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The theory of excitons for the range intermediate between the Frenkel-Peierls and the Wannier-Mott
models is formulated in terms of the band structure E„(k) and the Coulomb and exchange integrals
involving the Wannier functions of the valence and conduction bands, When the band structure is that

appropriate to solid rare gases and alkali halides, the problem simplifies greatly if the electron and the
hole can be assumed to be confined to the same unit cell. Taking full account of the symmetry, the
problem in this case reduces to the diagonalization of a simple second-order Fredholm determinant.
Numerical calculations are performed for the lowest transverse and longitudinal exciton states of solid

argon. The Wannier function for the valence bands is replaced by the 3p atomic orbitals, and that for
the conduction band is computed by approximating the Bloch functions with an orthogonalized plane
wave. Very good agreement with experimental results is obtained for the lowest exciton doublet. The
doublet splitting and the relative intensities of the two peaks are computed in terms of the ratio of the
exchange integrals to the spin-orbit splitting of the valence bands. The conclusions are extended to the

other solid rare gases.

I. INTRODUCTION

Exciton states have been investigated by solid-
state theorists for a long time, and excitonic
spectra have been observed experimentally in a
large number of materials. ' From the theoretical
point of view, the Wannier-Mott picture, based
on the effective-mass approximation, has been
most successful in describing weakly bound exci-
tons in semiconductors with a high dielectric con-
stant. The agreement with experiment has been
improved by including effects due to anisotropy,
band degeneracies, ' and central-cell corrections'
in this theory. The Frenkel-Peierls model, on
the other hand, is appropriate to tightly bound ex-
citons, and has proven useful for molecular crys-
tals.

In the region of intermediate binding, which
covers the lowest exciton states of most compounds
and all large-gap insulators, one must take into
account the structure of the valence and conduc-
tion bands throughout the Brillouin zone. To this
aim, an approach based on the integral-equation
formalism has been suggested recently, 7 and pre-
liminary calculations performed for solid argon
provided encouraging results.

The solid rare gases constitute indeed an ideal
test ground for theories of intermediately bound
excitons. The excitonic spectrum has been investi-
gated experimentally in great detail, by optical'
and electron energy-loss techniques, and the ob-
served structure can be qualitatively ascribed to

two Rydberg series separated by the valence-band
spin-orbit splitting. " There was an attempt by
Knox" to apply the Frenkel-Peierls model to solid
argon, but because of the large overlap of the 4s
atomic functions this approach proved inadequate.
On the other hand, although the classification of
exciton lines has often been made according to the
effective-mass scheme, this approximation failed
to produce quantitative agreement. Hermanson'
attributed the discrepancy to the presence of cen-
tral-cell corrections in the electron-hole interac-
tion and computed their effect by pseudopotential
theory. Rossler and Schutz' improved these cal-
culations, and extended them to solid argon. Their
results for the lowest excitons are in good agree-
ment with experiment. However, it should be no-
ticed that the calculation of the screened exciton
pseudopotential (and of its matrix elements between
oversimplified Wannier functions) is very schemat-
ic. Furthermore, the neglect of the spin-orbit
splitting of the valence bands and of their exchange-
induced mixing, which has a large effect on the
ground-state wave function (as discussed in Sec. V

is not justified and cannot account for the doublet
nature of the lowest exciton lines and their relative
intensities.

It is the purpose of the present paper to extend
the integral-equation method which we presented
in Refs. 7 and & and to apply it to the fundamenfai
absorption edge of solid argon. The key approxi-
mation is to assume that the electron and the hole
are confined to the same unit cell, as suggested by
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the fact that the Bohr radii of the n= 1 excitons'
are smaller than the nearest-neighbor distance.

It is then possible to solve the integral equation
for the exciton eigenvalues and eigenstates very
easily and without adjustable parameters. The in-
put of the calculation is a knowledge of the band-
structure features and of the properties of the con-
duction and valence Bloch functions. It is shown
that the energies of the exciton states depend on in-
tegrated quantities such as the Green's function

G„,„.(E) and the Wannier functions a„(r), and they
are not very sensitive to the details of the band
structure. The Wannier function for the conduction
band is computed by assuming that a single orthog-
onalized plane wave contains the salient features
of the conduction Bloch functions. The Green's
function is computed by interpolating the band struc™
ture mith a three-term tight-binding formula, the
parameters being determined by the effective mass
at I' and the band energy at X and I . Since me now

consider explicitly the nonspherical components of
the conduction Wannier function in the computation
of Coulomb and exchange integrals, and we use ari

accurate description of the entire band structure in
the Green's function, we obtain good agreement
with experiment for the position of the exciton dou-

blet, for the splitting, and for the relative intensi-
ties of its two components. The latter tmo quanti-
ties are shown to be strictly dependent on the ratio
of the exchange energy to the spin-orbit splitting
of the valence band, and this allows an interpreta-
tion of the doublet separation and intensities in the
whole family of solid rare gases.

The results obtained will allow us to conclude
that the integral-equation approach is a viable ab
initio procedure for the computation of exciton
states in the intermediate-binding regime.

In Sec. II we briefly recall the general method
and discuss the approximation to one cell of the
crystal. In Sec. III we derive the simplified equa-
tions for the optically relevant exciton states in the
case of the specific band structure of solid rare
gases and alkali halides and in the one-site approxi-
mation. In Sec. IV the computation of the Green's
function, of the Wannier functions, and of the Cou-
lomb and exchange integrals occurring in the eigen-
value equation is described. In Sec. V the lowest
exciton states of solid argon are obtained and the
dependence of the results on the details of the band
structure and on the value of the exchange integral
is discussed. Finally, in Sec. VI we compare the
results to experiment, dram some conclusions, and
sketch lines of future progress.

II. GENERAL FORMULATION AND ONE-SITF.
APPROXIMATION

We now briefly summarize the procedure of cal-
culation of exciton energies and wave functions in

the case of intermediate binding. The procedure
has been described in Refs. 7 and 8 and has been
termed the "integral-equation method" because it
attacks the basic integral equation of the exciton
problem. The method is very similar to the
Green's-function approach of Takeuti but it allows
a better analysis of the relevant approximations and
is extended more naturally to the case of degenerate
bands.

We start by expanding the exciton state l 4', ), with
crystal momentum q, in the basis of Slater deter-
minants with an electron shifted from the valence
band state Ivk ) to the conduction state ick+ q ),

~4'g)= P g A,„(k)~vk, ck+q)
CV

where the ket on the right-hand side denotes the
Slater determinant, and the indices c and v contain
the spin functions. The Schrodinger equation yields
the following integral equation for the expansion
coefficients A,„(k):

[E,(k+ q) —E„(k)—E]A,„(k)+Q P A,... (k')
C V

x U,„,„.(k, k', q) = 0,
where the kernels are

(2a)

rt

+ d~, d~, e,*(k+ q, ~, ) e„. (k', ~,)

2

x —@,,(k'+ q, 7'z) 4'„(k, r&)
+12

(2b)

and the integrations include summation over the
spin variables.

The symmetry of the exciton states can be im-
posed from the beginning by choosing appropriate
combinations of Slater determinants which have the
full symmetry of the wave vector q. The kernels
will then involve combinations of terms of the type
(2b); in each of them the sum on the spin variables
can be immediately performed and we are left with
combinations of space integrals. %'hen spin-orbit
effects are considered, the total spin part cannot
be separated from the total space part, and we do
not have two separate kernels for singlet and triplet
states, but S= 0 and 8= 1 are mixed.

It is important to point out that screening effects
are not included in Eq. (2). One can introduce an
appropriate screening function according to the pre-
scriptions of several authors. This corresponds
to replacing e /x&2 withg(x»)=e /e(r, 2)x,z in the
denominators of Eq. (2b), where the function e(~»)
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varies between 1, when r&2-0, and co, the static
dielectric constant of the crystal, for large r».

In order to solve Eq. (2a), it is most convenient
to expand the Bloch functions appearing in Eq. (2b)
in terms of the Wannier functions localized on the

lattice points R,

a, (r- R) = N "g kid, (k, r) e '"'

The kernel is then written

U „...(k k', s()=— g a """ ' (ll. ..S. ..ff drsdrsas(rs —R)as (rs —R)d(rss)a, , (r, —R')a (rs)
W

R, R'~R''

+5, , 5. .. ~ dr, dr, a(r, —R)a„*.(r, —R")g(~g,)a,.(r, —R')a„(r,) e e'
j a

(4)

On the basis of arguments discussed in detail by
Horie, "we retain only the dominant contributions
to Eq. (4), namely, the following Coulomb and ex-
change integrals:

(RS)) ff=drsdrsa (rs.-"R)a.';(rs)d(r»)

x a,. (rq —R)a„(r3),

J,(R) = dr~ dr2a, (r, )

x a„*.(rz —R)g(x~2)a, ,(r2 —R) a„(r&) s (6)

ds(R)=f drsdrsa, (rs —R)

x a„*.(rR)g (x»)a;(r2 —R) a„(r,)

We further introduce the Fourier transform of
A,„(k) at the lattice point R,

A,„(R)=g A.,„(k)e '"'

and we easily transform (2a) into

A „(Ro)+g g A a ~ (R) —5 5,Q(R)
c v

J' Ql 8 ~0

R'gO

+ J2(R)
i

G,„(E,R()- R) = 0,
j cv, c'v &

(9)

where

e f ko (Ro-8)
Gq„(&, Ro- R)=N 'Q

E,(k) —E„(k}-E

is the Green's function for the c-v band pair, and
we consider only the bound states for which E
AE, (k) —E„(k).

The system of linear homogeneous equations (9)
admits nonvanishing solutions in correspondence to
the zeros of the determinant formed with the coef-
ficients of the A (R). This is the Fredholm deter-

minant of integral equation (2) and its order is equal
to the number of A,„(R) different from zero which
have to be considered. It is clear that this method
is suitable when this number is small, i. e. , when
the number of interacting bands is small and the
function A (R) is localized in space.

The one-site approximation is introduced by as-
sumingA, „(R)=0 if R 40, i. e. , by assuming that
the electron and the hole are in the same unit cell.
This approximation does not reduce the problem to
a calculation of atomic excited states, because very
important solid-state effects are present in Eq. (9)
through the Wannier functions and the Green's func-
tions, which contain the full band structure of the
crystal. The one-site approximation in solid argon
is justified by the very localized nature of the lowest
exciton doublet. A reasonable estimate of the ex-
citon size is provided by the pseudopotential calcu-
lation of Ref. 12, where the 1s-like wave function
is characterized by a Bohr radius smaller than the
nearest-neighbor distance. It should be noticed,
furthermore, that this calculation probably over-
estimates the matrix elements of the Coulomb in-
teraction between different centers, and therefore
the size of the exciton, because of the long tail and

great overlap of the approximate form chosen for
the Wannier functions. This effect may also reduce
the computed size of exciton states in krypton and
xenon, and therefore justify the one-site approxima-
tion also in these cases, although the pseudopoten-
tial calculations" indicate convergence of the low-
est eigenvalue only when the wave function extends
over a few cells. A verification of the validity of
the approximation in these latter cases, however,
would be achieved by actually including the nearest-
neighbor shell in Eq. (9) and thus explicitly checking
the convergence of the eigenvalues. In the present
paper we shall confine our quantitative analysis to
argon, where a further confirmation of the validity
of the one-site approximation will be found in the
excellent agreement of the computed longitudinal
and transverse exciton eigenvalues with experiment.

Once the one-site approximation is introduced in
Eq. (9), the summation over R is dropped, and the
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FIG. 1.. Schematic band structure typical of solid rare
gases and alkali halides. The states are classified in the
notation of the double group and the spin-orbit splitting
4 at the top of the valence band is explicitly indicated
{not to scale) .

structure of the system of integral equations is de-
termined by the number of valence and conduction
bands considered and by their symmetry proper-
ties. To obtain explicit expressions, which can be
actually computed in cases of interest, we must
specify the band structure and take full advantage
of symmetry.

III. BASIC EQUATIONS FOR SOLID RARE GASES
AND ALKALI HALIDES

Let us consider the cases of solid rare gases
and alkali halides, for which the structure of the
lowest conduction band and of the highest valence
bands is shown in Fig. 1. To proceed in the solu-
tion of our problem, we have to determine the
properly symmetrized basis states for the expan-
sion of the exciton functions. The exciton states
result from the coupling between the twofold de-
generate I 6 electron states and the spin-orbit split
I"8 and I 6 hole states, fourfold and twofold degen-
erate, respectively, and therefore they belong to
the irreducible representations contained in the di-
rect products:

In Appendix A all the 'resulting exciton wave func-
tions are written explicitly. However, we will con-
sider here the eigenvalue problem for the I"15
states only, because they are dipole allowed and
therefore are the only states which can be excited
in optical experiments.

For any row of the I'» irreducible representa-
tion, Eq. (9) becomes a 2&& 2 system which couples
the two I"» states originating from I', and I"6 as in-
dicated in E(l. (11). In this system, q(R) and J~(R)
appear only for R=0. For this value of R, the
overwhelming contribution to the integrals, as dis-
cussed in Sec. IV, comes from the regions of large
overlap between the atomiclike valence Wannier
function and the very localized spherically sym-
metric component of the conduction-band function.
An estimate of e(r~z) based on the random-phase-
approximation (RPA) calculation of Fry~' shows
that e(r~2) approaches exponentially its value for
large r», 1.66, with a characteristic length of
about 2 a. u. Considering that, owing to the large
overlap of the Wannier functions mentioned above,
screening effects are expected to be small, we as-
sume e(r, 2) = 1. It should also be noticed that RPA
breaks down for distances of the order of 1 a.u. ,
and that any reliable calculation of e(r, 2) in this
range would make the numerical evaluation of Eqs.
(6) and (7) unmanageable.

On the other hand, the integrals J~(R') appear
only for R & 0, and, in agreement with the preced-
ing discussion, we can replace e(r, z) by eo =1.66 in
their evaluation. In the q- 0 limit, the summation
over R can be performed exactly if one considers
only the dipole-dipole term' in the multipole ex-
pansion of J, as defined in E(l. (6). This polariza-
tion term, first introduced by Heller and Marcus, '
is different for longitudinal and transverse ex-
citons, and we denote it D, and D„respectively.

With the basis functions of Appendix A we can
finally evaluate the spin summations in Eq. (9) for
the I'» states. As a result we obtain that, in the
one-site approximation, the solutions are given by
the equation

1+[-,' (J+D,) —q] G, (E)

—p v2 (J +D;)G6 (E)

—
g v2 (J+D;)GB (E)

1+ [-', (J+D, ) —qj G, (Z)
(12)

where

2

q= f dr, dr, a", (r,)(;(r,) r, (r,))rr(rr),
1 r12 1

2

dr1 2 z' 1~X 2 z' 2 ~X 11 y'12 I

and the polarization term is given by

(14)
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D =

with

D~ = (8&/8&0) +OP x

for transverse
excitons q J. p, ,
for longitudinal

excitons q ~~ p,

E,„(k) =E,(k) —E„(k) —Ec . (19)

In order to reproduce the salient features of E,„(k)
in a simple analytical form, suitable for a fast
computation of Eq. (18), we use a three-term tight-
binding interpolation formula:

x e drQI r x~x r

no being the number of atoms in the unit volume.
Furthe rmore,

At this point, we undertake the task of evaluating
the quantities entering Eq. (12) for the specific
case of solid argon, in order to be able to compute
the energy of the exciton states. Our aim is not so
much a calculation which includes the fine details
of the band structure, but a calculation which takes
into account the basic features of the band struc-
ture and of the Bloch functions throughout the Bril-
louin zone. The eigenvalues of Eq. (12), in fact,
depend on E(k) and on the Bloch functions through
integrated quantities only, as already pointed out.

I et us now consider the Green's function G(E).
It is convenient to rewrite G(E) as a function of the
binding energy E~=-E, —E, E~ being the energy gap:

G(E,) =X ' Z
b cvk + b

with

(18)

G (E) = N Q IE, (k) —E (k) —E], (17)

an analogous definition holding for G6-. We have
labeled the energy bands with their symmetry at
k= 0, and the Wannier functions according to Ap-
pendix A.

We can gain some physical insight by looking at
the structure of Eq. (12). If one ignores the off-
diagonal elements for a moment, the energy sep-
aration of the two eigenstates is mostly contributed
by the spin-orbit splitting & of the hole states,
which enters Eq. (12) through the Green's func-
tions. A small correction is introduced by the ex-
change terms. The cor respondence between ex-
citons and hole states is altered by the off-diagonal
terms, which mix the two pole channels. It is
worthwhile to point out that in theone-site approxi-
mation the Coulomb interaction between the elec-
tron and the hole does not mix the two excitation
channels. Therefore the exchange term alone is
responsible for the anomalies in the splitting and
the intensity ratio of the two peaks, and such anom-
alies are more important as the ratio of (j+D,) to
~ increases.
IV. CALCULATION OF GREEN'S FUNCTIONS, WANNIER

FUNCTIONS, AND COULOMB AND EXCHANGE
INTEGRALS FOR SOLID ARGON

E,„(k) =8(E,+E, +E,)

Ep(cosx cosy + cosy cosz + cosz co sx)
—E,(cos2x+ cos2y+ cos2z)
—E,(cos2x cosy cos&+ cos2y cosx cosz

+ cos2z cosxcosy), (20)

xen-o aeBZ
(21)

which can be computed exactly for the fcc lattice.
This function is then orthogonalized to the core and

with x =k„a/2, y = k, a/2, z =k, a/2, a being the lat-
tice parameter. The three parameters Eo, E~, E~
are determined by the conduction-band effective
mass ' at k=0, and the calculated values of

E,„(k) at the 4'and L points, namely, '~'~'

m*(I') =0.48mo

and

E,(X) =2. 89eV, E,(L) =3. 29eV,
to which an average valence bandwidth (0. 8 eV)' is
added to obtain E,„(k). The value of the spin-orbit
splitting of the valence band at I', & =0. 18 eV, is
taken from the band-structure calculation of Ross-
ler, and is close to the corresponding atomic va1. —

1lb 20

The Green's function G, (E) is plotted in Fig. 2,
together with two more crude approximations, in
which "the ba.nds are approximated by a free-elec-
tron-like formula, the effective mass being taken
as the computed value at I' or so to give the correct
value of E (k) at L. As one can expect, the func-
tion corresponding to Eq. (20), which fits both the
correct mass and the bandwidth, lies in between
the two spherical approximations. The importance
of fitting both effective mass and bandwidth is self-
evident from Fig. 2.

Let us now turn our attention to the Wannier func-
tions and their matrix elements Q, Z, and p,». The
Wannier functions of the valence bands for solid
argon can be replaced by the 3P atomic functions,
as obtained, e. g. , in analytical form by Watson
and Freeman, ' because they are very localized and
the overlap between neighboring sites is negligi-
ble. On the other hand, this is not the case for
the 4+ atomic functions, and we must resort to an-
other technique to obtain the Wannier function for
the conduction band, ar, (r).

Following the method suggested by Miasek, ~ we
start from the transform of a set of plane waves



RS. SOLID A«LA TORS:LARGE -GXCITONS IN 2357

0.

\

LLI

I 0.3
C9

0.2

Green's func-FIG. 2.
uted(E ) as computei.on G8- y

c«reb flttlngban-
lc ulatio ns

a free-e ec
imation, wilike approxim

an effective mass deter-

(dash-dotted line or
tive mass at t e

edge a(dashed line) .

O. I

I

3
Eb

T
5

as well'ons on the origin site a

'4
( A d ).

e ansion coefficients ar
hod an ion is

hb dMore distant neigpan sion.
with second neig

f ll th

a
i ed terfunc tion thus obta'

' s of Wannier u1't properties oona iy
'

h the nodal stru
1'zation to the lo

Wit

ls of the same site.
itin from e

exchangeIn order to compu

13) and (14) in ained in Eqs.
annier

inc
d t'o -b dW

' htforward way,
ansion in cu '

with the proce
'ons of I',bte rais e w

he function ra
d 110]di tio

rmonic expansion an

11 t '
th

sp
es fairly werg

f the nearest atomic
As it iS to be pex ecte,

herical symm yetr of etro s the sp

Notice t e
shows a comp

uted by Knox. N4~ atomic ufunction compu e
s~~ near the oriigin and thee of the nodes n

function.str onger localization o

0.7.;

0.4—

0.2—

-0.2—

-0.4—

-0.7—

Wannier func-FIG. 3.
h Ar conductiontion of t e

ra (r) along the
I. d )[110]direction (so i

ared with an expan-
d

l h.....sion. in spherica
=12 (dash-dot-ics up tol=

d l' e) and with itste jn
metrics herically symmp

compon. ent a

0 5
r (a.u. j

9 IO



2358 ANDREONI, ALTARE LLI, AND BASSANI
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The expansion of ar, in cubic and therefore spher-
ical harmonics~4 allows us to decompose Q and 8
in separate contributions from each angular mo-
mentum component of the conduction-band function.
They are listed separately in Table I, to show the
convergence of the integrals with increasing l quan-
titatively. More than 91 and 99%%ua of the values of
Q and J, respectively, as associated with the s
component alone, which, owing to its strong locali-
sation (see Fig. 5), overlaps greatly with the 3P
function. The integrals ar e therefore dominated by
the small-r» region, thus justifying our neglect of
screening effects for R= 0. In Table I the value of
the parameter no p.~, occurring in the dipolar term
D;, is also given.

V. EXCITON SPECTRUM OF SOLID ARGON

We can now use the parameters computed in Sec.
IV and the Green's function of Fig. 2 to solve Eq.
(12) for solid argon. The values of all the quanti-
ties of interest are listed together in Table II for
convenience. In Table IH the energies of the lowest
1"~, excitons (n = 1 in the conventional effective-
mass notation) are given. The longitudinal and

transverse modes are obtained inserting D, or D,
in Eq. (12). We defer the comps, rison of these the-
oretical results with experiment until Sec. VI. In
Table III the relative contributions of the I'8
and I"6 —I'6, band edges to the two transverse ex-
citon eigenfunctions l A., '

I and I A. , '
I are also

given.
The results of Table III indicate a considerable

admixture of the two hole states induced by the ex-
change interaction. As a consequence, the splitting
of the two states differs from the spin-orbit split-
ting of the valence band and the intensity ratio is
different from 2: 1. It is easy to obtain for the in-
tensity ratio the expression

I 1+ l A' '
I —2%2 A' 'A'

Ig 2 —
I A. ' '

I +2v2 A' 'Ai

[Notice that A'8 'A'~ '& 0 with our choice of the
basis functions, Egs. (AV) and (A8). I Equation (22)
shows how strongly the intensity ratio can be modi-
fied by the admixture of the two excitation channels.
This effect has been discussed by Onodera and
Toyozawa within the framework of the effective-
mass approximation.

0.6—

0.2

0.0

-0.2

FIG. 5. Spherical con-
tribution to the %annier
function compared with
the 4s atomic Ar function

$4, as computed by Knox
in Ref. 26.
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0 4 6 10 Total

TABLE I; Values (in eV) of the Coulomb and exchange
integral, s Q and J for solid Ar, and contributions from
the different angular momentum components. Also shown
is the value of the quantity nop, „(in eV), entering Heller
and Marcus's expression. {Ref. 16) of the dipolar sum.

TABLE III. Theoretical and experimental values of
the exciton binding energies E&=E~ —E in solid argon {in
eV), and wave-function admixture coefficients. The bind-
ing energies are obtained assuming a band gap of 14.16
eV (Haensel et a/. , Ref. 9). The theoretical relative in-
tensities of the two transverse excitons are also given.
in the bottom row.

J
2

~o~x

5. 312 0. 117 ~ 0, 286
0. 204 4x10 4 Bx10 4

0. 016

0. 082
2x10 4

0, 005
-10-'

5. 802
0.205
0. 016

r&&(2)t I'&
&

(2)L

In order to better understand the dependence of
the doublet splitting on the relative magnitude of
the exchange interaction and on the spin-orbit sep-
aration of the valence bands, we plot this quantity
in Fig. 6 as a function of the ratio

q = 2(J+D, )/6, (23)

the other parameters being those appropriate for
solid argon and discussed above. It can be noticed
from Fig. 6 that the splitting is practically un-
changed as long as g& 1, but is rapidly increasing
with q for g& 1.

In Fig. 7 the intensity ratio I~/I2 is also plotted
as a function of q. It is interesting to notice that
even in the small g region, where the doublet split-
ting is unchanged, the intensity ratio is strongly
dependent on g. For g = 0. 3 the two peaks have the
same intensity. For p& 2, only the second peak is
observable, because the first is essentially a trip-
let state. This explains the lack of doublet struc-
ture in the spectrum of Ne, where the spin-orbit
splitting is much smaller than the exchange in-
tegral.

The general behavior shown in Figs. 6 and 7 does
not depend greatly on the other parameters of the
band structure. Quite similar curves can be ob-
tained by varying Q an6 the width of the valence and
conduction bands. Therefore, the qualitative con-
clusions obtained here can be extended to the other
rare gases. It is then easy to understand why,

going from argon to krypton and to xenon, the rela-
tive intensity of the second peak decreases and ap-
proaches the ratio 1:2 as the spin-orbit splitting
increases with atomic number.

E&(theory)
Eb(expt. )

IA,- I'
Relative
intensity

2. 12
2. 16'
2. 06'
0.696
0.304

1, 84
1, 86~

1.81b

0. 304
0. 696

6. 5

2. 10
2.11'

1.65
1.70'

~G. Baldini, Ref. 9.
R. Haensel, G. Keitel, E. E. Koch, M. Skibowsky,

and P. Schreiber, Ref. 9.
'O. Bostanjoglo and L. Schmidt, Ref. 10.

2.0—

1.8—

conclusions.
(a) A formulation of the exciton problem suitable

to deal with intermediate binding is derived, in
which the energy bands E„(k) enter explicitly, and
the full electron-hole interaction is computed from
Wannier functions. Longitudinal and transverse
excitons of given symmetry can be obtained as so-
lutions of simple Fredholm equations which depend
on easily computable integrals. The problem is
greatly simplified if the electron and the hole can
be assumed to be confined to the same cell. The
exciton energies can then be obtained in terms of a
few parameters which can be computed from first

VI. CONCLUSIONS

We briefly summarize the results obtained in the
previous sections in order to draw some general

l.2—

TABLE II. Values (in eV) of the energy parameters
entering Eq. {12)and of the spin-orbit splitting D. The
latter is taken. from the band-structure calculation of
Ref. 17 .

0.8
0

I

0.5
I

I.O
q/6,

I

l.5 2.0

5. 802 0. 205

D,

—0. 040 0. 081 0. 18
FIG. 6. Separation of the exciton doublet DE as a func-

tion of g =2(J+D)/A. Energies are in units of the va-
lence-band spin-orbit spl. itting.
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2.0

l.5

CU
M

0.5

I

0.5 l.o
q/6

l.5 2.0

FIG. 7. Intensity ratio I& /I2 (see text) of the exciton
doublet as a function of =2(J+D)/D. The quantities Q
and G(E&) are those appropriate to solid Ar and discussed
in the text.

principle s.
(b) The calculations performed for solid argon

show that the one-site approximation is fully justi-
fied in this case. This is because the Wannier
function of the conduction band is much more local-
ized than the corresponding 4s atomic function.
The agreement between theory and experiment (Ta-
ble III) which was obtained in this case is remark-
ably good, particularly when one considers that this
is a completely ab initio calculation with no adjust-
able parameters.

(c) The separation and the relative intensities of
the lowest longitudinal and transverse exciton dou-
blet (the two n= I excitons, in the Wannier-Mott
picture) are completely understood in terms of the
ratio of the exchange interaction to the spin-orbit
splitting of the valence band.

The higher exciton states could also be computed
by the present method, but an extension to a few
neighboring cells would be required. The approach
would converge, for higher and higher excitons, to
the effective-mass approximation. Probably, the
latter method would give satisfactory results for
n= 2 a1.ready, at least as far as the energy eigen-
value is concerned. However, whatever agreement
can be found between the n=1 effective-mass eigen-
values and the lowest exciton states is completely
fortuitous, because the present calculation shows
that the exciton radius is of the order of the unit-
cell dimensions. There is therefore a strong cor-
relation with the lowest atomic doublet, but with
very important solid-state effects, which are ex-
plicitly taken into account in our calculation.

We believe that the results obtained indicate that
a full understanding of the excitonic structure of the
whole family of solid rare gases is at hand. A cal-

culation of the Wannier functions has to be per-
formed for Ne, Kr, and Xe, but it is already pos-
sible on the basis of Figs. 6 and 7 to correlate
qualitatively some properties of the lowest doublet
to the spin-orbit splitting and therefore to atomic
number. As the overlap between atomic functions
becomes larger, it may be necessary to use differ-
ent methods of calculation of the Wannier function
of the valence bands, such as the one advocated by
Kohn, and to go beyond the one-site approximation.

A further problem to which the present approach
is applicable is that of core excitons which are pro-
duced by synchrotron radiation; this will be dis-
cussed in a separate paper. In this case the core
wave functions are more localized and the one-site
approximation is even better justified.

Extensions to other materials, such as the alkali
halides, are also possible. It is worthwhile to
notice that the "transfer model" would be included
in the one-site approximation, as the anion and the
cation are in the same unit cell. In these materi-
als, however, more attention should be paid to
screening effects, which are more complicated than
in rare-gas solids.

ACKNOWLEDGMENTS

In the Wannier representation, any direct exciton
wave function in the one-site approximation can be
written as

NC N~

I @", o) =+Q A, „(0)l c, v, 0); 0
C=1 9=1

(AI)

where the ket represents the Slater determinant
corresponding to the excited state of the N-particle
system, where an electron in the Wannier state
a„(r) has been excited to the Wannier state a,(r) lo-
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It is clear that an individual exciton wave function
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direct product of the irreducible representation of
its component, namely,

~exe ~e +~h ~ (A2)

Then, we have to determine the irreducible repre-
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r, xr', = r,'+r» .
(A3)

In order to obtain the corresponding wave functions,
we have simply to know the generalized Clebsch-
Gordan coefficientss e",'„' in the general expansion

sentations. contained in the product (A2), and then
the symmetrized exciton basis states transforming
as the rows of such representations. The electron-
hole couplings decompose in the following way:

I Xl) =gg &",', „'I c, v, 0),
c=i v=1

(A4)

where ~ and l label the irreducible representation
and its lth row, respectively.

In the following we substitute the Slater ket in
(A4) with the product of the excited electron state
and of the hole state, since the two-particle repre-
sentation is completely equivalent to the many-body
representation, as one can see in detail in Ref. 33.
We obtain the following exciton basis states: From
the coupling I"8 —I"~

I I I vS
~dg) =~~ 2 ~~ (P. iJP, )P—&r, P+

2
—

~~ (P„iP,)c( —— P,P ape

Ws I
-~6 (P, + J,)P+ 2P,«,P +2 ~2- (P.+ P, )

i I I Ws
~Za)=~~

p ~~ (P„-iP )Par, p r
p

-i-(P. -(P,)a - -P P)a. ,a

vs I
(p, +rp„)P+ p, a a,,P -p ~—

p (p. r(p, )n)a, ,a

1 I I
ipr)= ~ ~ (P„-iP, )par a -~g((P. r(P„)aa, ,p (A5)

for I'z-5,.
i I

vY W6
I

I
P P)a rp+( ~(( (P +rP )P+ pz&l~r~ag (A6)

i 1 Iilla)=~ ~ (P, —iP„)pa, a+~2 (P„+ip,)aa, ,p)

/for I',p,

~3iz) =ip —
~p (P, —iP„)P a, ,p+

~
—

~p (P, —iP, )a —
p

P.P)a, ra

1 1 &3
+2 — (pz+ip„)p + Pz& &r~P —

2 ~ (Pz+iP))&'l&r~o'

I Y) =~2 —
2 ~2 (p„—ip, )p argP+2 —

~2 (P„-ip„)n —
3 Pzf31&r, c(x g 3 g )

I I I
(P, +rp„)P + P, n a, ,p+ ~~ (p, +rp„)a)a, ,a

W2 1 . v2
IZ)= —

~~ (P, —iP)™— Pparrp-
p

—~ (P.rrP„)pr P,a)arra

for I'i, . From the coupling I'6 —I"6

I I I I I
l () = ~ —~ p li+~ (p„—ip )a a ra+ ~P,a r~ (p, rip„)P)a rp

i I I I I
in)=-~q -~qppr~q (P, -iP)a a„,a — ~qPar~q (P, +iP)P)arp,

I I I I I I
I() = —~ —i= P,P+~ (P„—iP„)n a rp+~ ~p P, a+~& (P„r(P„)P)arra

(Aa)
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for Ij5~

i 1 . I 1 . 1(t)=~2 ~i (P, —iP)a ~~ P, (( -a, ,(+ ~i (0„+(P)i(+~~Pa)a,,,a (A9)

for I"15
In all the above expressions, (A5)-(A9), the

functions p„, p„, p, are Wannier functions trans-
forming as the rows of the I'» representation and

ar is the Wannier function transforming as the I'1
representation of the simple cubic group. The spin
functions (o) and (~) are denoted by o. and P, respec-
tively.

APPENDIX B: CALCULATION OF THE WANNIER
FUNCTION OF THE LOWEST CONDUCTION BAND IN Ar

a(r) = X(r) -g 8„,(0)p„,(r) —Q C„,(R)O„,(f )
n=1 n=l,

-Q C (, (R)C ~(r), (Bl)

where

x(r)=(XMn, )
' P e'"',

bor approximation, the Wannier function (of I'&

symmetry) assumes the following form:

We follow the method suggested by Miasek to
compute the Wannier function corresponding to the
conduction band, from Bloch functions approximated
by a single plane wave orthogonalized to all the core
and valence states of argon. In the nearest-neigh- and

TrcB Z

12

C„,(r) = ~2+ (t)„,(r —R),

C „~(r) =~ ([P„„(r—R, ) + P „(r- R4) + (t) „(r —Rz) + g „„(r-R, ) —(t)„„(r—R~o) —P „(r —R, ) —(t „„(r-R())

(r Ru)] + [(t (r Rf) + (t) (r R/Q) + y (r R3) + (t) (~ R6) (t (r R4) y (r R )

)i(r R12) 0 )((r RS)] + [4 (r R2) + 0 *(r R1&) + 0 ()(r Rs) + 0 (r R12) 0 (r Rg)

-y.,(r-R, ) -y„,(r -R,) -y„,(r -R,)]}, (B4)

with x(r) =-g g;(~)&,(~), 4 ), (BGa)

R, =-,'a(1, 1, O), R, = -,'a(l, I, O),

R& ———'a(1, 0, 1), R = —'a(1, 0, 1),

Q = -'a(0, 1, 1), R = —,'a(0, 1, 1),

R„„=-R„. (B5)

In Eq. (Bl) B„,(0), C„,(R), and C„~(R) are the over-
lap integrals between the x(r) function and the s-
core atomic functions (t)„,(r) and the symmetrized
combinations (B3) and (B4) of s- and p-core wave
functions, respectively. In our case A = iRI =7, 10
a.u. In E(l. (B2) Qo is the volume of the unit cell
in the fcc lattice, and, finally, in Egs. (B3) and
(B4) b„, and b„~ are normalization constants.

In computing the orthogonalization coefficients
C„,(R) and C„~(R) we expand the functions (B2),
(B3), and (B4), all of I"

& symmetry, in cubic har-
monics, namely,

C „„„„(r)=g e","")(r).Z, (S, y). . (BGb)

The expansions were truncated at i = 6, after veri-
fying that very good convergence was achieved. The
coefficients g;(v) were computed following the six-
terms Houston method, as appliedby Miasek, after
invertingthe cubic harmonics matrixby computer.
The explicit computation of the integrals, which are
linear combinations of two-center integrals, re-
quired general formulas allowing us to separate
the dependence on the relative distance from that
on the relative orientation of the two centers, for
cubic harmonics of arbitrary order. We also
took advantage of Lowdin's ~-function expansion. 25

A similar computation of overlap integrals be-
tween x(r) and the core wave functions centered on
next nearest neighbors (R=10.05 a. u. ) gave results
about two orders of magnitude smaller. Therefore,
it is possible to retain only the nearest-neighbor
contribution to the Wannier functions.
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