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The two Jahn-Teller systems T, @ (e + r,) and E m} e are studied in the strong-coupling limit. Two

methods are used: the first depends on Glauber states to represent the displaced oscillators, the second

involves a separation of the vibrational coordinates from the rotational coordinates that are associated

with the spatial degeneracies of the systems. The analysis for T l @ (6 + T2) is described in detail; that

for E g e is summarized. The distribution of the angular momentum states among the oscillator levels

of the T, Cm (e + 7,) system is specified. Analytical expressions are given for Ham factors, for relative

absorption intensities, and for the energies of the levels in the region near the strong-coupling limit.

I. INTRODUCTION

For many symmetric molecular complexes, the
interaction between a vibrational mode and a de-
generate electronic state leads to a distortion of
the complex and a corresponding reduction in its
symmetry. This is the Jahn-Teller (JT} effect. '
We are concerned in this article with two cases
for which an infinity of distortions are energeti-
cally equivalent. They correspond to octahedral
complexes, and are commonly written~ E e' and

T, e (&+ v~}. The letters refer to the irreducible
representations of the octahedral group: italics
are used for the electronic state and greek for the
vibrational mode. Although both cases share many
common features, the complexity of T, (e + ra),
which derives mainly from the high degeneracies
of the representations, makes it essential to give
it special attention. We shall therefore use this
case to exemplify our general approach. The
much more elementary case of E ~a can then be
treated by describing the simplifications and sum-
marizing the principal results.

II. F+ CENTER IN CaO

In second quantization, the Hamiltonian for
T&e (e + r~) is given by H = H, + V, where

H,'=~ mo(a' ~ a+a ~ a&), V=r'" ~ (a'+a).

The creation and annihilation operators, a~ and

a, are spherical tensors of rank 2. Their five
components correspond to the five components of
the modes & and v2. The assumption of equal fre-
quencies v for both modes has been shown to be
well obeyed for the I"' center in CaO. 3 The ten-
sor T ~3' acts only in the space of the electronic
Tj states. For the E' center, these states cor-
respond to a single p electron trapped in an oxygen
vacancy. By forming the scalar between 7 ~3' and
a~+a, we follow the well-established ' assumption

that the coupling between T, and both modes e and

7~ is approximately the same. We also suppose
that a reasonably good representation of the phys-
ical situation in the solid can be obtained by using
just one effective frequency ~ rather than an ex-
tended spectrum, an assumption for which some
justification has been provided.

The most complete analysis of the Hamiltonian
H so far reported is that of O' Brien. 4 This was
done in a basis provided by a limited set of the
eigenfunctions of the oscillator Hamiltonian H, .
Although ) V[» [H, ), O' Brien was able to obtain
an adequate representation of the low experimental
levels by taking large enough matrices of H and by
introducing a parameter 8' with respect to which
the energy of the lowest level was minimized.
This variational procedure is equivalent to taking
basis functions characterized by a different fre-
quency ar to that appearing in H, . This approach
was successfully introduced by Englman, Caner,
and Toaff in their analysis of Tj z 7.3. It is the
purpose of much of the present article to describe
calculations in the alternative basis corresponding
to the strong JT limit for which I VI » I H, I. In
this way we obtain analytic expressions for quan-
tities of interest, such as Ham factors and the

energies of the levels. We can explore the region
near the limit by using perturbation theory, there-
by obtaining a complete and precise picture of the
approach to the limit itself.

III. GLAUBER STATES

Two independent methods will be used in the
analysis. Apart from a safeguard against error,
their complementary character provides added
insight into the physics of the situation. The first
method is conceptually the more elementary. To
calculate the eigenvalues of H in the strong JT
limit, we should evidently seek eigenfunctions of
7 ~'

~ (at+ a). Following the work of Glauber, 8

we may readily verify that
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Equation (2) provides a generalized Glauber state
as an eigenfunction of T'2' ~ g. Since the adjoints
of the Glauber states are eigenbras of T'2' ~ a~,
the matrix elements of p can be calculated by al-
lowing the two terms making up V to act in oppo-
site senses, T ~'

~ a to the right, and 7' '
~ a~ to

the left.
However, the state

exp(kat ~ C '2')
~
0)

does not include the electronic part. It is con-
venient to denote the three orbital states of the

p electron by the vectorial ket ~p), for then the
linear combinations of p-electron states appro-
priate to the lower (stable) branch, as found by
O' Brien, " can be concisely expressed as C '

~ tP).
Two orthogonal linear combinations are required
for the upper branch. At this point, we introduce
the double tensors D '"', which are derived from
the rotation matrices n' (fl), where Q stands for
the Euler angles ((t&8y), by the equation '~

D (tt&
( I) (v(P +fI) &/2g) t (g)g

The two angular momentum vectors 1 and X with

respect to which the ranks and their components
are def ined 's are specified by"

l„a i l, = ie"~ (cot8 8~ a i8~ —csc8 8„),

l, = —se

for the first rank t and its component g, and

1,+ iX„=ie""(cot8 8„+i 88 —csc8 8~ ),

(3)

(4)

(5)

(6)

for the second rank t and its component —v. In
the above equations, we have used the abbreviation

8~ =8/8(t&, etc. If we regard the subscripts x, y,
z as referring to components of 1 in the Laboratory
frame I', then the components $, g, or f of X re-

(T ' '
~ a) exp(k at ~ C ~')

~
0) = k(r ' "

~ C' ")
x exp(kat ~ C ' ")

~
0)

(2)
for all polar angles of the spherical tensor
C (8, Q). The normalization of C' ' is not im-
portant here, though in general it is convenient to
follow Edmonds's definition

fer to a frame I' that is obtained by subjecting I
to a rotation of y about its z axis, then 8 about its
(old) y axis, and finally by (b about the original z
axis '4

It is straightforward to prove that

C(t &(8 (t&) ( I)t (2iy ])-& l2D (tt &

so that the electronic eigenfunction obtained above
can be written (with a trivial change of normaliza-
tion) as D.'(0(& ~ I p). The subscripted dot merely
indicates a blank space for the unspecified com-
ponents of the first rank 1 that are to be combined
with the appropriate components of l p) to form a
scalar product. We can now immediately write
down the two orthogonal states belonging to the
upper branch as D.(((» ~ I p).

Before combining the electronic states and the
Glauber states to form the total eigenfunction, we
note that states of definite angular momentum J
(and component M) can be projected out by including
D~„' in the product and integrating over Q. Such
a state is

'(D'"' ~
~

P)D' ~& exp(ka' ~ C(2&)
~
0) dA (7)

For it not to vanish, x+N= 0. The ground state
of the system in the strong JT limit corresponds
to taking x= 0, For an integrand of even parity,
we must have odd J, in agreement with O' Brien. "
An equivalent form of (7) has already been given~
in a notation that is less suited to the generaliza-
tions that we now embark upon.

IV. EXCITED STATES

Since Glauber states are displaced forms for
zero-point motions, that state (7) is a coherent
superposition of ligand displacements, This idea
will be viewed from a different standpoint in Sec,
VII; for the moment, we need only note that the
orientation of the coherent structure is specified
by the Euler angles O. We can evidently super-
impose vibrational effects on this structure by
including creation operators in the integrand; but,
to be sure that the new vibrations are referred to
the rotated frame, we need the rotated forms

b'. =(D.".".a") —k8(m, 0)

rather than the simple expressions a~ . We now

introduce the generalized states

q l(Z&m) = D '"'.
~ P) D„"„"(b 0)'(bt)" (I ' )" exp(ka'. C "')

~
0) did .

These provide bases for all our calculations. For
them not to vanish, r+N+ 2p, —2v =-0.

Two subsidiary points need comment: the limi-
tation of m to 9 and + 2, and the 5-function term

in bt . If we replace 0 in the integrand of (9) by
some augmented Euler triad 0', the integral it-
self cannot change. This means that a rotation
operator of the type (I+v. 1 ), where v is an arbi-
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&=(5) '"(pIIT"'I
I
p)

A straightforward calculation yields

[haft bt ] b (C C1) C (1))bt

provided

Ra&k = —K(f )'i .

(10)

(12)

The ultimate integration over 0, and Q~ (that must
be carried out to evaluate a matrix element) is
weighted heavily near 0& =~~, owing to the expo-
nentials in the states (9). So Eq. (11) can be
written

[e', b' ] It(ub',

which is what we expect for the Hamiltonian of a
vibrational spectrum. Combining Eqs, (10) and

(12), we find

trary infinitesimal vector, cannot affect t 0, 000,
JM) if it is allowed to act on the terms of the in-
tegrand. By so doing, we obtain superpositions
of states of the type (9) and, in addition, a state
of the type (7) in which b» is included in the in-
tegrand. This means that the components + 1 for
m correspond to rotations of the coherent struc-
ture and are not required for the vibrational super-
structure, A precisely similar effect occurs for
the vibrations of deformed nuclei. ' '

The 5-function term in (8) is needed to ensure
that, for the normalized states,

(~, ~pv, a~I ~, ~'I v, ZM)-0

when 0 -~ and &0 &'. This can be rapidly veri-
fied by picking (Xtuv) = (100) and (X p, v) = (000), for
example. The parameter k can be related to the
relative strengths of V and H, as follows. For the
lower branch (corresponding to x= 0), the elec-
tronic integrations can be performed by abstracting,
from a general matrix element, C2' ~

I p) from
the ket and (p i ~ C )t" from the bra, where C,"' is
an abbreviation for C ")(8;,P;). The Hamiltonian
H can now be replaced by an effective Hamiltonian
II', which acts solely between vibrational states.
It is easy to show that

H' =—' Std(at ~ a+a ~ a )(C,"'
~ C'")

(C(1) C t)))(2)

where

of states of various kinds needs to be studied.
To find the number Z„(nJ) of states with angular
momentum J' in the vibrational level n (= X+ p, + v)

in the strong JT limit, we apply the inequality
J ~ N together with the condition that the integrand
appearing in the construction of )),g p, v, JM) has

even parity. As an example, take x= 0, n= 2,
and J= 1. The acceptable values of ()) tuv) are
(200) and (011) only. Under the inversion opera-
tions

P-a+P, e -tt-e, y-v —y,

we find

D (tt )
( 1)t-tlf) &tt )

QV gy V

So bt„- ( —1) bt. = bt, since m is even. Thus

both (bto) and bt2bta possess even parity and give

rise to two distinct states. On the other hand,

there is only one state for which J= 2, since the

products b ob ~ and b ob „2 can be combined to give
bto(b~~ —bt, ), which possesses odd parity. A brief
listing of the acceptable J values is given in Table
I. Spectroscopic symbols are used for J; their
multiplicities are indicated by superscripts.

The situation in the weak JT limit is well under-
stood. ' The f ive-dimensional oscillator Hamil-
tonian H, gives a sequence of equally spaced levels
for which the labels [0], [1], [2], . . . , [n] are
available, where [n] denotes an irreducible rep-
resentation of the unitary group U, . The reduction
U5-A3 yields the angular momenta L of the oscil-
lator quanta. We have only to couple each L to
the P electron to obtain the total angular momenta
J. A listing is made of the structure of some of
the lowest levels in Table II. In analogy with
Table I, the number of times Z'(n j) that a given
8' level occurs is indicated by a superscript to the
appropriate spectroscopic symbol.

Comparison of Tables I and II reveals the cor-
respondence

z, (n J) = z'(n+

where x=-2 if J is odd and x=1 if J is even. This
strongly suggests that the infinite sequence of

TABLE I. Angular momentum states for T~ (c+ v2) in

the strong JT limit.

As such, k is directly related to the ratio of the
magnitudes of V and II, . The strong and weak JT
limits correspond to k- ~ and k-0, respectively.

V. ENUMERATING THE STATES

Before we put H between the states (9) to set
up the energy matrix, the f requency of occurrence

PF HEM 0 ~ ~ ~

PDF GH IK I.M ~ ~ ~

P'DF'G'. a'I'Z 4 I'X4 ~"
P'DF' G'HI KI M '
PDFGHI ~ ~ ~

P DF3G HI
P3 D' F' G'a'I'Z' 1.' "
P4D4F'G'H'I'Z" I,"m" "



2430 B. R, JUDD AND E. E. VOGEL

TABLE II. Angular momentum states for T& N (~+72)
in the weak JT limit.

P
PDF
P2 DF GH
PDF GHIK
PDF GHI KJM
PDF GHI KLMNO
P4 a'F6G'a'I'K'I. 'm'M 0' @Z

terms of a given J provides a basis for a repre-
sentation of a noncompact group. Speculation on
this question would take us too far afield.

An interesting regularity appears in the decom-
position U, -R, as n-~. With the aid of Table I
of I.e Tourneux, '7 we find

lim [n] P=P" &' D~&2y'" G
g ~t&o

This determines the relative frequency of states
of different J in the total energy-level structure.
Although every J state (except J= 0) occurs an
infinite number of times, we see, for example,
that there are twice as many levels for which J=4
as there are levels for which J= 1.

VI. MATRIX ELEMFNTS

(r, Xi), v, Zm
i
ff

i
r', 1('p, ' v', Zm)

and the associated overlap integrals

(r, ).&((v, JM
i
r', )(' p. 'v', JVI) .

This can be done by using the commutation re-
lations satisfied by the boson operators a~ and
a in order to transfer the creation operators to
the left and the annihilation operators to the right.
We then use

a expo'tat ~ C"')
~

0) =( —1) !'2(C"')

x exp(&at ~ C2")
~
0)

and its adjoint to remove all annihilation and crea-
tion operators except those in the exponentials, for
which

(0~ exp(i'ta ~ C ' ') exp(hat ~ C ( ') ~0) = exp(()C' '
~ C ' ')

where 8=!'22. (It is convenient to introduce the
symbol S here because it turns out to be identical
to that used by O' Brien. ') To complete the cal-
culation, we need to perform the integration over
0, and Q2. Recouplings of the type

(C (g) C (g&)(C (h) C (h )) ~ (2f 1)l ' 2 1 ' 2 ~ +
p 0 0t

x(C(t& C(t))

Having enumerated the states, it remains to
calculate the matrix elements

can be used to reduce all integrals to the standard
form (for even t)

-(T-2)(r- 12)(r- 30)/3!(6S)'+" ],

where T=t(f+1). To obtain Eq. (14), the expo-
nential is expanded in a series of Whittaker func-
tions, and these are then expanded in turn by
means of the equations of Sec. 16.3 of Whittaker
and Watson. "

Normalization removes the term e~ from the
integrals (14), and so all matrix elements of the
total Hamiltonian can be expanded in inverse
powers of S. This is the appropriate form for the
strong JT limit, for which k -~. The energy
levels and other properties of interest, such as
the Ham factors, can be calculated by a straight-
forward application of perturbation theory, Be-
fore describing the results, we outline an alter-
native approach to the problem.

I

( —2 & m & 2) are parametrized by introducing a
new set of coordinates (q(2 p8 (()). Those repre-
senting rotations (namely 8 and ()!&) are separated
from the vibrational coordinates (qn P) before the
quantization of the oscillations is carried out. A
formal definition of O'Brien's coordinates is suc-
cinctly provided by the tensorial equation

(2) D (22&(y g
)

P) ~(2)

where the pseudotensor X' ' is defined through its
components:

~( & = (10)-'t

x(') '=(5) 'i cos (2,

VII. NORMAL COORDINATES

The properties of the lowest level have been ex-
plored in the strong JT limit by O' Brien. '" In
her approach, the five normal coordinates q„

To parallel our previous notation, we take P=2y.
The first step in the analysis is to express the

kinetic energy in terms of (q(2@& ()&). This entails



the construction of the five-dimensional Laplacian
T ~, only part of which has been given in the litera-
ture. 4 The resulting second-order differential

form can be greatly simplified if the components
of X, as given in Eqs. (5) and (6), are used. We
find

v =q 8, (q 8,)+q csc3&8 (»n3&8 )+(sin3o/12q2sin~o)82-(sino/qsin3n)'(sin2n+3cos2o)y~

+ 3 '/~(sinn/sin3a)2(1/2q ') sin2n ()).~+ X 2 ),
where &, = &~ + j X„. In terms of an effective mass p, , the oscillator Hamiltonian is given by

H, = - (@'/2u)&'+ -' u~ 'q'.

%'e begin the analysis of V by noting that

(2~~/@ )/a y(2) q(2)

By using Eqs. (13) and (15), it can be shown that, for the lower branch, the following equivalence is valid:

V-=—{2p&u/5) '/'Kukqcosn .

We introduce O'Brien's parameter qo hy writing

8'"=I),=q, (pcs/2h) "'

H0+ V= (@2/2p)+2+ ~ i/v~q2 p~2qoqcosn

= —(@ /2 I/)& + 4 0& [(q cos o.' -qo) + (q sinn) ] - 8'a&S .
If, now, we make the transformation

H' = U '(H, + V}U,

f/= q '(sinn/sin3n)'/',

it is found that

H, = —(@ /2p)[q 8, (q 8~ }+q csee 8~(sin@ 8~)+ 4q" csc e 8„]+2 p&u [(qcos~ —qo) + (q sino') ]—fla g

(1V)

V' = (5'/2 p){sina/sin3n) '
q

' [(sin'o. + 3 cos'o)())2 —2) --, (3) '/' sin2o()). ,'+)).')]+ (h'/6 p)q '
X2r .

Hy means of these equations we have expressed
the total Hamiltonian in terms of the coordinates
(q o) y 8 P) and the differential operators formed
from them, Of course, H' is appropriate only
for the lower branch, owing to the equivalence
used for V. The original form for V'must be
used to study the upper branch.

VIII. EIGENFUNCTIONS

The sepal ation of 0 into H0 and P prepares
the ground for an application of perturbation theory
in which H,' determines the zeroth-order eigen-
functions and P' is the perturbation. The leading
term, 0,', corresponds to an isotropic three-di-

I

mensional harmonic oscillator centered on the
point whose z coordinate is qo. We thus obtain 3,

sequence of levels separated by Sv for the spec-
trum of H,'. The factor —, preceding 83 in Eq. (17)
can be eliminated by using —,'P in place of y. The
usual boundary conditions for a harmonic oscillator
are satisfied, since the normal coordinates q go
into themselves (i. e. , q„-q„) when P is advanced
by 2m. Thus the factor e~" ~ appears in the eigen-
functions, where M ' = 0, + 1, + 2, , . . . However,
we cannot interpret M' as the quantum number for
a projected angular momentum vector, This is
because fa„ is the component of such a vector, ;

not i 8~. We therefore replace e'" ~ by e'"~,
where N = 0, + 2, + 4, ... . This is consistent with
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the single-boson condition m= 0, + 2 obtained in

Sec. IV.
As an example, consider the first excited level

of the harmonic oscillator. The eigenfunctions
for which M'=+ 1 become converted to e'2'", which
correspond to those of a ~ state of a diatomic
molecule. The acceptable angular momenta of the
associated rotational band are 2, 3, 4, etc. The
eigenfunction corresponding to M'=N= 0 yields
the J sequence 1, 3, 5, . . . just as the ground state
does. The combined sequence is 1, 2, 3~, 4, 52,
. . . , in agreement with the entry in Table I for
which (rn) -=(01).

Since H,
' does not involve 8 or P, we could multi-

ply the eigenfunctions g(q o. y) of H,' by any con-
venient function of 8 and P to form the total eigen-
function. The best plan appears to be to extract
e' "' from P to form Dz'~~~( P 8 y), for then the com-
ponents of X that appear in t/" act directly on the
subscript —N. At the same time, we obtain states
of well-defined angular momentum J. After a
reversal of the sign of N and a transference of
origin according to the scheme

g sing = g slnQ& g cos7' = Q' cosQ Q'p&

we can conveniently write the eigenfunctions of

H, for the lower branch as

y„,(r)p"."(co")D," (&8')C"'(8e)
I p) .

(20)
The corresponding eigenvalue is

In (20), L is, from a formal point of view, an
angular momentum quantum number for a state
of the vth excited level of a three-dimensional
harmonic oscillator; f„z is the corresponding radial
eigenfunction, and P~ is an associated I.egendre

polynomial. If (17) is treated in Cartesian coordi-
nates rather than the spherical polars (ray), then
the three quantum numbers (nLN) are replaced by
the set (X p, v). To parallel the analysis of Sec.
IV, we can, order the integers X, p, , and v to count
the number of oscillator quanta for which m = 0,
2, and —2, respectively. As before, we have

X+ p+ v=n, 2p, —2v+N=0.

A given J will, of course, involve a superposition
of the states defined by (X iL v). For example,
when v = 3, we can have L = 1 or 3. A state de-
fined by (nLN) =(312) is equivalent to a super-
position of the two states for which (X p v) -=(201)
and (012),

IX. ENERGY LEVELS

To conclude the analysis of the alternative meth-
od begun in Sec. VII, we have to calculate the ef-
fect of the perturbation V' of Eq. (18) within the
basis (20). (For low orders of perturbation theory,
the states of the excited branch are not required. )
Although this is reasonably straightforward, two
points should perhaps be made, First, the com-
ponents of X act not only on the D ' ' tensor of
(20), but also on the part C "'

~ } p), On recou-
pling B '~~' and C ", we find

(X'-2)D""C"'. ~P&=Z(Z 1)D""C"' tP),

so the eigenvalue of X' —2 is J ( Jy1).
Secondly, the transformation (19), when applied

to V, gives an expression that can be simplified
by expanding it in a power series in r/q, . This is
an appropriate expansion for the strong JT limit,
since it is easy to show that r/q, -k '. For ex-
ample, we find

(h'/2p)(sino /sin3o) 'q '(sin'o. + 3cos'o!)= (h&u/12$)[l —2(r/qo) cosr+ (r/qo) 2(3 costs+ sin~7)+. .. ] . (22)

Since the eigenvalue of X& is N, and since X, and
cannot contribute to diagonal matrix elements,

we see that the first-order effect of V' is to add
to (21) the energy

(k&u/12S)[Z( J+ 1) —N']. (23)

A term of this type appears in the energy spectrum
of a symmetric top whose two common moments
of inertia I are given by i= 3@. q~p. A special case
of (23) has been given by O' Brien '~' for N=n = 0.

An identical term to (23) can be derived using
the Glauber-state analysis of Sees. III-VI. How-

ever, the source is different. Unlike the treat-
ment above, the excited branch (corresponding to
r=+ 1) plays a role. This is characteristic of the

approach using Glauber states: although the analy-
sis is conceptually simpler, it often turns out that
perturbation theory has to be carried to a higher
order to obtain comparable effects,

We have carried the analysis to O(S 2) for the
J = 1 levels. These are the only ones that can be
reached by electric dipole radiation from the ground
level (for which J'= 0), and hence are the only ones
directly observable. They all correspond to N= Q.

For the lower branch, we find that the energies
E(r, X p, v, ZM), in units of @~, are given by

E(0, X p v, 1M) = —S+ (X+ p+ v+ 2)+ 1/69

+ (6~+ 2 p, + 2v+ 6)/24S'+ O(S-').

(24)
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diagonalizing the Hamiltonian II within this limited
set. It appears essential, however, to include the
parameter W (mentioned in Sec. II) in the analysis.
For 9= 21.85, it turns out that W should be roughly
0. 4,

X. HAM FACTORS

Tensors Z" ' of a specified rank t, acting solely
in the electronic space, are reduced when the full
vibronic eigenfunctions are used. The reduction
factor, X(t), is called a Ham factor. ' We have
two methods for finding K(t) near the strong JT
limit. Both employ perturbation theory. Taking
the method of Sees. VII-IX first, we calculate the
coupling of Z ~ ' and also of p' between the upper
and lower branches. The cross term coming
from these two operators yields, for the lowest
level for which 8=1, the results

o

FIG. 1. Schematic representation of s p transitions
and the J=1 levels of T& (a+72) for weak JT coupling
{on the left) and strong JT coupling (on the right). The
pairs of levels deriving from a common [nj are sepa-
rated by an energy BK+S/4 on the left. In the strong JT
limit, the energies between adjacent levels possessing
a common A. + p+ v are all S(d/3S .

The origin of the 8" term here ean be most di-
rectly seen by replacing the relevant terms of

Eq. (22) by their second-quantized forms, namely,

(~/qo) ' cos 'v - (I/4S) (bto+ bo) ',
(~/qo)'sin'r-(I/4&)H&'+& )'+(&' +& )')

and then using the fact that the eigenvalues of b~obo,

b, b~, and b.~b, are X, p, , and v, respectively.
A schematic representation of the levels is given
in Fig. 1.

In a private communication, O' Brien has shown
that a similar arrangement of at least the levels
for which n & 4 can be obtained by taking the lowest
90 states corresponding o the weak JT limit and

(26)

to O(S ~). O' Brien has calculated K(l) (for the
lowest O'= I level) with a truncated oscillator basis
subject to her special variational procedure.
She finds K(l) =0. 0007782 and 0. 0002608 for
8=13.33 and 21.85, respectively. The corre-
sponding values of I/»' are 0. 000625 and

0.0002328. As might be expected, the analytic
forms are slightly smaller than the others, but
the agreement is remarkably good.

The approach using Glauber states gives the
same expressions for K(t) as those in Eqs. (25).
However, it is now necessary to go to fourth order
in perturbation theory. The way that the various
contributions combine to produce I/»2 for K(l) is
shown in Table III, AQ listed states correspond
to J= 1. The agxeement between such different
methods gives one considerable confidence in the
calculations.

Intensities of the transition s- p can be readily
calculated from the Glauber states. The ground

TABLE DI. Sources for Z(1) using Glauber states.

Perturbation
order

States (y; Xpp) linked
by perturbation

(o; ooo) (o; ooo)
(o; ooo) (+1;ooo) (o; ooo)
(o; ooo) (~1;1oo) (o; ooo)
(o; ooo) (~1;ooo) ( 1;ooo)(o; ooo)
(o; ooo) 41;ooo) {~1;1oo)(o; ooo)
(0; 000) Q 1;000) (y 1;100) (g 1;000) (0; 000)
(o; ooo) g1; ooo) g1; 010)(~1;1oo)(o; ooo)
(0; 000) ]LL1; 000) (~1;001)(~1;100) (0; 000)

Total.

Contribution
to Z'(1)

1/3S+ 1/3S'
—1/3S-1/9S'

—1/3S'
1/36S'
1/3S'

-1/12S'
—1/36S'
—1/36S

1/9S'
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state is simply !s)!0), and the electric dipole
operator acts only in the electronic space. We
note that the equation (0!at = 0 implies

(0 l
(50)'(52)'(5'2)" exp(ka' ~ C "')

l 0)

=(-k)"5(i, O)5(v, o),

since the creation operators can all be allowed to
act directly on the bra, and only b~~ contains a,

part (namely —k) that does not involve at. In per-
forming the integration over the Euler angles, the
product D.'0"D„'~ ' necessarily introduces the fac-
tor 5( J, 1). Transitions from the s state can there-
fore only be made to J= 1 levels corresponding to
p, = v= O; and their strength is proportional to $"
[the square of the right-hand side of Eq. (26)]
divided by the normalization integral I for jO, ZOO,

1M&, We find

I= 64m ' e sX! /9$,

so the intensity (for S»X) exhibits a dependence on
on X and S given by S~'"e~ /X! . This agrees with
O'Brien's formula for the special case p, = v= X= O.

It can also be checked, in a rough way, by refer-
ring to the intensity diagrams given by Le Tourneux
for the components of the giant dipole resonance
of spherical nuclei. ' As has been mentioned
elsewhere, ' this is an equivalent physical system
to the one under study.

XII. THEEe CASE

We have used similar methods to those described
in Secs. III-X to investigate the E e c case in the
strong JT limit. Instead of five degenerate modes,
we now have only two. The decomposition of the
former into two rotational and three vibrational
modes is replaced, for the Es e case, by a sim-
ple separation into one rotational mode (character-
ized by an angle &f&) and one vibrational mode. We
again performed calculations using two methods:
that using Glauber states and that based on a sep-
aration of the rotational and vibrational motions
before quantization. As before, it is advantageous
to use the second method when high orders of per-
tu"bation theory are required.

Following the traditional notation, ' the two elec-
tronic states spanning E are designated I 8) and

!e). The corresponding oscillator creation oper-
ators that span e are afo and a~. The Glauber state
that is the analog of the right-hand side of Eq. (9)
ls

xexp[x(a~~cosP+a~ sing)]
l 0) dP, (2V)

where y refers either to the lower branch (x—= I)
or to the upper branch (r—= u), for which

l
I& = cos2$

l
8) —sin-,'p

l
e )

lu& = sin-,'p
l
8)+cos-,'g

l
e)

The creation operator b~ is the analog of b~o:

5 = a g cosp+ at slnljk Ic.

The strong JT limit corresponds to z-~. The
Hamiltonian H is the analog of Eqs, (1):

H = kv (a ~8a~+ at a, + 1) + T~(a~~+ a~) + T, (at + a, ),

where T~ and T, are electronic operators whose
transformation properties under the octahedral
group 0 are defined by the subscripts. To find
the energy levels of the syste~, we calculate the
matrix elements of the Hamiltonian JI with respect
to the states (2V) and use standard perturbation
theory.

Alternatively, we may separate the rotational
and vibrational motions by introducing the following
change of variables for the normal coordinates:

qo = q cosP, q, = q sing.

The Hamiltonian is given in terms of the coordi-
nates (q&f) by

H = —( k'/2 p) (8,'+ q
' 8, + q

' 8 ', ) + —,
'

p, &o 'q'

+ q(2(u p, /k) '~'(T, cosy+ T, sing).

In analogy to Eqs. (19), we write q —qo=x, where

qo is now the radius of that circle in the plane de-
fined by q~ and q, for which the effective potential
energy of the lower branch is a minimum. It
turns out that

K = p(dq 0/2 k.

To parallel the relation k = S for T,s (&+ r2), we

write x~ = s. The ratio x/q, can be used as an ex-
pansion parameter and the perturbative methods
of Sec. IX adjusted to calculate the vibronic levels
and the Ham factors. To perform the analysis,
the eigenfunctions specified by the equation

l~, n, m&=(2vq) '"lr&e" ln&

are used, where ! n) is the nth harmonic-oscillator
eigenfunction associated with the variable x.

For the lower branch, we find that the energies
E(l, n, m), in units of hm, are given by

E = —s+f+ (m ~/4s) (1+ Sf/2s+ [15(2f + 2) —1]/16s + [35(4f + 5f ) —Bf]/64s 3]

—(m'/16s')(1+ 9f/6s)+ O(s-'), (26)



where f is related to the vibrational quantum num-
ber n by f=n+ 2. The half-integral quantum num-
ber l of I onguet-Higgins et al. ~ is identical to
our pl,

The two Ham factors p and q, corresponding to
operators belonging to the respective irreducible
representations A2 and E of the octahedral group,
are found to be

P=(4s) ' —(4s) ',

e=kl. l+(«) ' —(4s) '1

to O(s ) for the lowest level. These expressions
for E, p, and q agree with the lower-order results
previously reported~o'"

r including an unpublished
calculation of E to O(s ) by O'Brien],

XIII. CONCLUDING REMARKS

The energies and Harn factors that we have ob-
tained for E e and T, e (e+ v2) can be carried to
higher orders of perturbation theory by extending
the analysis in a straightforward way. However,
the simplifications that have been made, particu-
laxly the assumption of a single frequency m for
both cases, would severely limit the usefulness of
such extensions. As it is, the contribution of the
analysis presented above lies principally in the
description of two complementary methods for
studying degenerate systems near the strong JT
limit.
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