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Critical properties are discussed for systems with order parameters given by n vectors S, each with
m components. The Hamiltonian has an arbitrary symmetry for each vector separately, but there is a
particular kind of coupling between them. It is shown that there is an integral representation for the
partition function which reduces n to an explicit parameter in an averaged partition function for the
m-component model. This leads to a simple discussion of properties of the system as a function of n.
In particular, it is possible to give a coherent derivation of several known and new results without the
aid of perturbation theory or the renormalization-group method. It is shown that, in certain special
cases, the exponents are Gaussian when n is a negative even integer and that n = 0 corresponds to
the excluded-volume problem. The general case is shown to reduce to an arbitrary m-component model
which is random when n = 0 and constrained when n l oo. A direct derivation of the large-n limit
is given and leads to a variety of exactly solvable models. Expressions for the order n ' correction are
obtained in terms of correlation functions. This expansion is valid at all temperatures and for any order
of transition, so that it is particularly suitable for considering tricritical phenomena.

I. INTRODUCTION

In the recent development' of the theory of crit-
ical phenomena, exponents and related properties
have been calculated as functions of the number of
space dimensions (d) and the number of degrees of
freedom (n) of the order parameter. It has proved
possible' ' to evaluate the first few terms of ex-
pansions in powers of (4 —d) or n ' a.nd to make ex-
act statements about certain special cases where
n is continued to negative even integers' ' or to
zero. '' These results have been derived for vari-
ous continuous spin models, usually with fourth-
or sixth-order Hamiltonians, ' by using the renor-
malization-group method'* ' ' or by studying every
order i.n perturbation theory. ' '

The purpose of this paper is to describe a rep-
resentation of the partition function which leads
to an explicit and coherent derivation of the exact
results' ' and the n ' expansion, a.nd allows us to
generalize them. With this approach it is possible
to avoid the complications of perturbation theory
and the fixed-point assumption of the renormaliza-
tion group, and, in addition, the n ' expansion is
valid for all temperatures and for any kind of
transition. The method is applicable to quite gen-
eral Hamiltonians and leads to an arbitra, ry m-
component model which is random when n =0 and
constrained when n- ~. As a special case, we
shall obtain the formal results of Abe's extension'
of Stanley's discussion" of the classical Heisen-
berg model, which also has been solved explicitly
for large n but involves a rather special constraint
which does not have the flexibility necessary for a
discussion of tricritical phenomena, metamagnets,
coupled-order-parameter models, and other situa-

tions of interest.
The general system to be considered is a lattice

model such that, at each site i, there are n vector
variables S, each with m components. It will be
shown that, for a wide variety of Hamiltonians,
there is an integral representation of the statistical
operator which allows the partition function to be
cast into a form in which n appears solely as a
parameter and not as a number of variables. Once
this has been done it is relatively easy to discuss
particular values of n and to obtain the expansion
of the free energy in powers of n

In Sec. II, the method will be illustrated first
for m =1 and a particularly simple Hamiltonian

n N

Q J,,S,. „S,.

+ p P s, .' ~ —(g s,.)
which has been studied extensively by the other
methods. ' '' ' Here J,-,. is the exchange integral
and it is assumed that the temperature T is ab-
sorbed into the parameters of the model. The par-
tition function is

(1.2)

A discrete lattice has been assumed but it is easy
to pass to the continuum limit. For this simple
Hamiltonian, it is a Gaussian integral representa-
tion of the (P" S, ')2 term in K which enables us to
display the dependence of Z„upon n, and, as an
example of the method, it is shown, without using
perturbation theory, that for n = —2, Z„reduces to
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the Gaussian model' and n=0 is equivalent to the
excluded volume problem. '

In Sec. III, K is generalized in a number of ways.
The quadratic terms (including the exchange in-
tegral) of Eq. (1.1) are replaced by an arbitrary
Hamiltonian h[S, „] in which the variables are now

I-component vectors at site i. The fourth-order
terms of Eq. (1.1) are replaced by an arbitrary
function f[p" g~(S, )] of several variables (p
=1, 2, . . . ). It is not assumed that h or g~ are poly-
nomials or that they are rotationally invariant in
the space of the S, The introduction of a more
general integral representation of the f term in
the density matrix again explicitly exposes the de-
pendence of Z„upon n. As a particular illustration,
it is shown that there are special cases in which
the free energy and correlation functions are Gaus-
sian for n a negative even integer. '

The general application of the representation is
made in Sec. IV where it is shown that n =0 cor-
responds to random ~-component models and gives
a relationship between averaging the partition func-
tion or the free energy for such systems. It is al-
so shown that the n - limit may be obtained by a
steepest descents calculation which gives a group
of exactly solvable models, of particular interest
for tricritical phenomena. For large but finite n,
the order n ' corrections are obtained in terms of
correlation functions of the n —~ limit.

The discussion of the general model is not much
more difficult than that of the simpler case given
in Eq. (1.1). In contrast, the renormalization-
group method is much more complicated both for-
mally, in deriving equations to be solved, and
practically in specific problems where the stability
of large numbers of fixed points must be consid-
ered.

Most of the discussion in this paper is concerned
with formal considerations, Applications to tri-
critical phenomena, coupled-order -parameter
models and time-dependent problems will be made
in separate publications. "

II. FOURTH-ORDER SPHERICALLY SYMMETRIC MODEL

an integral representation of the fourth order
terms in the exponent of e "':

2-
exp —— Q S,.„' =(~u) 't'

dg,.

2 n

xexp ——'r(p, g S,,') .

Z (~, )
—pp/2 '[ [dg/), .

N

x exp ——g p',. -xe e[p&[),
5

(2 2)

where

N

e "~o"'= j[ j$' ds,.
a

n

x exp

+ g (r res, ls, .')
t

(2.3)

The point now is that since the exponent on the
right-hand side of Eq. (2.3) is a sum over o.', the
integral factors into a product of n N-dimensional
integrals, and since e is merely a suffix on the
integration variable, all n integrals are identical.
That is,

N

e 'o'"'&'=
]-[dS,

xexp —g S,, S, S, + P (re(p,.)s,.')i.j i

(2.1,
'

Here, we have assumed M &0, which is necessary
for convergence.

This result may be proved in the usual way by
changing the variable of integration to (g,. —i(—', u)
P" S, '). Substituting Eqs. (1.1) and (2.1) into

Eq. (1.2) and changing the order of integration
over g, and S,~ we obtain

In this section the method will be illustrated for
the Hamiltonian given in Eq. (1.1) and discussion
of the more general case will be deferred to Secs.
III and IV. As an application, it will be shown how
two familiar results —the equivalence of n = -2
to the Gaussian model' ' and n =0 to the excluded-
volume problem' —may be derived in a coherent
fashion without the use of perturbation theory.

The object is to rewrite the partition function Z„
of Eq. (1.2) in a form in which n appears explicitly
as a parameter. This is achieved by introducing

4 o[g, ] = —', lndet(J +r +i[I() —(—',N) In7[

= —', Tr In(J+r+i[t[) —(
—2X) inn. (2.5)

(2.4)

&nd 4po[[t(;] is indePendent of n Thus the n. depen-
dence of Z„ is completely exposed in Eq. (2.2),
where n is merely a parameter in the exponent.
This makes it relatively simple to study particular
values and limits of n. Since the exponent in Eq.
(2.4) is quadratic in the S, , the integral can be
evaluated to give
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Here J and P are matrices with elements J;,. and

g, 5... respectively, and the suffix G has been put
on 4~ to indicate that it is such a Gaussian free
energy. Equation (2.5) may be proved by changing
to a representation in which (J+r +i|iI) is diagonal
and evaluating the integral in Eq. (2.4), and then
the determinant and the trace in terms of the ei-
genvalues. The cases n =0 and n = -2 will now be
discussed separately.

A. Gaussian model and n=-2

Balian and Toulouse' have shown that, order by
order in an expansion in powers of u, the partition
function is the same as that of the Gaussian model
when n = -2. An alternative derivation was given
by Fisher. ' It will now be shown that this result
may be obtained from Eqs. (2.2) and (2.5) directly,
without use of expansions.

Substitution of the first equality of Eq. (2.5) into
Eq. (2.2) gives, for n = -2,

g (~3. M)- N2/

i

more complicated than the excluded-volume prob-
lem, which has not been solved explicitly.

B. Excluded-volume problem and n=0

The excluded volume problem for polymer chains
concerns the calculation of the root mean square
distance between the ends of a polymer chain with
~ links. In the usual model, the links of the chain
are freely pivoted and the excluded volume is the
volume of a hard-sphere interaction between the
monomers situated at the pivots. The particular
representation of this problem which we shall ob-
tain was derived by Edwards" in the limit that the
length of the links tends to zero.

The relationship between the excluded volume
problem and the partition function of Eqs. (1.1) and
(1.2) for n =0 was first pointed out by de Gennes'
who gave a proof order by order in perturbation
theory. Equations (2.2) and (2.5) enable us to show
this directly without use of expansions.

From Eq. (2.2), the free energy, F„, per degree
of freedom becomes (as n -0)

+o = -Lim 111Z„
n ~On

N

exp ——g g,
' det[J+r+ig]. (2.6)

(~ )
N/2-

Now ( is a diagonal matrix and it is clear that, re-
gardless of the form of J, each (; occurs at most
linearly in every term of the expansion of the de-
terminant. But, since the exponent does not cou-
ple the g, 's, then, whenever a (, appears, the in-
tegral over tha, t g, is an integral of an odd function
and hence it vanishes. Thus g may be deleted from
the determinant in Eq. (2.6) without changing Z, .
But then the g, integrals may be completed trivial-
ly since they do not concern the determinant. Then
again writing det(J+r) as exp[Trin(J+r)], the free
energy per degree of freedom is

E 2=-inZ 2/-2

N

xexe ——g rP,
'.) . (2.8)

Then the correlation function

G"„.=- g &s,.s,.)
~+n

n BJ,,
may be obtained from Eqs. (2.5) and (2.8), for
n =0'

t

G 0
(~)2) N/2—

(2.9)

=
2 Tr ln(J+r) —(2N) in', (2.7)

which is the free energy of the Gaussian model.
The same result follows for the S;Sj correlation
functions by differentiating +, with respect to J j.
In Sec. III, we shall discuss the generalization of
this result to n = -4, -6, . . . etc. , for higher-order
weight functions and derive the results of Fisher. '

At this point, it is plausible that there might be
a useful expansion of critical exponents in powers
of (n+2) and, indeed, from Eqs. (2.2) and (2.5), it
is straightforward to write down the expansion of
Z„ formally. However, it is not easy to evaluate
the successive terms. The series is in powers of
Tr ln(J+r+ig) and there is a, weight factor
det(J+r+i g) in addition to exp[-(1/u) p"; g', ]. We
shall now see that even the first-order term is

xexp ——
~ J+J +'I jP (2.10)

It is this quantity which is related to the prob-
ability of finding one end of the polymer at point j
given that the other end is at point i. To see. this,
it is simplest to go to the continuum limit, which
may be obtained by diagonalizing Ji, by Fourier
transformation. For a simple cubic lattice and
near-neighbor coupling of strength J, the Fourier
transform is q, =J(8-q a /2) for small (qa). For
J&0 (ferromagnetic coupling) that is also the Fou-
rier transform of SJ —[2 (]J j

a')]V2 and hence
[(J+r+itt) '], , becomes a propagator from point
r, to r, (the locations of lattice points i and j).
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x + I(}(R(~))
Jg~ dR

2 d7
(2.11)

Here 5( is a normalization constant and the integral
is over all space-time paths connecting the end

points.
Now substitute Eq. (2.11) into the Laplace trans-

form of Eq. (2.10) and the integral over the (})'s

may be carried out explicitly [going from right to
left in Eq. (2.1)] to obtain the Laplace transform
8', , of 6', , :

g =X
R(t) =r.

5R
(O) =r;

x exp— I&la' u))(v))'
2 d7

t

dr, d~, 5(R(7', ) —R(v, )) . (2.12)
0

But this is precisely the probability of finding one
end of a polymer of length t at point r,- given that
the other end is at r, , in the continuum limit. "
We have a 5-function potential between monomers
but this is supposed to be inessential in the exclud-
ed volume problem and it is in any case simple to
extend the derivation to an arbitrary interaction.

As pointed out by de Gennes, ' this identity en-
ables us to use the evaluation of critical exponents'
in powers of (4 —d) for arbitrary n, to find how the
root mean square length of a chain grows with the
number of links.

III. MORE-GENERAL HAMILTONIANS

In this section, it will be shown how the method
may be extended to include a rather wide class of
Hamiltonians. As one illustration we shall show

that, in special cases, there are Gaussian expo-
nents and correla, tion functions for n a negative
even integer, as pointed out by Fisher. ' The main
application will be to derive a general relationship
between n =0 and random models and n = ~ and con-
strained models. This will be described in Sec.
IV.

The general form of Hamiltonian which will be
considered is

This is essentially the form obtained by Edwards. "
His result was actually expressed as a Feynman
path integral" for the Laplace transform with re-
spect to (~+3J) of the propagator:

(r,. (exp t —— V'+i(}) (r,.)
JZJa'

2

5R exp dw
R(0)=r, 0

& (s,. )) (3.1)

Here, the variables at each site are the n vectors
S, , ~ = 1, 2, . . . n, each with ~ components. The
Hamiltonian h replaces the rS', term in Eq. (1.1)
and is quite arbitrary. It contains the sum over
sites i but not the sum over a. A particular ex-
ample to keep in mind would be

h (S, )=gJ„S; S, +Qg, (S,'), (3 2)

but this is not essential.
It is not assumed that h„(S, ) is rotationally in-

va.riant in the subspace of the S,. vectors. The
Gaussian free energy 4 (; of Eqs. (2.2) and (2.4) will
be replaced by the free energy of a general m-
component system related to h (S,. ) and it could
be an Ising, X-~, or Heisenberg model, etc. The
function f[Q"„g~(S, )] in Eq. (3.1) replaces (—,'u)
x(P" S,.' )' in Eq. (1.1) and it is this generalization
which requires a change in derivation because the
integral representation (2.1) is no longer appro-
priate. It is possible to have an arbitrary number
of variables P" g&(S, „) for f, and this is necessa. ry
for considering n- limits for certain kinds of
coupled order parameter models. We sha, ll de-
scribe the method for one variable (f& =1) for which
the equations are less cumbersome. The exten-
sion will be obvious. Without loss of generality,
it will be assumed that f(0) =0.

A magnetic field also has been included in Eq.
(3.1). The vector H,. is assumed to have all com-
ponents equal to B,, which would be a constant
(independent of z) for a uniform field but site de-
pendent for a staggered field. Notice that the field
is applied in the (1, 1, 1, . . . 1) direction. This is
different from the usual convention of applying
n' 'H to one of the order parameters. The two are
equivalent if h &(S,. ) and g&(S; ) are quadratic in
B,„(i.e. , C is a Gaussian) but the form used in Eq.
(3.1) is essential in the general case for large n,
as will be seen in Sec. IV.

As examples of Eq. (3.1) which may arise in
practice, the case m =1, g, (S, ) =rS,' + US4, f and

g, quadratic leads to the fourth-order cubic sym-
metry Hamiltonian discussed by Wallace, "Aharo-
ny,

"Rudnick" and by Grinstein and Luther' using
the renormalization-group method. Such a form
is relevant for displacive phase transitions. Vari-
ous functions f[P" g(R, )] may be obtained from
discrete spin Ising models by making Gaussian in-
tegral representations of the exchange term. "
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When f, g„or h depend upon a, para. meter & it may
be possible to move from second- to first-order
phase transitions, by varying ~, thus producing
tricritical points. Many kinds of coupled order
parameter models may be described by Eq. (3.1).

Apart from the last term, the Hamiltonian in
Eq. (3.1) is a sum over n, and in order to achieve
the extension of the results of Sec. II, it is neces-
sary to make an integral representation of
f[P" g, (5, )]. This is achieved by writing

exp fgg, ((-),.))

function but g, = S', . Then, from Eqs. (3.2) and
(3.5), 4) [(t),. ] is a Gaussian free energy given by
Eq. (2.5) for H; =0 and m =1. In this case, it is
possible to show jhat, for some f(t;), the free en-
ergy and correlation functions are Gaussian at n
= -2, -4, -6. . . . The proof is similar to that of
Sec. IIA. As in Eq. (2.6), when' =2t), exp(2())4~)
is the Jt)th power of a determinant and is a poly-
nomial of order t) in each (r);. For a factor (I)', , Eq.
(3.4) contains

1
c)o g Oo

dt, d.(t), exp[-f(t, ) +t, g;](C',. )

dt,.e '5 t,. — g, S,.
Qo a dt, ef"e~. , 5(t,.)

dt(

xexp f(), )+P, (), gg—, (g,.)) (3.3)
(3.5)

Now if Eq. (3.1) is substituted into Eq. (1.2) and
the representation (3.3) is used, the resulting in-
tegral again factors into a product over n, giving
n identical integrals just as in Eq. (2.3) and the nth
power of a partition function e ~~'~"- analogous to
Eq. (2.4):

Thus, if the t)th derivative of exp[-f(t, )] vanishes,
only the zeroth-order term in the expansion of
exp[-nC) o((c), )j is nonvanishing and (t), may be de-
leted from C(,, ((t);) and

1
1llZ

2 t))

(3.7)

& exp — t,. —t, , —nC (3.4)

where

dS,.

&&exp -h S,. + H,. S,. —,.g,

(3.5)

Once again 4) [(t),. ] is independent of n, which is now

just a parameter in Eq. (3.4).
The form of Sec. II may be obtained by taking

f(t;) = (—,')s)t,'. Then the t, integrals in Eq. (3.4) may
be carried out" to give exp[-(I/u) P~",. (t)',. ] as a
weight for the (t), integrals as in Eq. (2.2). [Note
that (t),. is integrated along the imaginary axis in
Eq. (3.4) and along the real axis in Eq. (2.2)].

Equations (3.4) and (3.5) are the principal re-
sults of this section, and they will be used in Sec.
IV to discuss the n -0 and n —~ limits. Before
doing this, we give an example of a more special
application of these formulas. Suppose h is given
by Eq. (3.2) with g, = rS,'„, and f is an arbitrary

That is, the free energy is Gaussian. As in Sec.
II, differentiation with respect to J,

&
shows that the

correlation functions also a,re Gaussian. An ex-
ample of an f(t;) satisfying this requirement is a
power series whose lowest power is t~". This re-
sult was first obtained by Fisher. '

One other important special case is exp[ —f(t)]
=5(t n), g, (5,.) =S,', and 0-given by Eq. (3.2) with

g, =0 and m =1, which gives Stanley's n-vector
model. " In this instance, the t,. integral in Eq.
(3.4) may be carried out and the weight function for
the (t); integrals is exp(Q",.nt(t),. ). This model cannot
be continued to n &0 since the f(t) factor no longer
ensures convergence. It is also less flexible than
the general form. For large n, however, it does
give the same expansion of exponents in powers of
n ' as Eq. (1.1) and it is identical to the spin--',
Ising model for n =1. The large n expansion to be
derived in Sec. IV may be adapted to give Abe's
formal result, ' as a special case.

The extension of Eqs. (3.3), (3.4), and (3.5) to
the situation where f[g~gp(S, )] is a function of
several variables (i.e. , t) &1) is straightforward-
it is merely necessary to introduce a 6-function
factor as in Eq. (3.3), for each of the variables.
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W. RANDOM MODELS {n=0) AND LARGE-n LIMIT

In this section we shall consider two limits,
n-0 which will lead to various random models'
and n - ~ which gives the corresponding con-
strained models. For large but finite n, it will be
shown that critical properties and expansions in
n ' may be obtained directly without use of the re-
normalization-group method, or perturbation theo-
ry.

A. RBDdom modelS

From Eq. (3.4), the free energy per particle be-
comes, in the limit n - 0,

I o= -Llm
n 0 n

(2&t)
N-

(4.1)

From Eqs. (3.5) and (4.1), it can be seen that F,
is the free energy of a random m-component model
with a contribution [-tt&;g, (5,)] at each site i whose
distribution is defined by f(t, ). This is appropriate
for a system with random impurities and the criti-
cal exponents may be obtained from those of the
corresponding mn-component model by setting
n:=0. 'The connection between n =0 and random
models was derived by Grinstein and Luther' order
by order in perturbation theory, and they have
used this to obtain critical exponents for a number
of random models by using an expansion in powers
of (4 —d).

Evidently this derivation of Eq. (4.1) is much
simpler than perturbation theory. Moreover, the
result clearly can be generalized. For disordered
systems, it is necessary to average the free ener-
gy, although averaging the partition function is
often simpler. It is clear that by reversing the de-
rivati. on of Eq. (4, 1) one can always average the
partition function of an n-component model, dis-
cuss the properties for arbitrary n and finally let
n -0. This is true even when the averaging is not
of the form given in Eq. (4.1), for example, if
parameters in the Hamiltonian are random.

The excluded-volume problem is not random in
the same sense as the ~-component models of
Eq. (4.1) and its relationship to n =0 systems is
more special. In the excluded-volume problem,
the 6-function interaction in Eq. (2.12) has been
replaced by a random-single-particle potential as
in Eqs. (2.10) and (2.11). This can be done for any
system with two-body forces. " "thus, if 6» is the
correlation function for two quantities A and J3, it

is always possible to write Tr e ~"AB=ZG» as
the average of Z„t"~~ for some random model. This
is not the average of the correlation function GA~
because of the factor Z„, but in special cases
Z~G~~ may be the correlation function for a dif-
ferent model. This is what happens in the exclud-
ed -volume problem.

f(nT) =n&t&(r), (4.2)

with &t&(7) independent of n for large n For exam-.
ple, for the fourth-order Hamiltonian (1.1), f(t)
= (-,M)t' and it is necessary that nu is finite as n- ~, as is usually assumed. Equation (4.2) is the
generalization of this condition. To exploit this
equation, write t, =nT, in Eq. (3.4) and obtain

N

&exp -n y 7,. —7; i -n4, . 4.3

Now the saddle-point equations are obtained by
maximizing the exponent:

ae

aj, '

(4.4)

(4 5)

and 7; can be eliminated at once by substituting
Eqs. (4.5) into Eqs. (4.4) to obtain

(4 5)

The procedure now is to solve Eq. (4.6) for the |t&,

and then to find the 7,. from Eq. (4.5). These equa-
tions have a solution with tt&,

=
&t& and 7, = 7 for all i

and it will be assumed that this gives the maxi-

8. Largt:-n limit

The representation (3.4) makes it quite straight-
forward to determine Z„ for large n, since the
integrals over t, and &t&, may be evaluated by the
method of steepest descents. We shall find the
first two terms in the expansion in powers of n '.
In leading order, the free energy is that of a gen-
eral contrained m-component system. When the
unconstrained model is solvable, the freedom to
choose f(t) lea'ds to a wide variety of solvable mod-
els. These are of particular interest for tricriti-
cal phenomena. Special cases of the results which
we shall obtain have been derived by the renor-
malization-group method or by studying every or-
der of perturbation theory, '"but the integral rep-
resentation method is much simpler to use in gen-
eral.

In order for the large n limit to be well defined,
it is necessary that
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F„=N[y(g ) —vqj + C „(() (4.7)

and this is exact. Since the right-hand side is sta-
tionary with respect to variations of r and (r, the
magnetization per degree of freedom is

(4 8)

Here, H, =H = constant has been used in Eq. (3.5).
Thus M is the magnetization for the background
model, which may be Isi.ng for ~=1, or I-7 for
m =2, etc. It is now clear why it was necessary to
take H in the (1, 1, l. . . 1) direction in Eq. (3.1).
With the more usual convention of taking a field
n' 'H coupled to only one of the 5,. at each site, the
magnetization would have been n ' times the mag-
netization of C in a field n' 'H. For n-, this
would give the large H limit of the magnetization,
which is not proportional to e in. general. The
Gaussian model is an exception to this since C ~
is exactly quadratic in 0, and either assumption
for the field gives the same result.

Equations (4.4) and (4.5) are equations of con-
straint on 4 and, as shown by Fisher, " they lead
to renormalized critical exponents. If a, y, v

are the exponents of 4 for the specific heat, sus-
ceptibility and coherence length, respectively,
then, if H=O and the constraint does not induce
singularities, the corresponding exponents of +„
are

mum. " If there are two such solutions with equal
values of the exponent, there is a first-order phase
transition and there may be a two-phase region
with (P, -) taking different values in different re-
gions of space. When g and T are known, the free
energy per degree of freedom +„, is given by the
exponent in (4.3) when n - ~;

parameter 4, such as the crystal-field splitting
in the spin-1 model of Blume, Emery, and Grif-
fiths, "the system may have a tricritical point and
hence a first-order phase transition region. The
value of Eqs. (4.4), (4.5), and (4.7) is that they
are valid for the entire phase diagram and may
be used to study the approach to the tricritical
point from all sides. Applications to the BEG mod-
el" and metamagnets will be described in anothex
publication. "

—(r, —T)((, —g) + —p C, ,(g, —g)(g,. —(),

where

(4.10)

(4.11)

Here the subscripts zero indicate thermal averages
taken in the m-component distribution of Eq. (3.5)
with all g,. set equal to (.

If Eq. (4.10) is substituted info Eq. (4.3) the re-
sulting Gaussian integral. may be evaluated to give

C. Order n corrections

We now consider corrections to + when n is fi-
nite. To obtain order n ', it is necessary to ex-
pand the exponent in Eq. (4.3) about the saddle
point. Conditions (4.4) and (4.5) ensure that first-
order terms vanish and, to second order, the ex-
ponent is

(4.9)

= E„+—Tr in[1 + (p" (T)(:], (4.12)

m

This is true" for any m-component system with
n +O. If 4 were Gaussian, the renormalized ex-
ponents would be those of the spherical model, as
obtained by Stanley, "Ferrel and Scalapino, ' ~„'
and by Abe. ' When 4 is an Ising free energy, Eq.
(4.9) gives the results obtained by Aharony" and by
Rudnick, '

It should be emphasized that the derivation of
Eq. (4.7) for +„is not restricted to T& 7, and that
it also works for first-order phase transitions.
Thus, if either h(B, „) or f(t) depends upon some

where C is the matrix with elements C, , given in
Eq. (4.11). Equation (4.12) is correct to order n

Higher orders in n ' may be obtained systematicaL-
ly by including higher powers of (g,. —P) and (v, —7)
in Eq. (4.10) and expanding the exponential in Eq.
(4.3). In the special case that 4 „, is Gaussian and

g, (S,-) is quadratic in the 5, , it can be seen that C, ,
is the 5','~2 correlation function, and Eq. (4.12)
gives the result of Ferrel and Scalapino, ' who

showed that, in that case, &„ is given by Hartree
theory and the order e ' corr ection is the screen-
ing approximation. It is not surprising tha. these
two approximations are obtained by introducing the
integral representation (2.1) and making the ap-
proximation (4.12) since it was shown by Hubbard"
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that this is true for a fourth-order quantum me-
chanical Hamiltonian. In that case, the field did
not have many components and the approximation
required a different justification.

The extension of all of these results to a situation
where f is a function of several variables is
straightforward. It merely involves the introduc-
tion of an equivalent number of sets of variables
tc ~

Equation (4.12) may be used to obtain critical
exponents to order n '. A detailed evaluation for
the case that C is Gaussian a.nd g, (3;) is quadratic
has been given by Ferrel and Scalapino' and by
Abe. ' We conclude by indicating how the deriva-
tion of the specific-heat exponent + would go in
general and showing what has to be known about 4 .
For a translationally invariant system, C, , may be
diagonalized to C(q) by Fourier transformation and,
using this in Eq. (4.12) after differentiation with
respect to T to get the entropy S, we obtain

and Eq. (4.14) gives the first term in the expansion
of the exponent + in powers of n '.

1 —o.=l/(I —o. )+B/n. (4.15)

V, CONCLUSION

In general, it is necessary to know both the con-
stant A and some details of y(q/a) in order to eval-
uate B. These are known when 4 is Gaussian and
were used by Ferrel and Scalapino' and by Abe. '

The coefficient B might also be evaluated when

4 is the two-dimensional Ising model. By making
a Gaussian integral representation" of the ex-
change term, it can be rewritten as a continuous-
spin Ising model of the form (3.5) with m = 1 and

given by Eq. (3.2) withg, =ln2cosh2S, If

g, (R;) = S,', this term in Eq. (3.5) can formally be
absorbed into the exch.=:nge integral, and the free
energy found by using Onsager's solution. "

(4.13)

1 ~y'(q/a) q da.

2n ~ y(q/~) ~' dT' (4.14)

If this sum is turned into an integral and q is set
equal to Qz, the last term in Eq. (4.14) becomes

'dg/dT times an integral which usually has a.

logIt divergence. Then, using the scaling law
2 —a. =dv together with Eqs. (4.9), it follows
that z' '(dz/dT)loge is proportional to

" " 'Iog(T —T.„(

From Eqs. (4.9), the nonana. lytic part of S„ is of
the form A(T —T,„) " "I' when T is close to the
transition temperature T,„for n —.

We now assume a scaling form C(q) = q y(q/s) for
q small and 7 =T,„, where a is the inverse co-
herence length, y is finite at q=0, and the most
important temperature dependence resides in v.
Then, for A. &0, and small q, q" (T)C(q)»1, and
since y" (T) is assumed not to have a strong tem-
perature dependence,

~(T T )
z/(i- a

We have shown that, for a very wide class of
models, the use of integral representations con-
siderably simplifies the discussion of the pro-
perties of the system as a function of n. It en-
ables us to give a simple and coherent derivation
of a number of exact results without use of per-
turbation theory or the renormalization-group
method and to obtain a direct derivation of the free
energy as a series inn ' which is valid at all tem-
peratures and for first- and second-order transi-
tions. It is clear that this method has a number of
potential applications and, in particular, tricriti-
cal phenomena, coupled-order -parameter models,
and certain dynamical properties will be consid-
ered in forthcoming publications. "

No&e added in proof. After this paper had been
accepted for publication, Dr. M. E. Fisher in-
formed me that he had derived independently the
large n results of Sec. IV, using central limit
theorems.

ACKNOWLEDGMENTS

I have benefited from numerous discussions with
S. Krinsky and I am grateful to G. Grinstein and A.
Luther for informing me prior to publication of
their work on random models.

~Work performed under the auspices of the U. S. Atomic
Energy Commission.

~K. G. Wilson and J. Kogut, Phys. Bep. (to be published).
~B. A. Ferrel and D. J. Scalapino, Phys. Bev. Lett. 29,

413 (1972): Phys. Lett. A 41, 371 (1972).
3S. Ma, Phys. Bev. Lett. 29, 1311 (1972); Phys. Bev.

A 7, 2172 (1973).

4D. J. Amit and C. T. de Dominicis, Phys. Lett. A 45,
195 (1973).

5B. Balian and G. Toulouse, Phys. Bev. Lett. 30, 544
(1973).

6M. E. Fisher, Phys. Bev. Lett. 30, 679 (1973).
7P. G. de Gennes, Phys. Lett. A 38, 339 (1972).
G. Grinstein, Ph, D. thesis (Harvard University, 1973)



CRITICAL PROPERTIES OF MANY-COMPONENT SYSTEMS 247

(unpublished); G. Grinstein and A. H. Luther (unpub-
lished).

9R, Abe, Prog. Theor. Phys. 49, 113 (1973).
H. E. Stanley, Phys. Bev. 176, 718 (1968).

~~V. J. Emery (unpublished).
S. F. Edwards, Proc. Phys. Soc. 85, 613 (1965).

~ B. P. Feynman, Rev. Mod. Phys. 20, 267 (1948).
i4D. J. Wallace, J. Phys. C 6, 1390 (1973).
~5A. Aharony, Phys. Rev. Lett. 31, 1494 (1973).

J. Rudnick {unpublished) .
~7G. A. Baker, Jr., Phys. Bev. 126, 2071 (1962).
~8This method of finding an integral representation for a

fourth-order term has also been used by R. Balian and
G. Toulouse, Ann. Phys. 83, 28 (1974).

~9J. Hubbard, Phys. Bev. Lett. 3, 77 (1959).
E. Helfand and J. S. Langer, Phys. Rev. 160, 437
(&967).

2~M. E. Fisher, Phys. Rev. 176, 257 (1968).
Renormalization requires the J.eading term in the free
energy to be (T —T~) ™,i.e., e~& 0.

23M. Blume, V. J. Emery, and R. B. Griffiths, Phys.
Rev. A 4, 1071 (1971).
L. Onsager, Phys. Bev. 65, 117 (1944).


