the pressuxe, p the density, T the tem-
perature, y =C~/C„=—', for a monoatomic gas, and
2, is the average ballistic velocity of the particles
obtained from the equipartition theorem (—,mi,
= -', A,'T).

It is important to reiterate here that in the ele-
mentary-excitation picture the sound mode involves
a periodic fluctuation in the number density of the
elementary excitations, in this case the particles
themselves. The coherent sound mode is formed
through the interaction among the particles in a
well-defined way (conservation of energy and mo-
mentum, etc. ) and turns out in the long-wavelength
limit, at least, to be the only eigenvalue of the col-
lision operator in the Boltzmann equation which

corresponds to a propagating mode. In this more
general sense, the sound mode in a gas is analogous
to the second-sound mode in the phonon gas. This
is further evidenced by the fact that the relation-
ship between the ballistic velocity of the elemen-
tary excitations (atoms or phonons) and the sound
or second-sound velocity in the two eases is also
similar. However, in the case of an atomic gas
the ratio is modified by the adiabatic compressibil-
ity factor y which is unity for the phonon gas. We
wish to emphasize this analogy since usually the
sound mode in a gas is thought of as a pressure
wave and not a temperature wave. This is because
the generation of sound (by the usual means of
tuning forks, piezoelectric transducers, etc. ) and
its detection (by means of a microphone or by the
ear) is typically done by pressure-sensitive devices.
However, variations in the density ean be intro-
duced by means of thermal generators and detectors
as well, since in a gas the density is related to the
pressure and temperature via, the gas laws. Thus,
heat pulses in gases may be expected to propagate
as well-defined collective pulses (sound waves) with
a velocity given by the dispersion relation as long
as the dominant frequency in the pulse is not too
large (small compared to the inverse collision
time 7' ').

The question may be asked, what happens as v
is made larger and larger. Experimentally, in
conventional sound experiments, Greenspan ' has
reached values of ~7-1 for several inert gases
and in Fig. 2 we show from his work the reduced
velocity v, /v, and the attenuation o, @so/&u as a func-
tion of w7. The theoretical work of %ang-Chang
and Uhlenbeek and Foch and Ford was in fact moti-
vated originally by these experiments. Their theo-
retical calculations of the dispersion relation for
sound at high frequencies using the Boltzmann equa-
tion may be summarized as follows. As v is made
higher and higher, the attenuation and velocity of
the sound mode increases monotonically until a
critical value (d„,when the discrete mode ceases
to exist and merges with the continuum of single-
particle modes. The existence of a critical fre-
quency is believed to be a general phenomenon and
is a consequence of the finiteness of the collision
time w. At sufficiently short wavelengths only the
single-particle modes remain. The value of the
critical frequency depends on the specifics of the
model and the spectrum of relaxation times as-
sumed. In Fig. 2 the dashed lines correspond to
the numerical calculations of Foch and Ford~ using
the Boltzmann equation for the dispersion and at-
tenuation of the sound mode for values of +7 up to
about l. Since pertux'bative methods are used, the
computations are believed to be most accurate for
these small values of m7.

It is clear from the above brief discussion that
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FIG. 2. Measured sound velocities y and attenuation 0.'

for several inert gases. After Greenspan (Ref. 21) v is
the low-frequency sound velocity. The dashed curves are
obtained from the theory of Foch and Ford (Ref. 19).

a study of the dispersion of sound and the transi-
tion to ballistic flow in gases is of interest not only
because of its close analogy to second sound in
the phonon gas but also because such experiments
are a critical test of the Boltzmann equation in
statistical mechanics.

3. Heat pulses and velocity of second-sound in
in helium II

So far we have ignored the effect of dispersion
in the elementary-excitation spectrum on the ve-
locity of second sound in solids. However, since
the early conjectures of Landau and subsequent
verification by neutron measurements, it is
known that the He II excitation spectrum is highly
dispersive, particularly at energies greater than
that of the roton minimum. In this section, we

wish to explore the effects of dispersion of the ve-
locity of second sound in He II.

As pointed out in Sec. I, Landau' used two-fluid
hydrodynamics and showed that the measured sec-
ond-sound velocity in high temperatures could be
explained through the existence of a gap in the ex-
citation spectrum at a finite value of the wave vec-
tor k. Many years later, Bendt, Cowan, and Yar-
nell utilized the dispersion curves measured by
neutron scattering to calculate the various thermo-
dynamic quantities such as the entropy S, specific
heat C, and the normal-fluid density p„. Using
Landau's expression (1) they calculated the tem-
perature dependence of v» and obtained good agree-
ment with existing experimental data. However,
the reliance on calculations based on thermodynam-
ic quantities precluded a detailed microscopic un-

derstanding of second sound in He II, particularly
with regard to the contributions of the various
branches of the spectrum at temperatures below
1K.

In order to get a clearer physical understanding
of the velocity of second sound in He II, we apply
the Boltzmann equation to a gas of excitations pos-
sessing dispersion. We assume, initially, that
there is strong scattering among all the excitations
of the system (hydrodynamic regime &s7«1) and

that the perturbations from ambient are small.
Kwok, for the case of solids, showed that under
the above conditions the Boltzmann equation can be
solved and the velocity of second sound v« is given
by

v» = 3 &St ~ ua S

X S,'y2 (5)

In (5), S, =N~(N~+1), where N„is the equilibrium
Bose-Einstein distribution function, and u~ is the
elementary-excitation group velocity V~v„. It is
easy to show that (5) yields the correct value of v„
in the case of linear-phonon-dispersion curves,
i.e. , if co~=vk,

v» = 3 S~w~ S~k

I (02
W12

3 —3 (5)

as expected. It is clear from (5) that in the pres-
ence of dispersion, v„will be a function of T be-
cause the Bose-Einstein occupation numbers for
different parts of the excitation spectrum will
change as T is varied. In Fig. 3 we show the re-
sults of a numerical evaluation of expression (5)
using the experimental dispersion curve determined
by inelastic neutron scattering '26 at 1.1 K for SVP
and for 24 bar. For temperatures below about 1.4
K these computed curves are in excellent agree-
ment with computations based on the thermodynam-
ic quantities rexpression (I)j. We have not taken
into account any temperature dependence of the
~-k curve so that the calculations are most reb-
able around l. 1 K. We have also not tried to use
different "best fits" to the neutron data. They
are expected to make small differences to the
curves shown in Fig. 3. Finally, at high tempera-
tures greater than - 1.4 K the elementary-excita-
tion picture in helium II becomes less applicable
as the excitations broaden considerably with in-
creasing temperature and become ill defined.
Near T~, as this picture of elementary excitations
is no longer even approximately correct, one has
to go back to the thermodynamic expression to get
the correct second-sound velocity.
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The fact that an elementary-excitation picture
would break down as one approaches T~ was also
pointed out by Dingle. In a rather different de-
scription of second sound in terms of the elemen-
tary excitation it was argued that the elementary-
excitation picture was only valid where the effec-
tive mass of the normal-fluid density p„was small
relative to the inertial mass.

We would, nevertheless, like to emphasize that
the elementary-excitation picture gives a very
good physical description of the absolute velocity
and temperature dependence of second sound in
helium II. In this picture, the low second-sound
velocity at high temperature arises as a result of
the combined effect of the large density of roton
states of low group velocity and the near cancella-
tion of the contributions from either side of the
dispersion curve about the roton minimum due to
the k u, term in (5). On the low-k side of the roton
minimum the heat current, which is determined by
the group velocity, and the momentum lie in op-
posite directions, and k u, is negative. This can-
cellation is not exact because the roton minimum
is located at a finite value of k and the summation
over k contributes more phase space for the posi-
tive k u, components.

The effect of the rotons is most clearly illus-
trated by comparing the second-sound velocity
curves shown in Fig. 3 for low and high pressures.
Since the effect of pressure is to increase the
sound velocity but decrease the roton gap, the per-
sistence of low-velocity second sound to lower tem-
peratures at higher pressures indicates that the
rotons dominate the phonons in determining the
second-sound velocity as long as they are populated

0 I I I I I I I

0 0.2 0.4 0,6 0.8 1.0 1.2 1.4

TEMPERATURE ( K)

FIG. 3. Computed second-sound velocity as a function
of temperature for SVP and 24 bars. Equation (6) was
used to calculate these curves. See text.

In earlier sections several general remarks were
made on the relationship and analogy of second
sound in a phonon gas and sound in a gas of parti-
cles. We have also seen the effect of a finite col-
lision time, which causes a transition to ballistic
single-particle-like excitations at high frequen-
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FIG. 4. Computed roton second-sound velocity as a
function of T; I'=24 bars.

in significant numbers. These concepts are eluci-
dated further when one looks at only the roton con-
tribution to the second-sound velocity and assumes
that the phonon-roton gases are decoupled from
each other (a situation which we shall see later is
experimentally achievable at high pressures). The
computed velocity of roton second sound as a func-
tion of temperature at a pressure of 24 bar is
shown in Fig. 4. With increasing temperature this
velocity increases monotonically from zero, at
first linearly, as higher-velocity roton excitations
are thermally populated. The effect of the negative
velocity branch is also illustrated in Fig. 4 where
we plot the expected second-sound velocity from
roton excitations involving the positive branch
alone. This velocity is now considerably higher
than that for roton second sound consisting of both
branches.

In summary, it is clear that the elementary-ex-
citation picture gives a physically appealing de-
scription of second sound in He II over a wide
range of temperature. It illustrates also the pro-
found influence of the shape of the co-k curve on
the velocity of second sound, particularly when con-
trasted with the simple 1/&3 times the ballistic
velocity expression obtained for a dispersionless
excitation spectrum.

4. Solids
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v g ~
= v v/ H3. (10)

We shall see that this is approximately borne out

by our experiments.
We now turn to the question about the importance

of resistive processes. As is well known, resis-
tive processes in solids cause rapid degradation of
second sound in the phonon gas. The condition for
the observation of unattenuated second sound is the
well-known frequency windom discussed at length

by Krumhansl, Prohofsky, and Guyer, '
co 7„«1«e vz.

In (11), 7.„and 7s are the momentum-conserving
and -nonconserving mean relaxation times, re-
spectively. The velocity of this unattenuated sec-

cies. In this section me wish to highlight the con-
sequences of two effects which are peculiar to the
case of the phonon gas in solids: (i} the fact that
the solid is really a multiple-polarization system;
and (ii) the fact that the collisions between the
phonons are not necessarily momentum conserving.

For a multiple-polarization system in the Debye
approximation u~=u, (k/rk I), where X is the branch
index, the second-sound velocity is given by 9'0

v„=3 (C,/Cg),

where

c„=g—
„

1
(8)

X

In (7) it is assumed that thermodynamic equilib-
rium between the different polarization branches
is achieved. If this is not realized, one might ex-
pect "second sound" in the individual branches.
Furthermore, in the Debye approximation each po-
larization X is represented by a particular velocity
u~ which is assumed isotropic. In reality, in ma-
terials such as solid He and bismuth, the individual
polarizations have velocities which are highly an-
isotropic. It is possible, in principle, to take this
into account by constructing the group-velocity
surface as a function of angle and summing up over
all the modes using an expression such as (8}.
However, if mode mixing does indeed occur in the
formation of second sound, it seems reasonable to
assume that an appropriate average ballistic ve-
locity will be given by the Debye velocity v D where

vv= (ks/8) 0 (6w~N/V) v'

is calculated from the measured Debye tempera-
ture OD in the temperature range of interest, the
number of atoms of per unit cell, N, and the atomic
volume V. Under the assumption that the Debye
average represents an appropriate thermodynamic
average of the different polarization modes, we

obtain

ond sound has a limiting value v«discussed ear-
lie.r. If, however, we allow for finite values of 7„
and hence attenuation, it is possible for second
sound to exist for a range of values of 7~ before
heat propagation becomes entirely diffusive. This
question has been examined theoretically in the
very recent papers of Ranninger" and of Beck and
Beck. » Assuming a mean relaxation time ~, using
the usual expression ~ ' =7„'+7„',they show that
second sound can propagate as long as ev-1 and

mr~1, thus relaxing (11) somewhat T. he velocity
of this "attenuated" second sound, v,'„in the pres-
ence of resistive processes turns out to be a de-
creasing function of I/~s and has a value approxi-
mately given by

v'„=v„/(1+2o.)"',
where

Q = (1 + TR/7'~)

(12)

(13)

In Sec. IIA 3 we gave an expression for the ve-
locity of second sound in helium II based on the
assumption that the lifetimes of the excitations,
namely, phonon-phonon scattering time (7~~), pho-
non-roton scattering time (w~, ), and roton-roton
scattering time (r„„)were all short (relative to the
propagation time and pulse duration) so that second
sound in the entire gas of excitations was a well-de-
fined mode of the system. Thus, the temperature
dependence of the second-sound velocity (Fig. 3)
arose solely from the variations in the thermalpop-
ulation of different branches with temperature.
We now wish to consider the possibility of addition-
al variations in the heat-pulse velocity due to fi-
nite-relaxation-time effects, and we summarize
below what is known about w, 7~„, and ~» from
existing theories and previous measurements.

1. Roton-roton scattering

The scattering of two rotons into two other rotons
was first considered by Landau and Khalatnikov. "'
They assumed that the potential of interaction be-
tween the colliding rotons had a &-type character
[V= V05(r) and r is the relative distance between
the pair of colliding rotonsI. Using the laws of
conservation of energy and momentum and assuming
a parabolic form for the roton-excitation spectrum
(valid for rotons near the minimum) they integrated
the matrix element over the phase space of the
scattered rotons and showed that

1/r„„=(4P,p I V, I'/h )N„. (14)

Beck and Beck'~ have shown that (12) is approxi-
mately valid as long as ~7R &2. For values of (d~„
approaching 2, they show that v„approaches zero,
and heat propagates mainly by diffusion.

B. Lifetimes of elementary excitations in He II
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Here N„is the roton number density which varies
as T"'e ", where 6 is the roton energy at the
minimum, P, is the momentum at the roton mini-
mum, and p the roton effective mass. From vis-
cosity and Raman-scattering measurements, '

I Vo I'

is found to be - 4&& 10 7 erg cm '. Because of the
exponential dependence of N„onthe ratio 6/kT, we
find that 1/T„„3x-108 sec ' for T- 0. 6 K at SVP
and for T-0. 5 K at 24 bar. Thus once the rotons
are thermally excited in sufficient numbers (N~
-10' cm '), their lifetime due to collisions is al-
ways short enough to cause equilibrium in the roton
gas of excitations for heat-pulse experiments of
the type reported here.

Ke wish to reemphasize that the above estimate
and the more sophisticated recent ones by Yau and
Stephen" and by Solana et al. ' are valid for excita-
tions about the roton minimum. These scattering
cross sections can be severely modified for higher-
energy roton excitations away from po. From neu-
tron measurements at SVP' it is known that over
a small region beyond the roton minimum the dis-
persion curve is linear with a group velocity ap-
proaching the sound velocity. These "fast" rotons
can decay by phonon emission. This decay rate
has recently been calculated by Jackie and Kehr"
and the zero-temperature limiting value of this
decay rate -3&&10' sec '. In Sec. IIB2we consider
in detail the phonon lifetime due to interactions
with rotons.

2. Phonon-roton scattering

—(2v)&7~~ F($9~ /Q7)

*4 1/2
x Pop To&2 -~go~ r

p vpil
t

where p is the density,

(15)

The laws of conservation of energy and momentum
require that the phonon-roton scattering be a four-
particle process of the type P, +R, :P2+R2. Since
the momentum of the phonon is much smaller than
the momentum of the roton, the scattering involves
almost no change in the direction of the roton mo-
mentum and little change in the magnitude of the
phonon momentum. The matrix element for the
scattering consists of two main terms: (a) a de-
formation-potential-type interaction which arises
from the density variation of the phonon field which
can be related to the density variation of the roton
energy; and (b) a v» ~ Pz type of interaction which
arises from the velocity variations of the phonon
field v,„(rt. ). .

The expression for the relaxation rate ~~„' due
to the above-mentioned scattering processes has
been given by Khalatnikov and Chernikova' who
show that

F = 0 + 25 (Po/ pvy h) + 9 (P0/l v») A +A (15a)

(15b)

3. Phonon-phonon scattering

A knowledge of the lifetimes of thermal phonons
in liquid helium II, at temperatures below the
roton-dominated region, is of considerable general
interest. A detailed knowledge of the phonon-
phonon collisions in He II could shed light on the
more difficult problem of phonon lifetimes in di-
electric solids, since liquid helium has only a
single isotropic phonon branch and is free of dis-
locations and impurities. Ever since the earliest
calculation of Landau and Khalatnikov, "numerous
attempts to calculate the phonon-phonon scattering
time ~» have been made. In this section we brief-
ly review these calculations and discuss the con-
sequences for the propagation of heat pulses in the
phonon-dominated region of He II.

Since the collisions between the phonons must
satisfy energy and momentum conservation, the
lifetime 7» depends sensitively on the nature of
the dispersion relation for the relevant phonons.
For energies below a few degrees kelvin the dis-
persion relation most commonly assumed has the

The explicit forms of (15), (15a), and (15b) are the
same as that given by Abraham et al. 4O The first
two terms in (15a) arise from the velocity-field
term and the latter two from the density variations.
These latter terms are small because of the weak
dependence of 6 on p and Po on p so that the value
of A= —0. 1, while the value of Po/y, v,„=8.Thus
the dominant contribution to r~'~ comes from the
second term in I". Thus, neglecting the small
variations in (15) due to the dependence of p, , p,
and Po on the pressure, it is clear that the primary
effect of pressure on T~'„wiLL be due to the approxi-
mate v,„dependence on the phonon velocity and the
exponential dependence on the roton gap b /kT. It
turns out that these two terms nearly cancel, so
that v„„is relatively insensitive to pressure. Nu-
merically 7~'~ is of the order of 10' sec ' at about
0. 6 K so that phonon-roton scattering is expected
to be important in our experiments at intermediate
temperatures.

The discussion of phonon-roton scattering is
valid for the parabolic region of the roton-disper-
sion curve. As mentioned in (a) in the "linear"
region of the roton-excitation-curve absorption of
phonons by "fast" rotons is possible. This process
has been discussed in the paper by Jackie and Kehr'8
and the reader is referred to their paper for de-
tails.
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(16)

Here v~„is the phonon velocity for momenta p =0
Rnd y is R dispersion parameter. For disper-
sionless phonons (@=0), energy and momentum con-
servation allows onlyioll&i ear three-phonon pro-
cesses (p, = p2+ p,). On the other hand, for "nor-
mal" dispersion, (y &0) Pethick and Ter Haar"
show that the three-phonon process is allowed only
if one takes into account the energy uncertainty in
the excitation spectrum due to the finite lifetime
itself. For "anomalous" dispersion (y & 0) the
three-phonon process is allowed and involves the
interactions of nearly collinear phonons with trans-
verse momentum also conserved. The angle of
scattering is determined by the amount of anoma-
lous dispersion and the momentum (frequency) of
the phonons in question. Since the value of y is
small, this type of scattering is always a small-
angle scattering process and hereafter will be dis-
tinguished by a superscript ( ) to distinguish tt
from the wide-angle scattering rates to be discussed
later.

Numerically, the parallel three-phonon process
for dispersionless phonons has been shown by
Jackle4 to have the value

~,",(3, y = 0) = 2. 5x 10 "T ' sec (17)

at SVP. Thus 7~~(3, y=0) has a value of 2. 5&&10'
sec at 0. 1 'K and -10"8 sec at 0. 5 'K. According to
Jackie„v~~(3,y = 0) depends on the phonon velocity
as V „and on the Gruneisen parameter p, as (u+ 1) 2,

so that it turns out that the effect of pressure is to
increase the relaxation time. At 24 bar we find
that this increase is about an order of magnitude
from that given by Eq. (17).

Maris43 has calculated the value for w&~ for y& 0.
At SVP his numerical value for the three-phonon
process, assuming anomalous dispersion, is al-
most identical to the value obtained by Jackie for
dispersionless phonons. At higher pressures,
though, the lifetime ~~~(3,y& 0) changes drastically
as has been shown by Jackie and Kehr. 44 They took
into account additional higher-order terms in the
expansion (16) for the dispersion relation. At large
momenta these higher-order terms cause the dis-
persion to become normal and hence they introduce
a cutoff in the three-phonon process. They assume

Rt the cutoff momentum dept'nds strongly on
pressure in order to explain the ultrasionic-attenua-
tion data under pressure. Thus their calculations
show that the three-phonon process ceases to be
effective at high pressures and the reader is re-
ferred to their paper for numerical estimates of
the pRrallel px'oeess rRte with anomalous d1sper-
sion as a function or pressure.

It is important to emphasize that in all of the

above calculations the effect of the broadening of
the excitation spectrum due to the finite lifetime is
not taken into account self-consistently. Thus the
calculations can be severely affected not only by
the choice of y but also by the finiteness of the
lifetime itself. The possibility of solving the
genex'alized Boltzmann equation at finite tempera-
ture self cons-istently has been discussed by Meier
Rnd Beck but we know' of no numerical results.
The importance of finite temperatures on the dis-
persion parameter y has also not been taken into
account.

In the discussions so far we have restricted our-
selves to three-phonon processes only. The four-
phonon process, which occurs for all form of the
dispersion relation, was first considered by Landau
and Khalatnikov' and later by Khalatnikov and
Chernikova. The four-phonon-process matrix
elements consist of two parts: (i) an almost col-
linear interaction and (ii) a wide-angle process in-
volving the scattering of two phonons into two other
ones. The small-angle form of the phonon-scat-
tering time 7P~(4, y & 0) has been shown by Eckstein's
to have the numerical value at SVP,

&~~'(4, y&0)= 11&&104'yT 7 sec.

Here again the parallel-process rate depends on
the value of the dispersion parameter y. With in-
creasing y (increasing pressure) the lifetime in-
creases. The lifetime for the wide-angle four-
phonon process has also been calculated by Khalat-
nikov and Chernikova. They give

for T = 0. 5 K, ~~~(4, y &0) ha.s a, value of about 1.7
&10 ' see for SVP. This time increases markedly
with pxessure because of the v'~o dependence of the
relaxation time on the phonon velocity.

The calculations of the four-phonon process have
all been performed for y &0 only. These processes
could conceivably have a widely different temper-
ature and pressure dependence for y& Q.

We now turn to the implication of the relaxation
times discussed above for our heat-pulse experi-
ments. Since 7'~& involves nearly collinear-scat-
tering processes, the parallel-process relaxation
cannot be the relevant time indetermining the tran-
sition from ballistic to fully developed second sound
in the phonon gas. Even in the presence of strong
T~~ one has to allow for considerable angular spread
to cause equilibration of perpendicularly moving
phonons. Fox' y - —8 ~ 10 cgs units. Maris esti-
mates that the scattering angle in the small-angle
three-phonon process is of the order of a few de-
grees. Thus numerous small-angle collisions are
required to cause a direction change of 90'. Of
course, the wide-angle four-phonon process 7~~(4,



SING HEAT. . .

be related to th

250

For R dll ect
o e small-an 1g e scattexin t

measurenlent Of

lIDe 7"pp.

experiments with
n o the small-an 1D 0 -Rng 6 time

ecessary. ~o
t dan

h,...;llbe re reported in6 r a subse-
hough, that both110, 0 sets of

D 8 0 get R complet

QujLd heliUIQ.
PIlonon excltat

e pie-
R lons ln

In Fig. 5 weI ' . we have plotted t
ixnes ealeulated

e the diffexent re

)

e e t '
n relaxation

6 p onons R8 R fuDCUDCtlOD

y arrows the relax ' ' whie

ong below about 0. 2 tong be . 5Kforthe 1

ru y balllstlc Rt low tenl er

p onoD px'oces868 ls
a he lowest tern

ls very

odel heat pulses
6IDperRtul 68. In

xs ic xng perhaps in our h

T pp 6 ls Rlso coD8 d6 Ds6 Ds1 6x"Rbl

Rt T-

t '
n Chernikova

0. 28 K for the 1

ec 8 on heRt pulse pro

ce . ' re leal tern
ow temperat

pel Rtul 6 depe

eve x' st
ures for 7'

en-

, stronger than th 5 r b
cause

St n p ndence forn 6 T de 6
0%'-

el d

D lculax'- x'0
r Ypp be-

e ou o he angle in the
h pends on the

Stan

cl Rtlon Rre Dot, Sub 6
e strong T-'

jec to the

antially redue d.ce
dependenc 6 18 Sub-

%'6 have not shown t8 own the effect of xe8 own t px'essure on the

y changed, but that 7"

18

p t m wl lnereaslng
below about 0Rx' Rnd

px"68-

o e long in all
.5K

models Rnd th

:components
consist of true balll t

6 pro p-
8 lc-phonon

II
pp{5,'f & 0)

5X10
0.1

I l

O. 7 0.90.& a S

HG. 5.
TEVpeRATURe {K)

. 5. Calculated therma—. 5. ermal-phonon relaxa '

mperat~r
e prime refers

VP. The su e

large-Rn

Uper script
rs - g e scattering wh'l

n l . +&0 means
I. 8 j. to

ree Rnd

RnomaloUS d

CalCUlat d fe rom E

dlsper-
Rtes weren process ra

r Mnple lengt„s of

y&0 of Landau and Khalat '

equilibration in the
h t

'" 'p y. Thus OUI'ln he s irectl .
6 1 yield R IQea6 1 asurement Of

8 lIQe. It 18 Dot1 . Dot necessRrllyw, e value obtained i

c ln ai and numerical
e ow which maIQay ox' IQay not

CHNIQUES

Many of the experimeP Dlques used in this
se ' s . In thi. s see-

»6 on 6 saj.ient feRtures

reader.
e particularly heie y elpful to the

e helium ex e
'xperiments were dx e redonewithaH3I'ed 6-

y S.H. E.E. Corpora-

PROPAGATION OFN OF SOUND AND SEC QND SOUND U



V. NARAYANAMURTI, R. C. DYNES, AND K. ANDRES
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FIG. 6. Schematic of sample chamber used in liquid-
helium experiments. The geometry of the generator and
detector is that appropriate for the short cell. The long-
cell experiments were done in a vertical geometry.

ation. The refrigerator had three sintered-foil
heat exchangers in addition to a continuous exchang-
er and had a cooling capacity at 0. 1 K of about
250 erg/sec. The mixing chamber was made of
copper with provision for internal access. Under
continuous operation, the refrigerator could reach
an ultimate temperature of about 14.7 mK mea-
sured by a CMN thermometer attached to the mixing
chamber.

The experimental helium chamber was attached
to the mixing chamber by means of a copper rod
soldered to its bottom. A schematic of this cham-
ber, which was made out of epoxy, is shown in
Fig. 6. The chamber was detachable by means of
a threaded joint which was sealed at the beginning
of each run by means of glycerine-soap solution.
Two different size chambers were used. One had
an internal diameter of ~5 in. and was 1 in. long
while the other was also of the same diameter but
had a length of 3& in. The chambers, filled with
helium, could be cooled to 0. 1 K within 1-2 h after
starting the refrigerator. The cooling of the helium
was achieved by means of hundreds of fine copper
wires which were in the form of a bundle soldered
to the copper rod. The temperature was measured
by means of a carbon thermometer, previously
calibrated against CMN, immersed in the liquid.
Pressure was applied by means of a Hoke high-
pressure regulator via the fill capillary and the
experiments were always done under constant pres-
sure. The pressure was measured by means of a
Heise gauge whose calibration was checked with
the known solidification pressure of helium

The generator and detector were mounted op-
posite each other inside a Teflon holder with open
sides. The separation I. between the generator

and detector could be varied by means of Teflon
spacers. Experiments were done for three dif-
ferent propagation lengths (f-0. 25, 2. 0, and 7. 0
cm). The 0.25-cm length experiments were done
in the horizontal geometry shown in Fig. 6 with the
nearest walls being about 1 cm or more away from
the centers of the generator and detector. Thus the
short cell was entirely free of wall reflections.
The experiments with the two longer lengths were
done in a vertical geometry, and the Teflon spacers
were separated to minimize the detection of
pulses due to reflection at the walls. However,
the presence of Teflon tape (used for electrical in-
sulation purposes) around the open ends of the
cells, could have given rise to some wall-scattered
heat pulses at the detector in the case of the two
larger length cells. The lengths themselves were
accuarately determined through the measurements
of the arrival times of the echoes of the second-
sound pulses at high temperatures. From the
known second-sound velocity the length was deter-
mined and used for later determination of the heat-
pulse velocities in the ballistic and transition re-
gions.

The heat pulses were generated with a, 50-0 con-
stantan heater film, - 500-A thick, and were de-
tected with a similarly deposited thin-film indium
bolometer. The bolometer was magnetically biased
at the midpoint of its resistive transition and then
biased with a constant-current source. The pre-
cise mechanism through which the bolometer re-
sponds to thermal energy at low temperatures was
not clear. Measurements of the dc temperature
coefficient of resistance revealed that in the pres-
ence of the desired magnetic field the bolometer
changed its resistance significantly (&&/It 10
10 ') only at temperatures of the order of 0. 5 K
and above. It is possible that the biasing current
and the heat pulse "primed" the thin-film bolometer
sufficiently to bring it into its temperature-sensi-
tive region. However, the detected voltage pulses
were observed to scale with the bias current (for
low bias current 100 pA. ) indicating that there was
no well-defined threshold and that dc heating was
not significant. The sensitivity of the bolometer
to heat pulses was found to increase when the tem-
perature was raised to near T, (at H = 0) but even
at very low temperatures our bolometers could de-
tect voltage signals of the order of a few micro-
volts (energy flux —1 erg/cmB at the heater approxi-
mately 2. 5 mm away from the bolometer with a
signal-to-noise ratio in the ballistic region -10-
1). The possibility that at low temperatures some
of the detection occurs through the movement of
flux lines in the bolometer cannot be ruled out.
From measurements with superconducting-tunnel-
junction detectors' under the influence of magnetic
fields of varying strengths, it appears certain that
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our bolometers acted as true broad-band detectors
of thermal energy in contrast to the quantum nature
of the detection process of the junctions.

The sizes of the heaters and bolometers used in
this work were typically 3.5~3.5-mm square. The
cryostat was equipped mith superconducting coaxial
cable to minimize losses down the cable. The
voltage signals from the bolometer were amplified
and fed into a Biomation S100 transient recorder
(with 10-nsec resolution) and accumulated in a
multichannel analyzer. In some of the earlier data
the signal averaging mas done mith a PAR 160 box
car integrator. The current pulses to the constan-
tan heater were supplied by a Hewlett Packard
214A pulse generator. The pulse widths typically
ranged from 0. 1 to 1.0 p, sec and the pulse ampli-
tudes mere usually - 0, 5-- 5 V. Only rarely mere
higher amplitudes and pulse widths tried. Higher
amplitudes and pulse widths resulted in distortion
of the pulse shapes at the detector, as we shall see
later. Most of the gas experiments were done in
a manner described previously. These earlier
experiments were done in the vapor which was in
equilibrium with a small puddle of liquid at the
bottom of the sample chamber and condensed film
on all surfaces. The vapor pressure mas varied
by changing the ambient temperature of the sample
chamber. In order to avoid varying the tempera-
ture, some more recent experiments were done
above the liquefaction point (&4. 2 K), and the mean
free path was varied by changing the gas pressure.
Because of the higher temperature of these experi-
ments, a lead bolometer (T, 7. 2 K in -zero field)
was used.

The bismuth samples used in our expeiments were
grown here at Bell Laboratories many years ago
for electron-wave experiments and were known to
have long electron mean free paths. As pointed
out in our earlier paper, the crystals were handled
with great care to avoid strain. The heaters and
bolometers were electrically insulated from the
bismuth by thin films of Qe and silicon oxide.
Qreat care had also to be taken to avoid the break-
down of these insulating layers as electrical con-
tinuity to the bismuth from either heater or bolom-
eter resulted in failure.

surface at very low temperatures. We also pre-
sented some data which illustrated mean free path
effects and shomed the transition to adiabatic sound
as the temperature and hence the vapor pressure
mas raised. At the 1om temperature of the earlier
experiments the data in the ballistic and transition
regions were found to be strongly amplitude depen-
dent. In this section me present some heat-pulse
data at a considerably higher temperature (-4.2 K)
as a function of He4 gas pressure and in a region
where the heat-pulse temperature perturbation is
small compared to ambient. These data then pro-
vide quantitative information on the number of col-
lisions required for the formation of the collective
mode from the single-particle excitations at MHz
frequencies.

Some typical heat-pulse data as a function of va-
por pressure are shown in Fig. V for T=.4. 2 K.
The input pulse width was about 0. 8 p.sec. Fol
heater powers densities up to about 0. 025 W jmm,
the data showed no detectable variation. The vapor
pressure at lom temperatures mas calculated
through measurements of pressure at room tempera-
ture of known quantities of the gas. At the lowest
pressure (& 10 ~ Torr) the detected heat pulse is
extremely broad. In this region of pressure me
are in the ballistic particle regime and what is

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section we present our experimental re-
sults for the three experiments described in this
work (gas, solid, and liquid). We first show and
review our results in gaseous He . gee then pre-
sent results on the transition to second sound in the
phonon gas in crystalline bismuth. Finally our re-
sults on liquid He II are presented and analyzed.

A. Gaseous helium

We have previouslye reported on the velocity
spectrum of evaporating atoms from a liquid-helium

FIG. 7. Typical heat pulses in gaseous helium as a
function of,vapor pressure (in mtorr): (a) &10; (b) 0.5;
(c) 30; (d) 70; (e) 400; (f} 400. Propagation length, 2. 25
mm; 7=4.2 K.
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FIG. 8. Peak heat-pulse velocity as a function of vapor
pressure; T =4. 2 K, ) =2.25 mm. Calculated mean free
paths are also indicated.

measured is the velocity distribution reflecting
the ambient temperature. As the pressure is raised
beyond about 1 p, the pulse begins to rapidly retard
in time and also sharpen in time space. By about
30 p. it develops an echo. At higher pressures one
sees well-defined pulses as is clear from Fig. 7.

It is interesting to point out that well into this
collective or temperature-wave regime, the de-
tected pulse shape takes on more of a derivative
form of the initial pulse. This has been discussed
by Guernsey et al. ' and is due to the inductive
nature of the temperature wave for our geometry.
As we shall see later, very similar shapes are also
observed in the second sound or temperature-wave
regime in liquid He II.

The qualitative velocity behavior described above
is shown as a quantitative velocity-profile plot in

Fig 8. Saturation in the velocity at both the low-
and the high-pressure ends is clear. These data, then,
provide a quantitative description of the transition
from ballistic single-particle flow to collective
sound. From kinetic theory we can estimate the
mean free path X of the gas molecules as a function
of pressure. The calculated values are shown at
the top of Fig. 8. For a propagation length of /

= 2. 25 mm, it is clear that X= 1 mm already has a
significant effect on the velocity of the heat pulse.
For X-0. 1 mm one begins to approach a limiting
behavior in the high-pressure region. lt is also
about the pressure region where one begins to see
the development of the wave-like nature of the ex-
citation through the observation of an echo. It ap-
pears, then, that under the conditions of our ex-
periment one can say that some 50 collisions are
required for the formation of the collective mode.
We wish to emphasize that this depends somewhat
on one's definition of sound. The transition region

is quite broad and is almost certainly due in part
to the rather broad velocity distribution of the gas
molecules. Truly, unattenuated sound formation
occurs only in the presence of numerous collisions
at elevated pressures. It is also clear from Fig.
8 that v, [~s(P&)]" as expected from Eg. (4). This
collective mode in the gas of particles which we

cail sound is then analogous to the collective mode
in a gas of phonons or phonons and rotons which
we call second sound.

The above measurements by the heat-pulse tech-
nique, in addition to being of considerable rele-
vance to second-sound measurements, also com-
plement the earlier data of Greenspan" and Meyer
and Sessler' '" on the dispersion of sound using
conventional piezoelectric transducers. From the
observed length dependence of the phase velocity
of the ultrasonic waves they concluded that some
15 collisions were required for the formation of
sound. Our measurements, well into the Knudsen

region, are made possible through the combined
use of low-temperature techniques and highly sen-
sitive superconductive bolometers. Sine wave
measurements as a function of frequency and length
should enable one to probe in great detail the
transition from the ballistic Knudsen modes to the
hydrodynamic collective mode. Our present pulse
measurements„however, serve as a guide in the
study of the formation of the collective second-
sound mode in the other two states of matter.

B. Solid bismuth

In this section we present some of our data on
the propagation of heat pulses in bismuth. We show
data from different crystallographic orientations
and show how the collective mode forms from the
individual single-particle-like ballistic modes.

As mentioned in the experimental section, the
samples used in our heat-pulse work were known
to have long electron mean free paths as they had
been previously used in electran-wave experiments.
Altogether, measurements were made on five dif-
ferent samples with resistance ratios R,oo/R, z of
between 100-400. Most of the experiments re-
ported here were done on two different samples
labelled Bi I and Bi III where second-sound signals
could be pursued to quite high temperatures before
resistive processes took over. The measurements
were made between 1.2 and 4. 2 K, achoice dictated
by previous thermal conductivity measurements.
The thermal conductivity of our samples I and III
is not known, but measurements of similar BTL-
grown samples by McNelly'4 revealed that their con-
ductivity was comparable to that reported in pure
samples of previous work. "'6

In Fig. 9 we show some typical heat-pulse mea-
surements as a function of temperature in Bi III.
The slight sloping backgraund observed here and
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FIG. 9. Typical heat pulses in Bi III. Propagation
length 5. 1 mm. The pulses broaden and move to later
time as temperature T is raised. Curve (a) 1.95 K; (b)
2. 68 K; (c) 3.1 K; (d) 3.3 K. Propagation along C3 axis.

in other directions (Fig. 12) is believed to be due

to the semimetallic nature of the crystal. Possible
electronic effects are presently being studied with
laser-excited heat pulses. The propagation direc-
tion with the t.", axis and the propagation length was
5. 1 mm. At 1.4 K one observes only a single well-
defined pulse whose propagation time of about 0.8

p, see in excellent agreement with that expected for
propagation of ballistic transverse phonons. The
absence of longitudinal phonon in this direction
is due to normal (N) phonon (hole) scattering. '7

Transverse phonons do not couple via N processes
to the hole surface and Umklapp (U) processes are
necessary. However, because of the small phase
space available for U processes, the phonon mean
free path is much longer than the propagation length.
As the temperature is raised, the transverse
pulse broadens and both the leading edge and peak
retard in time. Above about 3. 5 K the pulse be-
gins to lose its form as diffusive (resistive) pro-
cesses begin to dominate.

The qualitative behavior shown above is very
similar to that observed in the transition region
of formation of phonon second sound in liquid helium
to be discussed later in Sec. IVC 1 and to the for-
mation of sound in the gas discussed previously.
The quantitative velocity-profile curve is also very
similar to that described in the other two instances.
The data are shown in Fig. 10 for bismuth III and
bismuth I for two propagation lengths. It is clear
from this figure that between 2. 9 and 3.3 K the
peak velocity approaches a limiting value of about
0. 8&&10' cm/sec. This is close to (1/&3) ~D(Debye
velocity) calculated assuming 8~=120 K and expres-
sion (9) given earlier. The approach to this lim-
iting behavior is a strong indication that the time
retardation and broadening is due to N-process

7.~=4. 3x10 T ' sec. (20)

This value of 7.„differs from our earlier value'
because of an inadvertent omission of a factor of
2 previously. No explicit temperature dependence
for ~„is given because of the limited temperature
range of the data where resistive scattering is
significant. Nevertheless, it is clear from this
figure that vR is a very steep function of tempera-
ture as is expected for U processes. Extrapolating
the curves shown in Fig. 11, we estimate that
these U processes will overtake the N processes
at T- 4. 5 K but, because of the exponential nature
of the damping of heat pulses in the presence of re-
sistive scattering, their effect can be felt for sam-
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FIG. 10. Peak heat-pulse velocity as a function of T
for two bismuth samples and two lengths. The limiting
second-sound velocity is close to (1/&3) x Debye velocity
(yo) C3 axis.

scattering and not due to resistive processes.
When these latter processes take over, the velocity
reduces dramatically as is clear from the velocity
profile data above 3. 3 K. This will again be ob-
served in the twofold axis data to be discussed
later. From our data, it is also clear why Brown
and Mathews' were unsuccessful in observing sec-
ond sound in bismuth by the cw method. Their
measurements were done at 4 K where resistive
processes dominate even in the best of samples.

These points are further quantified through a
calculation of the relaxation times ~~ and vR from
our heat-pulse velocity-profile data. The calcu-
lated relaxation times as a function of temperature
are shown in Fig. 11. These values of w were cal-
culated from the velocity data of Fig. 10 and ex-
pression (2) (in the absence of resistive scattering)
and expressions (12) and (13) which take into ac-
count the finite resistive relaxation time. A best
fit to the data were obtained with a normal-process
relaxation time
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pie lengths -5 rnm at T-3. 5 K, itself.
It is importa. nt to point out that the relaxation

times given above are strictly valid only for T
modes propagating in the C3 direction. From anal-
ysis of thermal-conductivity data, Kuznetsov et
al. found that v~- 10 sec at 8 K. Our expression
(20) yields a value -10 ' sec at 8 K. Though the
numerical agreement is only fair, the temperature
dependence of 7.

„

is the same in both cases. Our
values of v„are, on the other hand, about a factor
of 3 smaller than that estimated from thermal-con-
ductivity data. These quantitative differences pre-
sumably arise from the highly directional nature
of the heat-pulse experiments when compared with
conductivity measurements. The phenomenological
nature of the analysis of the data may also be the
subject of some criticism.

%e now turn to the orientation dependence of the
heat-pulse data. In Fig. 12 we show our results
for heat pulses propagating along the C2 axis in Bi
III. The propagation length was 5. 6 mm. The
shorter length enabled us to pursue the different
modes as a function of temperature further than
was possible in our earlier data. 8 At low tempera-

tures we observed the ballistic propagation of all
three modes. The relative amplitudes of these
modes was in qualitative agreement with that esti-
mated from phonon-focusing effects5 and the den-
sity of states of the different modes. As the tem-
perature was raised, all three ballistic modes de-
cayed rapidly in intensity. In the vicinity of 3 K
most of this intensity was transformed into a new
mode, the second-sound mode, which arrived
slightly later than the slow transverse (ST).

These features are illustrated somewhat more
quantitatively in Fig. 13 where we have plotted
both the signal intensity and the velocity behavior
of the different modes as a function of temperature.
The longitudinal (L) and fast transverse (FT) modes
show little velocity variation but lose their intensity
to the second sound (SS) mode which aPpaxently
grows out of the last ballistic mode (ST). Above
3. 5 K this pulse again loses its form as diffusive
processes set in. The saturated second-sound ve-
locity is again about Bx 104 cm jsec, close to vD/
v 3. This again indicates that the final limiting
second-sound mode is a thermodynamic mixture of
all the modes of the system though the initial decay
rates of the individual ballistic modes are different.
This limiting behavior and the modal dependence
of the intensities also reemphasize quite clearly
that we are observing a well-defined second-sound
mode free of impurity effects till about 3. 5 K.

Finally, we wish to emphasize that all of the ve-
locity profile data. discussed so far are valid only
in the limit of low-intensity heat pulses. If the
amplitude is large, the heater temperature T„is
no longer a small perturbation from ambient and
interaction effects set in even at T,- 1.4 K. This
is illustrated in Fig. 14 where we show the effect

pg yi @)y l' 'y w' ~'~) n~ ) g (pter g 'y g"'t

% IO I I
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FIG. 12. Typical heat pulses in Bi III for propagation
along C2 axis as function of temperature. Curve (a) 1.62
K; (b) 2. 12 K; (c) 2. 85 K; (d) 3.52 K. Propagation length
5. 6 mm. The decay of the ballistic modes into a single
second-sound pulse is clearly seen.
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of increasing amplitude. In addition to the usual
ballistic pulse, we now see a slower component
develop which increases in intensity as T„is raised.
At the highest heater powers, it dominates in in-
tensity and now even an echo is clearly visible.
We believe this additional pulse represents second-
sound generated through the large temperature ex-
cursions of the heater. As the pulse propagates, it
dilutes in intensity so that we observe a split pulse
which consists of different fractions of ballistic
and second-sound parts. We show these data to il-
lustrate the effects of high amplitude. We shall see
later that such behavior also occurs in liquid heli-
um.

C. Liquid helium

in a later section. At T= 0. 1 K the leading edge
arrival time of about 9.65 psec of the main pulse
corresponds to a velocity of about 238 m/sec, close
to that expected for ballistic-phonon propagation.
The peak velocity is also close to this value if one
takes into account the finite pulse width. In addi-
tion to the main pulse, an echo at three times the

In this section we summarize our experimental
results on heat-pulse propagation in helium II as
a function of temperature and pressure. Evidence
for phonon second sound at SVP and roton second
sound (at 24 bar) as well as the usual complete sec-
ond sound at these pressures is presented. The
implications of these experiments for the current
theories of the lifetimes of the elementary excita. —

tions is discussed.

1. Phonon region

In Fig. 15 we show some typical low-temperature
heat-pulse data at SVP over a propagation length E

of -0. 23 cm. The data shown here were taken with
a box car integrator and the typical pulse powers in
this set were extremely. low —about 3x 10 ' W/mm
with a pulse width of about 8&& 10 7 sec. Data at
high pulse energies showed substantial deviation
from the behavior shown here and will be discussed
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3.95, (f) 6. Time scale (a)-(e) 1 @sec/(large division), (f) 5
@sec/(large division); ambient temperature -1.4 K; input
pulse duration 0. 5 psec; heater area -20 mm2.
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Phonon region. Note the time retardation and broadening
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FIG. 17. peak heat-pulse velocity in He II as a func-
tion of T at SVP for three different propagation lengths.
At high temperatures excellent agreement with calculated
second-sound velocities is obtained. The solid curves at
low temperatures are best fits to the heat-pulse disper-
sion assuming Eq. (2) to be valid. The curve due to
Maris is obtained from H,ef. 49.
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FIG. 16. Typical second-sound pulses in He D.
0.23 cm; T=1.5 K.

initial arrival time of this ballistic pulse is clearly
detectable even at these low powers. No change
is observed in the velocity of the detected heat
pulses until T- 0. 35 K. As the temperature is
raised further, the ballistic pulse broadens rapidly
and retards in a manner qualitatively similar to
the C3-axis data for the solid bismuth. This broad-
ening and time retardation are quite marked for the
echo as well. Above about 0. 62 K the pulse loses
its form and at 0. 66 K it is so broad that the peak
velocity is ill defined. The peak velocity at 0, 6 K
is - 189 m/sec. Above about 0. 75 K we see again
well-defined pulses, this time with many echoes.
These second-sound pulses have a velocity in agree

ment with previous data. " A typical second-sound
pulse and its echoes are shown in Fig. 16. Again
it is seen that the pulse shape reflects more the
derivative of the initial pulse, in a very similar
fashion to that observed for the sound wave in a gas.

In Fig. 17 we show the peak velocity as a function
of temperature. The data for l =0.23 cm are the
triangles. The data for the larger cells will be
discussed below. Also shown on Fig. 17 (solid
line) is the calculation of the theoretical second-
sound velocity from Eq. (5) assuming rapid inter-
action of all the exeitations. It is clear that the
velocity-profile curve for second sound in the en-
tire gas of excitations agrees with the data only
above about 0. 75 K. The large change in velocity
between 0. 75 and 0. 62 K is believed to arise be-
cause of the change in the phonon-roton scattering
time r~„by at least an order of magnitude. From
Fig. 5 we can see that 7&„should change from about
3&& 10 to about 10 ' sec according to the calculation
of Khalatnikov and Chernikova, i.e. , the mean free
path changes from a value of about

$3
of the sample

length to greater tha.n or equal to / for /= 0. 23 em.
This again is consistent with our criteria that some
20-50 collisions are necessary for the formation
of the collective mode.

Below about 0. 55 K, v,„~~„becomesmore than an
order of magnitude larger than 0.23 cm. The dis-
persion in the heat-pulse velocity must now a,rise
from phonon-phonon scattering alone. It is clear
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FIG. 18. Heat-pulse data in the 2-cm cell at low-
power densities as a function of temperature. Curve (a)
0.1 K; (b) 0.24 K; (c) 0. 27 K; (d) 0.35 K; (e) 0.40 K; (f)
0.45 K. Again note the broadening and time retardation
as T is raised.

from Figs 17 and 1 that we reach a value of only
cow&&- 1 before the phonon-roton scattering process
takes over. From Eq. (2) we find that the best fit
to the data yields a value of 7»- 0. 7&& 10 T ' sec.

From the above analysis it appears that consid-
erably longer cells are required to reach the hydro-
dynamic (second-sound) regime in the phonon gas
in helium II. In Fig. 18 we show data with a cell
of length - 2 cm. These data were taken with the
Biomation transient recorder and Fabritek signal
averager. The power density to the heater was
typically a factor of 5 larger than in the short cell.
The extremely well-defined ballistic pulse arrives
now at about 86 p.sec at T = 0. 1 K. Quantitative in-
tensity comparison with the short-cell data is dif-
ficult, but the signal appears about an order of
magnitude stronger than for a 1/r2 radiator. This
implies that the surfaces of our generators are
sufficiently smooth so that part of the signal, in
the ballistic regime, is concentrated in a narrow
solid angle. Such behavior is similar to that ob-
served with cleaved NaF by Sherlock et al. and
is due to the large difference in the sound velocity
of the generator and the liquid. In the presence of
a diffuse surface intensity varying as 1/r2 would be
expected as has been observed by Guernsey and
Luszczynski. ~4

As the temperature is raised above about 0. 2 K,
the heat pulse begins to broaden and retard in time
rapidly. Some of these higher-temperature data

are also shown in Fig. 18. By 0. 5 K the peak ar-
rival time corresponds to a, velocity of -150 m/sec
and appears to be reaching a limiting value similar
to that observed in bismuth. This is more clearly
illustrated through the velocity profile data of Fig.
17. The effect of the phonon-roton coupling occurs
much earlier (around 0. 53 K), and above -0. 6 K
we get excellent agreement with the calculated sec-
ond-sound velocity curves. The value of v.~„is
now estimated to be about 8~10~ sec at 0. 53 K.
This is again in very good agreement with Fig. 5
and with our earlier data for l = 0. 23 cm. The ve-
locity-profile data for l = 1.98 cm in the phonon re-
gion yields a best-fit phonon-phonon scattering
time 7» 1x10 6T ' sec. The temperature depen-
dence is the same as that deduced from the short-
cell data, but the numerical coefficient appears to
be somewhat larger (- 50%). Considering the lim-
ited region of the curve studied in the short cell,
the agreement between the two sets of data must
be considered good.

It is clear from the data shown in Fig. 17 that for
/= 1.98 cm one is beginning to approach an onset to
saturated-phonon second sound with v„-v, /1» 3
at T-0. 5 K. The approach to the limiting behavior
encouraged us to do an experiment in a cell of
length /- 6. 97 cm. A typical ballistic pulse at T
-0.07 K is shown in Fig. 19. The heater power,
here, was similar to that used in the 2-cm cell and
from the signal strength it is again clear that the
geometrical loss is small in the ballistic region.
However, as the temperature is raised, the signal
decays very quickly and above about 0. 25 K no sig-
nal is detectable until very high temperatures
(-0. 8 K). This rapid decay in the phonon region is
presumably due to the defocusing effect of three-
dimensional phonon second sound in the transition
region. The losses are now sufficiently great,
and it appears from our data that the optimum
length is -2 cm, at least at SVP. This implies

FIG. 19. Typical ballistic heat pulse observed in long
cell. l =6.97 cm; T=0.07 K.
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FIG. 20. Phonon-phonon mean free path $ plotted as
a function of reduced temperature (T//0). The data for
solid He are those of Ackerman and Guyer (Ref. 63) and
for NaF from Rogers (Ref. 17).

that an experiment such as that suggested by Sas-
low in chambers of /-10 cm (so that one is in the
true hydrodynamic regime) a,re not likely to be
successful with presently available detector sen-
sitivities.

The temperature dependence of v'pp deduced in
this work is slow compared with the T dependence
expected for the three-phonon process and T de-
pendence of the four-phonon process discussed in
Sec. IIB. Numerical values of v

p&
are in order-

of -magnitude agreement with the

happ

estimated
from Jackie and Kehr's calculation, although the
temperature dependence does not agree. In Fig.
17 we have also shown a theoretical plot due to
Maris (dashed line) for our 2-cm cell. We chose

the numbers from his refraction model since that
is appropriate for our experimental situation,
though the results of the isotropic model are not
too different. His numerical values for the dis-
persion are higher than the experimentally ob-
served values. In addition, his velocity profile ap-
pears to have an even slower temperature de-
pendence than our experimental curves. This is
presumably because the wide-angle process be-
comes effective only after numerous small-angle
scatterings, and the velocity-profile curve is thus
a complicated function of the parallel process rate
and cannot simply be written in terms of a T" de-
pendence.

It is possible that the T dependence is an arti-
fact of our analysis since we a,re not always in the
hydrodynamic regime. However, the numerical
values obtained by us are close to that obtained by
Whitworth from Poiseulle flow data. (in the 0.4-
0.5-K region). In addition, the T dependence
is remarkably similar to the T dependence ob-
tained by Ackerman and Guyer for solid helium
from both Poiseulle flow and second-sound data,
where they were always in the hydrodynamic re-
gime.

These points are brought out more clearly in
Fig. 20 where we have plotted the mean free path
I»—-ep» as a, function of (T/Gn). For6~ SVP liquid
He C„=0.020V && T3 erg/gm 'K which yields On
=—28. 5 K. Thus most of our measurements are
done for T/6 0n. 022 or below. For liquid He in
the long cell the condition l» & / is satisfied over
a, wide enough range in temperature, and the use
of hydrodynamics is probably justifiable. Also
shown in Fig. 20 are the values of v pp for solid
helium (at 54-atm 6n-28 K), Bi(6~=120 K), and
NaF(6~=475 K). The similarity in the T depen-
dences of the two common solids (NaF and Bi) and
the two quantum systems (He) is to be noticed. It
is also clear from Fig. 20 that for reasonable
values of I, I», and (T/6~) only in solid helium is
the scattering sufficiently strong to see sharp well-
defined phonon second-sound signals with echoes.
In liquid He and Bi, /pp is at best -~l, so that one
sees only the approach to a limiting behavior.
Finally, in NaF

happ
is'7' 4 even longer and the limit-

ing behavior is not achieved before other processes
take over.

We now turn to the pressure dependence of the
phonon-phonon scattering time in liquid He. The
heat-pulse data for several different pressures
are shown in Fig. 21 for l =1.98 cm. The tem-
perature data in the low-pressure region were
more complete in the larger ceO. It is clear that
the variation in the heat-pulse velocity, in the
phonon-dominated regime, with temperature, be-
comes less and less as the pressure is increased
and becomes immeasurable at pressures above 10
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FIG. 22. Phonon-phonon scattering time T as a func-
tion of T for four different pressures. 7 was calculated
from the data of Fig. 21 and Eq. (2). Liquid He II.

bar until T-0. '70 K. Below this temperature a,nd
for p &10 bar the velocity of the leading edge of the
ballistic pulses is in excellent agreement with the
ultrasonic data. The velocities of the peak of the
pulse and the leading edge are virtually the same
(within about 2%) provided the amplitude of the pulse

at the heater is kept sufficiently low. For .large
heater powers the peak velocity of the pulse is less
than the ballistic leading edge due to the genera. -
tion of higher-energy excitations which have a lower
group velocity.

In Fig. 22 we have plotted the value of v» a.s a.

function of T for pressures below 10 bar. These
relaxation times were calculated from the velocity-
profile data of Fig. 21 and EIl. (2). From Fig. 22
we can see that v» increases by almost an order
of magnitude (at fixed T) as the pressure is raised
from SVP to 9.8 bar. The temperature dependence
is still close to T"3, though there seems to be some
tendency for this power law to decrease even
further as the pressure increases. It is difficult
to be definitive on this point as the dispersion be-
comes weaker with increasing pressure. In Fig.
23 we have plotted r» as a function of (T/8n) with

e~ = 28. 5 SVP and 36 K at 10 ba,r. A best fit to
the data yields an approximate universal form for
~»~

~,~-(7+ 3) &&10 " (T/8n) ' sec.

The close similarity to the behavior of solid helium
is to be noticed once more.

Above about 10 bar and below . 72K the lack of
variation in the heat-pulse velocity implies that
/»=m» must be at least ™/.This implies a value
of /»-2 cm or greater. The strong pressure de-
pendence and the large increase in v» as the pres-
sure becomes large is qualitatively consistent with
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FIG. 24. Amplitude dependence of low-temperature
heat pulses in liquid He at SVP. T=0.2 K; propagation
length 0.23 cm. Curve (a) 4 V (0.023 W/mm~); (b) 23. 5
V (0.79 W/mm ). Heater size -14 mm . Pulse duration
0.2 psec.

2. Amplitude effects in phonon region

The data discussed in Sec. IV. C1 are valid
only in the limit of very low heater pulse powers

the large increase in the dispersion parameter
y(y &0) in the phonon region of the He II excitation
spectrum at high pressure, which effectively de-
creases the usual three-phonon scattering rate.
In the low-pressure region the data are qualitative-
ly consistent with the model of Jackie and Kehr
discussed ea,rlier. Quantitative comparisons are
not made at this time because our observed tem-
perature dependence appears to be definitely dif-
ferent from that predicted by the different theories
discusses ea.rlier.

Finally, from the data shown in Fig. 21 it ap-
pears that the temperature of occurrence of the
transition from phonon flow to complete second
sound is almost independent of pressure. This
temperature (0.62-0.75 K for I = 0. 284 and 0. 55-
0.68 K for l = 2 cm) regime though becomes na, r-
rower as the pressure is raised. Thus it appears
that the phonon-roton scattering time v~ is at most
very weakly pressure dependent. This is consis-
tent with our earlier theoretical discussion and
the model of Khalatnikov and Chernikova [Eq. (15)]
where we saw that the effect of the increase in the
roton number density with increasing pressure
is almost exactly cancelled by the v dependence
of 7p„.

The consequences of the above values of v~ and
7'&& as a function of pressure for the observation
of separate phonon and roton contributions to the
heat flow is discussed in Sec. IV CS. We first
turn to the effect of high heater powers on heat-
pulse propagation at low a,mbient temperatures.

(& 1 to 5 W/cm ) and pulse widths (& 0.75x10-6
sec). Thus it is clear that significant interactions
set in at high enough pulse energies. The behavior
to be discussed here is qualitatively consistent with
that discussed before by Gueruzey and Luszczynski'
and Pfeifer and Luszczynski but quantitatively dif-
ferent because of the much narrower pulse widths
used in this work. The data a.re presented merely
to show the type of effects to be expected at high
energies with our generators and detectors, and
they a.re to be carefully avoided to get meaningful
data representative of thermal interactions.

In Fig. 24 we show the effect of very high am-
plitudes on the pulse shape in the short cell. It is
clea, r that at the high amplitudes the ballistic
pulse and its echo carriers only a. small fraction
of the total energy, a. large pa, rt of which is con-
tained in a broad diffusive type pulse. The lea.ding
edge of the ballistic pulse moves relatively little
but the peak has moved significantly. This move-
ment is probably a combined effect of dispersion
(propagation of a significant number of high-fre-
quency excitations with a, group velocity less than
the sound velocity) and the effect of interaction
among the high density of generated excita, tions.

In Fig. 25 we show the effects of high amplitudes
on the pulse shape in the l = 2-cm cell. At high
amplitudes a mell-defined pulse with a peak velocity
-200 m/sec at SVP develops. The relative intensi-
ty of the second pulse increases markedly with am-
plitude though its velocity does not change signifi-
cantly. With increasing ambient temperature, the
two pulses merge and eventually form the second
sound. The velocity-profile data shown in Fig. 26.

The velocity and behavior of this pulse is similar

FIG. 25. Temperature dependence of heat pulse at
high amplitude. Heater size -14 mm; pulse duration
1.2 psec. Heater voltage 12 V. Curve (a) T=0.18 K;
(b) T=0.22 K; (c) 0.25 K; (d) 0.27 K. .h.s the tempera-
ture is raised the ballistic pulse and the slower second
pulse slowly merge into one. Propagation length -2 cm.
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FIG. 26. Temperature dependence of velocity of
second pulse (the ballistic pulse behavior is also included
for comparison) at three different pressures.

to that reported by Guernsey and Luszczynski in
their experiments. We believe it arises because
of initial generation of second sound at these high
amplitudes. In the large cell this pulse quickly di-
lutes itself and travels ballistically after probably
a wall reflection. The lack of amplitude dependence
of the velocity is consistent with generation of sec-
ond sound above 0.7 K. The wall reflection and di-
lution is necessary since this behavior is observed
only in the l = 2-cm cell where wall reflections were
not entirely avoided. The arrival time is consis-
tent with a path incorporating a reflection off a wall
unique to this 2-cm cell. These facts are also con-
sistent with our high-pressure data. We find that,
for example, at 24 bar we observe the ballistic
pulse at 360 m/sec and the second pulse a,t- 325
m/sec as shown in Fig. 26. Since complete second
sound occurs at about the same temperature at high
and low pressures, the occurrence of the second
pulse at all pressures at roughly a constant fraction
of the ballistic pulse velocity is consistent with the
above interpretation. If the second pulse had some-
thing to do with either the phonon or roton gases
alone, we would have expected a dramatic pressure
dependence which is not observed.

3. Aoton region

In Sec. IV C1 we saw that the occurrence of
complete second sound (involving the entire gas of

, ,I':.„~z,~g,~ s,, p,~,.„,,
( 'pig 'f'~7& Y'~" '~
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FIG. 27. Evolution. of roton second-sound pulses in
liquid He II at 24 bar. Curve (a) X=0.1 K; (b) T=0.4 K;
(e) 0. 55 K; (d) 0.65 K. Propagation length 2.34 mm.

excitations i.e. , phonons and rotons) occurs at ap-
proximately the same temperature at all pressures. ,

From the theoretical curve for the second-sound
velocity (Fig. 3) shown earlier it is clear that com-
plete second sound should persist to lower tempera-
tures at high pressures if 7~„weresufficiently short.
This is simply due to the fact that at 24 bar, the
roton minimum & ='I. 15 K, while at SVP, &= 8. 65
K. However, from the data presented in C1 it is
clear that the phonons at high pressure remain bal-
listic up to T- 0. 7 K. This pressure independence
of v&„implies that there is a "window" in tempera-
ture from about 0. 45 to 0. 7 K when the rotons are
populated in significant numbers and yet are de-
coupled from the phonons at high pressures.
In this section we present some of our measur-
ments to observe this roton contribution to the
heat flow.

Most of the measurements described here were
done with the short cell. The bolometer in these
experiments was a Sn/oxide/Sn tunnel junction
placed in a magnetic field H =H, . Even in these
high fields the junction had a sensitivity somewhat
better than the resistive indium bolorneter used
earlier.

Some typical heat-pulse data at 24 bar are shown
in Fig. 27. The pulse amplitude and width were
quite low and corresponded to energy dissipations
-10 erg/cm'. At the lowest temperature, T-0. 1

K, only the single ballistic phonon pulse is ob-
served. As the temperature is raised to about
Q. 4 K a new broad pulse arises at a time consid-
erably delayed from the ballistic pulse. As the
temperature of the sample is raised further this
pulse sharpens and eventually between 0. 7 and 0.8
K it merges with the usual second-sound pulse.
The velocity profile curve for this new pulse is
shown in Fig. 28. This velocity curve is identified
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decoupled from the rotons; roton second sound de-
coupled from the phonons; and complete second sound
in all excitations. This allows one to then estimate
the various scattering times 7~~, T~„, and v.„„.

We have studied the nonthermal roton excitations
in great detail as a function of pressure using a
Sn 'fluorescent" generator 6 and Sn tunnel detector.
Their intensity, shape, and structure are found
to depend greatly on the generated frequency. A
detailed account of the complex structure observed
in these experiments will be published in a subse-
quent paper. ' In this paper we merely wish to show
the gross features of roton second sound using heat
pulse s.
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FIG. 28. Temperature dependence of "roton" pulse
velocity for three different power levels into the heater.
P =24 bar; propagation length 0.234 cm.

with slow-moving roton components. In Fig. 28 we
have also shown the velocity data for excitation en-
ergies as low a.s about 2 erg/cmz and as high as 110
erg/cm . The lowest-excitation-energy data were
taken recently with an extremely sensitive junction
and appears to be the limit of our sensitivity. At
the higher excitation levels the "new" pulse appears
at a lower temperature as nonthermal generation
begins to occur.

The amplitude dependence of the velocity of the
roton pulse is more clearly illustrated in Fig. 29.
The ambient temperature for the data was about
O. 55 K. Even though the error in the measurement
is substantial [-(20-80)c/& of the velocity because
of the large width of the pulsej it is clear that the
limiting-zero-amP/itude velocity is - 7 +2 m/sec at
O. 55 K. This value is extremely close to that ex-
pected for pure roton second sound as shown in Fig.
4. This interpretation is also consistent with both
the "derivative" shape of the pulse and the expected
short lifetimes for roton-roton interactions at this
temperature. This lifetime is - 10 sec according
to EIl. (14) at these temperatures. Except for very
high-velocity roton excitations, this lifetime yields
a roton scattering length -

gag of our sample length.
At about O. 4 K this length increases by about an or-
der of magnitude and the broadening observed at
this temperature is probably the first indication of
the finite roton lifetime. The highly dispersive ra-
ture of the velocity is also consistent qualitatively
with the large amplitude dependence reported here.
At the higher excitation levels one begins to gen-
erate a significant number of higher-velocity non-
thermal roton excitations.

Liquid He II at various pressures and tempera-
tures then affords the unique opportunity of study-
ing both ballistic flow and second-sound flow in the
gas of excitations. One can see phonon second sound

V. CONCLUSIONS

Using the fast-heat-pulse technique we have
studied in detail the transition from second sound
to ballistic phonon flow in liquid He II as a function
of temperature, pressure, and propagation length.
We have obtained numerical estimates of the wide-
angle phonon-phonon scattering time v~~ and shown
that is depends strongly on pressure, in qualitative
agreement with the theoretical model. of Jackie and

Kehr. By the application of pressure we have also
been able to vary the phonon and roton contribu-
tions to the heat flow. This has enabled us to ob-
serve the propagation of rotons decoupled from the
phonons.

We have given a unifying discussion of second
sound in terms of the elementary excitations. The
onset of phonon second sound in liquid He II at SVP
has been observed. The broadening and time re-
tardation of the heat pulse in He II in the phonon
region is shown to be experimentally similar to the
onset of this mode in the solid bismuth and to the

P= 24 bor

I-
o 200
LLI

10

HEATER VOLTAGE

FIG. 29. Amplitude dependence of peak velocity of
roton pulse. T=0.55 K; P=24 bar. The zero-ampl. itude
velocity is close to that expected for pure-roton second
8ound.
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transition from ballistic particle flow to sound in
a, gas (He'). These latter measurements show, that
for submicrosecond heat pulses to propagate with
a velocity approaching that of second sound (- v/v 3)
one requires a mean free path of the excitations
to have a value of the order of ~z, l (within a. factor
of 2). Finally, even in a highly elastically aniso-
tropic solid such as bismuth the velocity of second
sound is within experimental error, independent of
orientation, although the decay rates of the individ-
ual ballistic modes into the collective mode are
quite different.

Considerable more work remains to be done.

The heat-pulse technique still suffers from the dis-
advantage that one is injecting a broad distribution
(thermal distribution) and in a pulsed experiment
one has many different Fourier components to deal
with. Experiments using high-frequency sine waves
and monochromatic sources (superconducting tun-
nel junctions) are presently under way. These
should help in a quantitative understanding of the
remaining open questions.
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