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A linear combination of localized orbitals—molecular orbital (LCLO-MO) cluster method is applied to
calculate the electronic structure of E |’ centers in the a-quartz structure of SiO,. An O~ vacancy
model, implying a net charge of |e|, is used. This corresponds to the F* center in simpler oxides.
Calculations on the intrinsic E ' center predict a highly asymmetric relaxation of the two silicons
adjacent to the O~ vacancy. Detailed calculations of hyperfine parameters are carried out, and
reasonable agreement with experiment is obtained. The asymmetric relaxation of the two silicons is an
example of a pseudo-Jahn-Teller effect; parameters associated with this description are obtained and
appear to be reasonable. Calculations on the extrinsic E," (Ge) center in SiO, also give satisfactory

results.

I. INTRODUCTION

The generation of intrinsic and extrinsic para-
magnetic defects in quartz and silica by irradiation
with y rays, x rays, and fast neutrons has been ob-
served by electrical, spin-resonance, and optical-
absorption techniques. Typical examples of these
defects in SiO, are the E] center (intrinsic) and the
B center (extrinsic). The E{ center involves an
electron at an oxygen vacancy, =7 and the B center
is an electron trapped by a germanium atom sub-
stituted for a silicon atom, &°

The E{ center is one of the most important de-
fect centers in SiO, because it is believed to be
significant for detailed analysis of aging effects and
radiation degradation within the silicon planar tech-
nology.!® It may also be the fundamental defect
center in SiQ,. This center has been observed in
both crystalline and glassy SiO,, !’ and has been
found as a surface defect in SiO, powder.!* Other
versions of this center associated with chemical
impurities are also observed, such as the E{ (Ge)
center, which is an electron at a germanium atom
substituted for a silicon atom in the E{ defect
structure. 5

The E| center is characterized by an optical ab-
sorption peak? at about 6.2 eV and by an anisotropic
electron paramagnetic resonance (EPR) spec-
trum,'~® The g tensor and hyperfine tensors de-
duced from the EPR data imply that the defect elec-
tron is in a nonbonding tetrahedral hybrid orbital
on silicon and “pointing” in a direction normally
associated with a Si-O bond.*

Many models for the E{ center have been pro-
posed to explain its optical and paramagnetic prop-
erties. A summary of these models is given in
Table I. From this table it appears that the single
oxygen vacancy is more reasonable to use than oth-
ers in interpreting some of the experimental data.
However, the simple removal of an oxygen and an
electron is not sufficient to explain the following
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two basic properties of the E| center.

(i) Since the silicons adjacent to the oxygen va-
cancy are nearly equivalent, it is expected that the
unpaired electron should spend about equal time on
both. However, the EPR data clearly indicate that
the electron is localized predominantly in an (sp®)
orbital centered on a single silicon and oriented
along a short-bond direction facing the oxygen va-
cancy. %5

(ii) The presence and directions of the two weak
hyperfine interactions with two other Si atoms, as
shown in the resonance data, cannot be fitted into
the unrelaxed-lattice oxygen-vacancy model.?

Because of these two problems, this basic defect
center has eluded firm identification. We have re-
cently proposed a relaxed O™ vacancy model for the
E{ center.!? This model features a highly asym-
metric relaxation of the two silicons adjacent to the
oxygen vacancy. The present paper is a detailed
theoretical investigation of that model. In Sec. II
we present the results of linear-combination-of-
localized-orbitals—molecular-orbital (LCLO-MO)
cluster calculations!®=*® on the E! center based on
the relaxed O™ vacancy model. Section III contains
a detailed analysis of the E{-center hyperfine ten-
sor based upon the wave functions obtained in Sec.
II. In Sec. IV the asymmetric relaxation is ana-
lyzed by a pseudo-Jahn-Teller-effect model. *
Section V contains results of preliminary calcula-
tions on the E{ (Ge) center. In general, the theo-
retical results are consistent with the proposed
model.

II. ATOMIC CONFIGURATION AND ELECTRONIC STATES
OF E{ CENTER IN SiO,

According to the relaxed O~ vacancy model for
the E{ center in SiO,, the asymmetric relaxation
of the two Si atoms adjacent to the O” vacancy is il-
lustrated schematically in Fig. 1. The atomic
labelings used in this figure are the same as those
used in the previous paper.!® Figure 1(a) shows
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TABLE I. Models for the E{ center in SiO,.
Experimental
Author Model evidence Remark
Weeks and an electron optical absorp- (a) it fails to
Nelson (Ref. 2) trapped at an tion and ESR explain the pres-
(1960) unrelaxed O ence of the
vacancy strong hyperfine
interactions

Silsbee (Ref. 3)
(1961)

Castle et
al. (Ref. 4)
(1963)

Feigl and
Anderson (Ref. 5)
(1970)

Ruffa (Ref. 6)
(1970)

Bennett and
Roth (Ref. 7)
(1971)

an electron is
in a nonbonding
sp® hybrid or-
bital on an un-
relaxed Si

an electron is
trapped at a
silicon which
is located be-
tween two oxy-
gen vacancies

an electron is
in an sp3 non-
bonding directed
orbital in an
unrelaxed Si
facing an oxygen
vacancy

breaking of a
Si—O bond

an electron is
trapped by two
displaced
(pulled-together)
silicons neighbor-
ing an oxygen
vacancy

(b) it fails to
explain the other
two weak hyper-
fine interactions

strong hyperfine
interaction of
the electron
with the 2°si

nucleus
electron spin- b)
lattice re-
laxation
EPR b)
optical absorp- b)
tion

optical absorp-
tion

(), (c) it also gives
the wrong inten-
sity of the hyper-
fine interaction
in the ESR
spectrum

an unrelaxed-lattice oxygen vacancy and Fig. 1(b)

shows the asymmetrically relaxed oxygen vacancy,
in which the Sij atom is relaxed toward the (Oy)”
vacancy along the Si;— O;; short-bond direction and
the Si;; atom is relaxed away from the (Oy;)” vacan-
cy along the Oy — Si;; long-bond direction. This
asymmetric relaxation of the silicons leads to a
removal of the approximate degeneracy of the non-
bonding hybrid orbitals which point toward the
(Oq1)” vacancy, and a consequent localization of the
electron in the orbital on Si,.

In the limit in which the two “halves” of the de-
fect do not interact, one may treat each as an MX;
molecule. It is then possible to show by stereo-
chemical arguments that the half without the elec-
tron will tend to be planar with Si sp® hybridiza-
tion, while the half with the electron will tend to be
pyramidal’®'? with Si sp® hybridization. As the
calculations presented below indicate, this appears
to be a reasonable description of the actual situa-
tion.

We have performed LCLO-MO calculations on
the E{ center, using the Si,O4 cluster shown in Fig,
1 (Siy; was not included). This approach has al-
ready been discussed in detail. *'5 We feel that the
81,04 cluster is adequate for the following reasons:
(a) It includes the important short-range forces
and, through inclusion of Madelung-type potentials,
the most important long-range forces as well. (b)
The Si,Oq cluster from which this was obtained ap-
pears to treat adequately the valence states of SiO,.
While larger clusters could have been investigated,
it would not have been feasible to map out the ener-
gy minima as functions of silicon positions with as
much care because of computer costs.

The atomic positions in the cluster and the co-
ordinate system have been given in a previous pa-
per.'® The basis functions are those used previ-
ously: the localized Si(3s, 3p) and O(2s, 2p) orbit-
als. However, due to the oxygen vacancy in the
E] center, the following corrections to the matrix
elements of the Fock operator have been taken into
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FIG. 1. (a) Unrelaxed lattice oxygen vacancy in SiO,,
presented as projections onto the plane defined by Si,,
Opp, and Siy.  (b) Asymmetrically relaxed oxygen vacancy
in SiO,, presented as projections onto the plane defined
by Sij, Oy, and Sip;. (Atomic labelings same as used in
Ref. 15.)

account in the calculation.

(i) The changes of atomic environment potential
(U,) at Si and at O sites are —0.6359 and —0.4033
Ry, respectively. These numbers result from the
changes in the spherical parts of the point-ion and
Coulomb potentials at the sites in question., The
diagonal matrix elements of the Fock operator
(ail F | ai) are accordingly corrected by the same

}
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amount, namely,

(az' F| ai)corrected = <a7'| Fl ai>uncorrected+ 4 ’ (1)

where ¢ is equal to —0.6359 and —0.4033 Ry for
silicons and oxygens, respectively.

(ii) The corresponding corrections for the one-
electron energy parameters €,; are

€ai corrected:<ai| F’ ai)correctedi <al[ Ua correctedl ai> ’ ( )
2

where the plus sign stands for oxygens and the

minus for silicons. The matrix elements

(@il U, correcteal @) can be evaluated by assuming that

{ail U,l ai) is directly proportional to U, at the

atomic site in question.

By allowing Si; and Sij; to relax along the bond
directions as indicated above [Fig. 1(b)], the total
system energy can be minimized. The atomic po-
sitions of the two Si atoms which correspond to
minimum energy are

Siy(0.1492, 0.0252, 0.0664),

(3)
Siy(5.1664, —0.7401, 4.0038) bohr ,

indicating for Si; a relaxation of 5.48% of the Sij-
Oy; distance toward the vacancy and for Si;; a
27.4% relaxation away from the vacancy. This
highly asymmetric relaxation of the two silicons
is consistent with the relaxed O”-vacancy model.
The shape of the energy-vs-displacement curve is
discussed in Sec. IV.

The calculated energy levels for the Si,Og4 cluster
corresponding to the minimum total system energy
are shown in Fig. 2, and the calculated wave func-
tion for the E{ unpaired electron y (E]) is given by

Y(E{) =0. 54080, 3,+0. 79000, 55 +0.12199g; g5 +0.338305; 55 +0.043005;, 3, — 0. 13410, 5,

+0.0769¢s;,, 35, — 0.1622¢g,, 55, + Other terms for oxygen atoms , (4)

in which §(E1) is expressed as a linear combination
of LO’s centered on the two silicon atoms and on
the six oxygen atoms.

Some important results for the E{ center can be
deduced from the wave function (E7).

(a) A Mulliken population analysis for this wave
function indicates that the electron density distribu-
tion in Y(E}) is Siy(3s%223p%60)Si (35001 3p%08), In
other words, the unpaired electron spends 82% of
its time on Si, compared with 8. 5% on Siy;.

(b) As the electron is more strongly associated
with Sig, it is in an orbital of 22% atomic 3s char-
acter and 60% atomic 3p character. This implies
that the electron is in a nonbonding sp* " hybrid
orbital on Si;, as compared with the ideal tetrahe-
dral sp® hybrid orbital.

¥

(c) The coefficients of the wave function on Sig
indicate that the sp?*" hybrid orbital is oriented al-
most along the Sij;— Oy;; short-bond direction (less
than 2° from the Si;— Oy; direction).

All these results clearly indicate that the E{ de-
fect electron is strongly localized in an approxi-
mately sp® hybrid orbital centered on Si, oriented
almost along the Sij— Oy; short-bond direction,
This situation is consistent with the observed
strong hyperfine interaction and anisotropic g-ten-
sor data.®® Further details of the hyperfine tensor
analysis are given in Sec. III.

Several other remarks about our E{-center cal-
culations are appropriate.

(i) The calculated Wolfsberg-Helmholtz param-
eters (0.57— 0. 85) between the two silicons are
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FIG. 2. MO energy-level diagram for Si;Og and GeSiOg
clusters. Shown are the doubly occupied states, analo-
gous to the valence bands in the perfect crystal, and the
singly occupied state associated with the ground state of
the center.

considerably smaller than the value of 1. 75 which
is used most often in extended Hiickel calculations.!®
In other words, the Hamiltonian matrix elements
between the two silicons in this calculation are
correspondingly weaker than those in the extended
Hiickel calculation. Probably it is this weakness
which allows the asymmetric relaxation in the E]
center, in that it tends to uncouple the two “halves”
of the defect.

(ii) The EPR experiments are consistent with
only one energy minimum associated with the asym-
metric relaxation, as described above, on which
our calculations have been based. Accordingly,
the secondary energy minimum associated with the
opposite direction of relaxation will presumably be
higher than the first one. The energy difference
between these two minima might be obtained by an
optical-absorption technique. However, our calcu-
lations are not accurate enough to predict such a
fine difference (in our calculations, the secondary
energy minimum for the opposite relaxation is ac-
tually 0.081 eV lower than the minimum which we
investigated).

(iii) The calculations also showed that in an 0"
center the two silicon atoms prefer to relax away
from the oxygen vacancy along the two Si-O bond
directions. More specifically, the Si; relaxes
away from the Oy vacancy along the Oy; — Sij direc-
tion by 32. 8% of the normal Siz-O,; bond distance,
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and the Sij; relaxes away from the vacancy by
32.5%. In other words, Si, and Sij; relax into the
planes defined by their three neighboring oxygens,
respectively, This situation is consistent with
stereochemical arguments and is also consistent
with the theoretical results of Bennett and Roth. ?

(iv) From the MO energy-level diagram (Fig. 2)
for the E{ center, an optical transition from the
valence band to the single occupied level at 9.2 eV
is predicted. An empty defect level lies 8.9 eV
above the singly occupied level. These transition
energies are larger than the experimental value?
(~6.2 eV), which could be due to either of these.
The disagreement is probably due to spurious sur-
face effects and the neglect of d orbitals in the cal-
culations. It has been shown by Bennett and Roth’
that the conduction-band levels would be shifted
down considerably by the inclusion of d orbitals in
their calculations, and presumably the defect levels
would also be shifted downward.

III. HYPERFINE TENSOR OF E; CENTER IN SiO,

The success or failure of any model of the E]
center must rest on whether it can lead to the ob-
served hyperfine data. For this reason we have
carried out a detailed calculation of the weak hy-
perfine components, based upon the relaxed O~ va-
cancy model,

The direct magnetic interaction of an electron
with a nucleus consists of two parts. One is the
isotropic Fermi contact interaction, characterized
by a quantity A defined by®

A=§'ﬂgeuBgN“N]lp(0)|2; (5)

which contains both electron (e) and nuclear (N) g
factors and Bohr magnetons. |%(0)|2 is the wave
function density at the nucleus. In units!® consis-
tent with those of published E{-center data, 3

| g, upgyiiy| =5.239 x10728 cm? (6)

for %%i,

The second part of the interaction is the aniso-
tropic dipole-dipole interaction!® between the nu-
cleus and an electron at position ¥ with respect to
the nucleus:

13500 g

¥ giporar = "geuagzv#u<

where § is the electron spin and [ the nuclear spin,
It is convenient to write JC 404, in terms of the
anisotropic hyperfine tensor 7, defined by the equa-
tion

R iporar=hS+ T~ 1. (8)

The components of T are obtained by taking expec-
tation values (+-+ ) with respect to the wave func-
tion. They are elements of the following matrix:
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(9)

By evaluating the elements of [ 7] and diagonal-
izing the matrix, one obtains three solutions.
These correspond to principal directions of [ 7].
Experimentally, for the E{ center, two of the re-
sulting diagonal elements are equal (this is re-
ferred to as axial symmetry). The third element
may be called the major principal value; the di-
rection associated with it is the major axis of the
hyperfme tensor. The major principal value of
ch",om is one-fourth of the quantity® B,; B, in turn
is 4 times the major principal value of [ 7].

Both A4 and B,, as well as the major axis, have
been determined experimentally by Silsbee for one
strong and for two weak 2% interactions; thus a
quantitative comparison with theory is possible.
The short-range nature of the magnetic interac-
tions allows some qualitative observations as well.
The results of Sec. II indicate that the strong hy-
perfine interaction of the E{ center is consistent
with one result of the present calculation, namely,
a strong localization of the unpaired electron on
Si, in a nearly sp® orbital pointing toward the oxy-
gen vacancy. There are two limiting cases in
which analysis of the weak hyperfine interactions
due to other silicons would be made as easily.

(a) If the electron were totally localized on Siy,
so that the coefficients of orbitals centered on oth-
er silicons were zero, then the isotropic part of
the weak hyperfine interaction would be very small,
since this is a measure of wave-function density at
a neighboring silicon site. Furthermore, the ma-
jor axis of the anisotropic part would be approxi-
mately the vector connecting the nucleus with the
most probable position of the unpaired electron, 2

(b) If the wave function density on neighboring
silicons were moderately large, it would be this
part of the wave function which would determine
the hyperfine tensor, and the larger component on
Siy could be neglected. This approximation has
been used in the analysis of defects in silicon by
Watkins and Corbett.?°

Because it was not obvious that our result fell
into either of these categories, detailed calculations
of the hyperfine tensor were made. These calcu-
lations followed the procedure outlined above and
are somewhat similar to those performed on the
V, center by Daly and Mieher.?! We did not, how-
ever, include any exchange polarization effects.

In the LCLO-MO calculations we have included

[T] —&e #BgMI-L{g
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only valence orbitals. However, because the hy-
perfine parameters are sensitive to details of the
wave function near the nucleus in question, it is
important that the wave function be Gram-Schmidt-
orthogonalized to the core states on that nucleus.
We have neglected all wave-function components
centered on oxygens because of their small coef-
ficients and small amplitudes near the Si nuclei.
Hence the E{-center wave function which we have
used in calculations involving Sij; is of the form of
Eq. (4), without the oxygen terms, but with some
core-state amplitude due to orthogonalization. In
investigating hyperfine interactions due to silicons
which were not in our LCLO-MO calculation, we
started with the large amplitudes on Si; and orthog-
onalized to both core and valence states of the oth-
er silicon.

The execution of this rather straightforward cal-
culation is somewhat lengthy. Aside from wave-
function overlap-integrals arising from the orthog-
onalization, there are three types of matrix ele-
ments to be evaluated: one-center (both wave-
function components on the silicon) and two two-
center [both components on the other silicon (Siy),
and one on each silicon]. Considerable algebra is
involved with the angular parts of these integrals,
but all of the two-center integrals were evaluated
numerically using Lowdin’s a-function tech-
nique.??® The entire numerical procedure was
carried out by our program HYPER on the CDC 6400
at Lehigh University.

Several quantities were varied from one calcu-
lation to the next. These included the atomic posi-
tions and the atomic wave functions used to form
the molecular orbitals. Some results of these cal-
culations are shown in Tables II and III. Before
discussing the comparison between theory and ex-
periment, one should note comparisons between
different theoretical results; e.g., columns (a),
(c), and (e) of Table II involve calculations per-
formed with different atomic functions. It can be
seen that the theoretical value of the anisotropic
hyperfine constant increases by a factor of 3 in go-
ing from Huzinaga® to Clementi’s? atomic func-
tions (calculated for 'S), This is noteworthy, inas-
much as these functions represent atomic calcula-
tions of comparable quality.

Thus one is forced to conclude that there is at
present a basic limitation in the accuracy of our
calculations, as large as a factor of 3, originating
from uncertainties in the atomic calculations from
which the wave functions are obtained. This sen-
sitivity to the functions is not surprising, inasmuch
as the hyperfine interaction varies rapidly with
distance. Consequently, apparently small changes
in wave functions can lead to large changes in hy-
perfine parameters. Because this is the case, we
must view “agreement” between theory and experi-
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TABLE II. Experimental and calculated hyperfine parameters for the F{ center (weak

”Sin interaction).

Experimental®

Yip, Fowler
(c) (d) (e) (f) (g)

Huzinaga Clementi

Isotropic
hyperfine constant A

(in 10" cm™) 7.94

Anisotropic
hyperfine constant B,
(in 1074 cm™)

Direction of?
major axis

of hyperfine tensor 28.3°

Ratio of isotropic
to anisotropic con-

stants 6.6

5.72

13.4°

.5 0.79

4.84

17.5° 11.5° 11.7° 14.0°

8.3 4.9 2.4

2Computed from the hyperfine parameters of Ref. 3.

With respect to Siy-Siyy axis.

“Wave functions from Ref. 15; only Si, and Siy; displaced from normal, as in text [Eq. (3)].
9Same as (c) plus a particular motion of Oyy by 0.44 A.
*Wave functions from Ref. 24; only Sij and Sij; displaced as in (c).

fSame as (e) plus motion of Oyy as in (d).

EWave functions from Ref. 25; only Si; and Siy; displaced as in (c).

ment somewhat carefully. It is our assessment,
in fact, that order-of-magnitude agreement is all
that one can expect.

Given this criterion, we argue that the agreement
between theory and experiment indicated in Table
II is satisfactory. Magnitudes of isotropic and an-
isotropic constants, and their ratio, may be com-
puted to within 40% agreement with experiment.
There is a fairly consistent disagreement with an-
gles, of order 10°, There are several possible
reasons for this. (a) Perhaps Si; moves toward
the vacancy by a much larger amount than the cal-
culated 5%. (b) Perhaps there is a larger motion
of the three oxygens around Si;; than assumed. (c)

- Perhaps the wave-function amplitudes on Si;; are
somewhat larger than calculated. We are inclined
to disbelieve (a), since this seriously worsens
agreement with the magnitudes. (b) may well oc-
cur, but (c) seems the simplest and most likely ex~
planation.

In connection with these results, it is important
to note that both theoretically and experimentally
the major axis of the weak 2°Si hyperfine interac-
tion discussed here lies within the plane defined by
Sip=Oyacancy=Siyr to within a few percent. This ob-
servation'? provides strong qualitative evidence

both as to the origin of the interaction (Si;;) and the

nature of the relaxation (within the above plane).
Table III indicates results of a somewhat explor-
atory investigation of the origin of the second weak
29Si interaction. Both Siy; and Siy; were consid-
ered as candidates for this interaction. The for-

mer is shown in Fig. 1 and its coordinates are giv-
en in Ref. 15; Siyyy is not shown, and its coordi-
nates are (~2, 7421, 3.7780, 6.8095) bohr, in the
system of Ref. 15. Since neither Siy; nor Siyyrp
was included in the LCLO calculation, the Si; wave
function was simply orthogonalized to core and val-
ence orbitals on the above atoms. These orthog-
onalized functions were then used to compute the
hyperfine structure (hfs) parameters.

It can be seen that there is moderate agreement
with the magnitudes for Siy;, but poor agreement
with angle; for Siyyp; it is the other way around.

TABLE III. Experimental and calculated hyperfine
parameters for the E{ center (second weak %’Si interac-
tion).

Experimental® (c) (d)
Isotropic
hyperfine constant A .
(in 10 cm™) 7.46 2,67 0.21
Anisotropic
hyperfine constant B,
(in 107 cm™) 1.15 0.42 0.14

Direction of®
major axis of
hyperfine tensor

42.6°
4.7°

28.3°
19.1°

Experimental
Theoretical

#Computed from the hyperfine parameters of Ref. 3.

*With respect to 22Si-Si, axis.

®Siyy; wave functions from Ref. 24; Si; and Siyy dis-
placed from norgnal as in text; Oyp moved by 0.44 A;
Siyy moved 0.3 A toward Oy;.

9Siyryr; wave functions from Ref, 24; only Sij and Siy;
displaced from normal, as in text.
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This is not surprising from the geometry. Siyy
is located away from the hybrid orbital on Si;, but
the Sij~Siyyy; direction is in fact close to the ex-
perimental hfs major axis. Siy; is on the correct
side of the hybrid orbital but its direction to Si; is
not very close to the experimental hfs major axis.

Since it is difficult to see what modification will
provide adequate wave-function density on Siyyyg,
we are inclined to accept Siy; as a better candidate.
Two ways of obtaining better agreement with angles
would be (a) a large relaxation of Siy;; (b) asym-
metric valence-electron distribution on Siy;. The
former seems rather unlikely, since a large (~1 A)
relaxation would be required. (b) seems more
likely, and arises from the observation that one of
the four oxygens (Oy;) neighboring Siy; is inequiva-
lent to the other three, since it is adjacent to the
relaxed Si;; and may itself be relaxed. Consequent-
ly, one expects a wave-function density on Siy;
which reflects the actual symmetry next to the de-
fect. This could, for example, lead to a larger
electron density towards Oy;, since that direction
of the crystal is electron deficient. This in turn
could have a large effect on the major axis, which
would apparently be in the direction of better agree-
ment with experiment.

Finally, it should be noted that our expectation
that wave-function components centered on both Si,
and the other Siyy, v, or virz Would be important was
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borne out. For example, for the hyperfine terms
due to Si;;, wave-function contributions from Si,
and Si;; were of about equal importance. By arbi-
trarily setting one or the other set equal to zero
one could vary the predicted major axis from about
0° to about 28°, as compared with values computed
from calculated wave functions ~12° (Table II).
Large variations in magnitude were also observed,
and in some cases there were interference effects
between components. These observations suggest
that in general hyperfine data must be used with
some care in predicting wave-function densities.

IV. ASYMMETRIC RELAXATION AND PSEUDO-JAHN-
TELLER EFFECT

A relaxation which lowers the symmetry of a
nonlinear molecule or defect is expected to occur
if the electronic states in the symmetric configura-
tion are degenerate, according to the Jahn-Teller
theorem.?® Such a relaxation may occur if the
electronic states are nondegenerate; this is called
a pseudo-Jahn-Teller effect. Recently Ham'® has
analyzed the excited s and p states of the F center
in alkali halides, and their coupling through an
odd-parity vibrational mode, and has concluded
that asymmetric relaxation does not occur in that
case. Since we have predicted asymmetric relaxa-
tion for the E{ center in SiQ,, it is of interest to
carry out a similar analysis here.

To make this analysis tractable we adopt an ex-
tremely simple model of the E{ center, namely,

a Si-Oyacancy-Si molecule in C,, symmetry as shown
in Fig. 3(a). The silicons are constrained to move
along the respective Si=Oyycaney directions, and the
nonbonding orbitals are similarly oriented on the
two silicons. Under these circumstances there
will be two LCLO’s and two vibrational modes, in
each case one even and one odd. The even (4,) and
odd (B,) modes are shown in Fig. 3(b) and the
LCLO’s in Fig. 3(c).

In terms of our analysis, the relaxation of mini-
mum energy computed in Sec. II corresponds to
a minimum with respect to both normal modes. By
simple algebra, motion of one silicon toward the
vacancy by 5.48% of a nearest-neighbor distance
and the other away from the vacancy by 27.4% is
the same as an A; motion of 10, 96% away from the
vacancy and a B, motion of 16.44%. In the follow-
ing, only the B, coordinate is varied; A4, is taken
as fixed at the above value.

We adopt a notation similar to Ham’s., The A
electronic state is denoted by s and B, by p. The
B, mode is @. Note that there is no degeneracy
here, whereas in the F center case both the vibra-
tional modes and the p states were threefold de-
generate.

The Hamiltonian is taken to be
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TABLE IV. Parameters used to fit Eq. (11).

Parameter Value
Eg, (eV) 7.61
Luw? (eV/A?%) 17.53
G (eV/A) 13.51
Eg; (eV) 2.60

H=%E,(|s)s| = | p)p|)+ @) [P? + (nw)?@?]
+GQ( pXs| +|sXp|) (10)

where E, is the electronic energy difference at @
=0, w is the angular frequency of the mode, u is
its effective mass, and G is an electron-phonon
coupling constant. Following Ham, we analyze the
static situation by setting the vibrational momen-
tum P equal to zero and treating @ as a parameter.
We find two states whose energies are

E=}pw’@®s 3(E%+4G2QY)? . (1)

The first term of Eq. (11) is just the harmonic
oscillator energy, which tends to stabilize the sys-
tem at @ =0. The second term involves the s -
admixture. For the negative sign this term tends
to introduce a minimum away from @=0. Note
that if E,, were zero this term would be linear in
@ and there would always be a minimum away from
@=0; this would be the Jahn-Teller effect.

Ham has shown that the criterion for a minimum
away from @ =0 is

Eg>1|Egl , (12)
where E; is defined by

Eq=G*/2uw? . (13)
In this case, the minimum occurs at @,, defined by

Q% = (G/ pw?? = (Ey/2G) . (14)

There are thus three parameters which determine
the energy in this simplified approach. We have
computed the energy using the LCLO-MO method
for silicon positions corresponding to several val-
ues of @ and have determined values of the param-
eters with which to fit Eq. (11) to our computed
results.

The parameters were determined under the fol-
lowing conditions, ’

(i) The value of E,, was taken from the computer
calculation as the energy difference at @ =0 between
the singly occupied E ; state and the first unoccupied
state. These states correspond approximately to
the A, and B, states of the model.

(ii) A constant energy was added to Eq. (11) and
chosen so that energies at @ =0 would agree. The
value used was 3. 80275 eV.

(iii) The value of @ for which the energy is a
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minimum, and the value of that energy, were made
to agree in the two calculations.

The parameters thus obtained are given in Table
IV, and the results are plotted in Fig. 4. Com-
parison of the theoretical curve (Ham’s model) with
the computed (LCAO-MO) points indicates fair
agreement, with several discrepancies. According
to the computations there is, in addition to the en-
ergy minima away from @ =0, a shallow minimum
at @ =0. The simple theory does not predict the
coexistence of both types of minima. The com-
puted results also indicate a fair degree of anhar-
monicity,

It is worth investigating whether the values of
the parameters given in Table IV are reasonable.
As mentioned earlier, the experimental Ej transi-
tion energy is at ~6.2 eV. This is not directly
comparable to E,,, since the latter is computed at
an equilibrium position, but the two numbers should
probably be (and are) in order-of-magnitude agree-
ment,

The quantity 3 uw? is half the force constant for
the B, mode, so our fit suggests a force constant
of 35.06 eV/A2, In this mode the two silicons are
weakly coupled and are vibrating in phase, so the
“force” is mainly due to the interaction of each
silicon with its three neighboring oxygens. For
comparison, force constants for diatomics are
easily determined”; representative values (in
eV/A?) range from 7.4 for NaCl to 35.3 for AlO,
35.8 for H,, 57.7 for SiO, to 118.7 for CO. We
can conclude from this that our value of 35.06
seems reasonable,

Q (%)
008 0lJ2 0l6 0.0
T T

T T T

0 0.04
T

0e-°

-0.04

-0.08

E (eV)

-0.12

-0.16

-0.20 Il 1 1 1 1 1 1 1 1

FIG. 4. Solid line is a plot of the lower solution of Eq.
(11) with an added constant (3.802 75 eV) so that E=0 at
@=0. @ is in units of percent of Si-O distance (1.6 A).
Values of the parameters are given in Table IV. Circles
are generated from the LCLO-MO solutions.
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A very rough estimate of G may be made as fol-
lows. The s —p matrix element of the coupling
term is just GQ. If one assumed that the admix-
ture was due to a static E field, the corresponding
term would be of the form

<sl:‘(zcoun1ing|p>~eE(sly|p> ) (15)

where (sl y|p) is an electric-dipole matrix ele-
ment. When the orbitals are LCLO’s one expects
the magnitude of (s|ylp) to be somewhat less than
the Si-Si interatomic distance; ~1-2 A might be
reasonable in our case. One can easily calculate
from electrostatics that the E field at the oxygen
vacancy associated with the @ mode, assuming +e
charge on each silicon, is ~10Q V/A when Q is
in A. Thus we would estimate G~10-20 eV/A.
Within the accuracy of this rough estimate we find
agreement with the calculated value.

The above values may be compared with those
obtained in a similar analysis®® of the substitution-
al off-center Li* ion in KC1. In our notation, these
results were E;,=4.0 eV; G=1.25eV/A; po?
=0.65 eV/A%, In this case the force constant is
extremely small, which is consistent with the weak
interaction of the small Li* with its neighbors. The
coupling constant is an order of magnitude smaller
than in our case.

On the basis of the above considerations, we feel
that the results of our calculation are reasonable.
This does not mean, however, that we feel the nu-
merical results are particularly accurate. Aside
from the many approximations made in our LCLO-
MO treatment, !> one omission is the energy associ-
ated with the electronic polarization induced in the
atoms outside the cluster by the asymmetric dis-
placement. This has been shown to be important
in stabilizing off-center ions in alkali halides, %
and it would enter the Ham treatment as an in-

crease in the coupling constant G (in effect, the E
field inducing the s - p admixture would be larger).
With this in mind, it is interesting to investigate
the effect of a small increase in G on the results

of the analysis performed above. If G were 15,0
eV/A rather than 13,51, for example, the minimum
in energy would be~ 0.53 eV lower than the =0
value, rather than~0.19 eV, and it would occur at
Q~ 22% rather than~ 16. 4%.

As mentioned earlier, our computer calculations
predict that the other well (Si; planar, electron on
Siy;) is actually at an energy lower by ~0.08 eV
than the one which we have analyzed and which is
experimentally observed. This seems to indicate
other errors of the order of tenths of an eV in our
calculations.

There remains the question of why experimental-
ly only one well is populated at room temperatures.
Presumably, when the defect is created by incident
radiation there is enough local thermal agitation
that the system spends time in regions of both plus
and minus @, so that the initial probability of being
in one or the other is about equal. We suggest a
scheme which is consistent with the observed popu-
lation of only one well, based on double wells, as
shown in Fig. 5. We assume that the two wells
differ in depth by ~0.1 eV and that the lower is
~0.5 eV below the value at @ =0. Several vibra-
tional levels are schematically shown., We have
sketched the wells so that their minima are ~0.3 A
apart.

If the levels in the two wells are in thermal
equilibrium with one another, then the population
of the ground state of the upper well (B in Fig. 5)
relative to the ground state of the lower well A will
be given by a Boltzmann factor which at room tem-
perature for a separation of ~0.1 eV is ~2%. This
number is close to the limit of detectability of ESR
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spectroscopy for this center.

For the wells to be in thermal equilibrium, how-
ever, the probability of tunneling from one to the
other must be sufficiently large that tunneling will
occur between the time that the system was pre-
pared (e.g., in level B) and the ESR experiment
was performed. An estimate of this probability
may be obtained by multiplying the vibrational fre-
quency w (the number of times per second that the
system attempts to tunnel) by the square of a vi-
brational wave-function overlap between the two
wells, %0

The vibrational wave~function overlap depends
on the initial and final levels, but it is of order

et where

a=AQ(uw?/Tw)'? | (16)

where AQ is the separation in @ of the minima,
chosen as ~0.3 A in our case. For this mode it
seems reasonable to estimate u to be twice the
mass of Si. For the present value of pw? this then
yields w~17.6x10" sec. Then a~8, whence the
square of the overlap is approximately 10714, Mul-
tiplying this by w~ 7.6 x10' sec™, we obtain a tun-
neling probability of the order of 1 sec'l, which
would appear to be sufficiently large on the time
scale of the experiment to ensure thermal equilib-
rium. It should be emphasized that all of these
numbers are very rough, used only to estimate the
plausibility of this model. Alternative theoretical
estimates of the tunneling probability between wells
(e.g., based on a more detailed vibronic theory)
may be made, but all require a to be ~8-10 for a
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tunneling probability of ~ 1 sec™.

If this model is correct, it would appear that by
going to either higher or lower temperatures one
could expect to observe the effect of the second
minimum in the paramagnetic resonance response.
At high temperatures the Boltzmann factor would
increase the probability of the system’s being in
B; at low temperatures one would expect the tun-
neling probability to decrease sharply—hence a
center prepared in state B might remain there long
enough to be observed experimentally.

V. E;(Ge) CENTER IN SiO,

The E| (Ge) center is another version of the E}
center in which an electron is trapped by a germa-
nium atom substituted for a silicon atom neighbor-
ing an oxygen vacancy in SiO,. The EPR response
of this center, reported by Feigl and Anderson, °
is very similar to that of the simple E{ center in
pure SiO,. It has been suggested that the unpaired
electron occupies a nonbonding sp® orbital strongly
localized on a Ge impurity.® Since the basic elec-
tronic structure of the E{ (Ge) center is quite simi-
lar to the simple Ej{ center, it seems reasonable
to use the same asymmetrical relaxed oxygen va-
cancy model presented in Sec. IV to explain the
observed hyperfine data. To do this, a similar
calculation on an eight-atom cluster GeSiO;, in
which the Si; atom is substituted by a Ge atom [see
Fig. 1(b)], was performed. The basis functions
for the Ge*™ ion in the Si**(O~), lattice were obtained
by solving the following localized orbital equations
(in integral form):

€4,=K, + 2F%4s,15) + 2F (4s, 25) + 2F (45, 35) + 2F (45, 45) + 6 F°(4s, 2p) + 6 F°(4s, 3p) + 10 F°(4s, 3d)
- G%(4s, 15) — G%(4s, 2s) — G%(4s, 3s) — G%(4s, 4s) — G'(4s, 2p) — G*(4s, 3p) — G*(4s, 3d) + V,, ,

€4p =Kyp+ 2F°(4p, 15) + 2F(4p, 25) + 2F(4p, 3s) + FO(4p, 45) + 6F(4p, 2p) + 6 F°(4p, 3p) + F°(4p, 4p)

am

+10F°(4p, 3d) - 5G*(4p, 15) - 3G (4p, 2s) — 3G (4p, 3s) -4 G(4p, 45) — G°(4p, 2p) - 5G¥(4p, 2p)
- G°(4p, 3p) - 2G3(4p, 3p) - G*(4p, 4p) — 3G (4p, 3d) -+ G*(4p, 3d) + V,, .

In Table V, we specify the basis parameters 4;;
and Z;; used for Ge™ in SiO, and also give their one-
electron eigenvalues €,; and eigenfunctions C;,; and
the expectation values of the atomic environment
potential U, and the Fock operator F. All these
terms have been defined in the previous papers.!*

In calculating the matrix elements of the Fock
operator, corrections arising from the absence of
an oxygen ion were taken into account. Little ef-

15

fort was expended to locate the most probable re-
laxed atomic arrangement which has the minimum
of total system energy. In this calculation, the
same relaxation as obtained from the E]-center
calculation was assumed.

The MO energy levels for the relaxed GeSiO;
cluster are shown in Fig. 2, as compared with
those of the relaxed Si,O4 cluster. The calculated
wave function for the E; (Ge) unpaired electron is

(B, (Ge) =0. 54150, 45 +0. 785606, 4y, +0. 119406, 4y, + 0. 33810004y, +0. 013605, ;53 +0. 119005, 5.

~ 0. 01805, 35, + 0. 0262%‘11 sp, + other terms for oxygen atoms .

(18)



11 ELECTRONIC STRUCTURE OF E;{ CENTERS IN SiO,

TABLE V. Atomic parameters and energy parameters
(in Ry) for Ge* in SiO,. 2

j Aoy Zy; Cin Ay Zyy Chat

1 0 33.9345 0.02817 0 21,1223 0.00917
2 1 30. 0221 0.01923 0 13.6615 0.071 34
3 1 15,5531 —-0.07585 1 12,9671 0.02392
4 2 14,7273 —-0.07729 1 8.3249 -0.07573
5 2 7.4622 —-0.17180 1 5.2291 -0.21223
6 2 5.7676 0.77794 2 4,7359 0,031 00
7 3 5.9822 —-0.31172 2 2.2704 0.58835
8 3 3.0892 —-0.23799 2 1.2458 0.62720
9 3 2,0145 —0.76187 2 0.8512 —0.156 84

10 3 1.3508 -0.07008

€45=22.413707
V4 =0.421155
€45,45 = —1.992 552

€p=—1.829256
Vi =0.444 380
€4p,4p=—1.384876

aThe values for A;; and Z;; were chosen from Ref. 31.

Using this wave function for the E{ (Ge) center,
it can be shown that

(i) The electron density distribution in y(E{, Ge)
is Ge(4s%174p%%)Si (3% 9013p%0%): this implies
that the unpaired electron spends 71% of its time
on Ge compared with 0. 8% on Sij;.

(ii) The unpaired electron which is strongly lo-
calized on the Ge impurity occupies a nonbonding
~ sp*! hybrid orbital of 17% atomic 4s character
and 54% atomic 4p character.

(iii) The sp**! orbital is oriented almost along
the Ge — Oy; short-bond direction to within 0. 01%.

These results are generally consistent with the
observed hyperfine interaction and anisotropic g-
tensor data.® We have not analyzed the weak hy-
perfine interactions in detail.

From the MO energy-level diagram (Fig. 2) for
the E{ (Ge) center, an optical absorption is pre-
dicted to occur at 4.0 eV. Although there are no
ultraviolet data available for comparison, it serves
as an indicator for future experimental optical
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studies for this center.

VI. CONCLUSIONS

It has been shown that the previously developed
LCLO-MO cluster method has given satisfactory
quantum-mechanical descriptions of the electronic
structures of E{ centers in SiO,. We conclude that
present experimental and theoretical evidence in-
dicate the following.

(a) The E{ center is an O” vacancy and is there-
fore positively charged. It can be thought of as a
hole trapped at a neutral oxygen vacancy. Its
properties are best understood, however, in terms
of the remaining nonbonding electron. In the ter-
minology adopted for simpler oxides, the E{ center
is an F* center.

(b) A highly asymmetric relaxation of the two
silicons adjacent to the O" vacancy occurs. 2

(c) The defect electron is strongly localized
(~82%) in a nonbonding sp® hybrid orbital centered
on a silicon and oriented almost along a Si-O short-
bond direction toward the oxygen vacancy.

(d) The experimental hyperfine data are reason-
ably consistent with the predictions of our model.
This is a critical test of the model.

(e) The asymmetric relaxations may be analyzed
by means of the theory of the pseudo-Jahn-Teller
effect. This analysis suggests that both low- and
high-temperature EPR experiments might be use-
ful,
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