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Brillouin scattering, piezobirefringence, and dispersion of photoelastic coefficients of CdS
and ZnO
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We have measured the dispersion of the Brillouin scattering from acoustoelectrical domains in CdS
and ZnO. These spectra are compared with the birefringence spectra obtained by applying uniaxial
stress. The resonant cancellation of the Brillouin scattering occurs at the spectral position of the
isotropic point of the stress-induced birefringence. From these spectra it is concluded that the Brillouin
scattering in CdS and ZnO is determined by elasto-optic effects alone. The spectra of some of the
photoelastic coefficients have been determined. A model dielectric constant is derived where both
ground-state excitons and unbound continuum exciton states contribute. From this dielectric constant
and the quasicubic model we calculate all the six independent photoelastic coefficents. By comparison
with the experimental results the shear deformation potentials of the valence bands are obtained. It is
found that the exchange interaction between the excitons may change the values of the photoelastic
coefficients in ZnO about 10%.

I. INTRODUCTION

Resonant Brillouin scattering from acoustoelec-
tric phonon domains has recently been observed
in CdS and ZnO. ' Both resonant enhancement and
resonant cancellation of the scattering were found.
From comparison between the scattering from
piezoelectrically active and inactive phonon do-
mains it was concluded that electro-optic effects
are unimportant in the scattering mechanism,
thus indicating that elasto-optic effects dominate.
Elasto-optic effects in crystals are often described
in terms of the photoelastic (elasto-optic) coef-
ficients. ' The purpose of the present work is to
determine some of these coefficients and their
spectral behavior, namely P44 and P«, which are
involved in the Brillouin scattering from acousto-
electric domains.

Tell, Worlock, and Martin' have measured rela-
tive values of the photoelastic coefficients Pyy Py2,
and P3, in CdS and Z nG by a Bril louin scattering
method. Yu and Cardona have investigated the
elasto-optic effects in CdS and ZnO by static
stress-induced birefringence (piezobirefringence).
They obtained coefficients related to P«, and com-
binations of P», P», P», and P». Photoelastic
coefficients for CdS at the He-Ne laser wavelength
have also been obtained from Brillouin scattering. '
Here, we determine P«and P« for CdS and ZnO
both from Brillouin scattering and from piezo-
birefringence measurements. It is the first time
that the absolute values of the P,4 spectrum are
reported. The absolute values of P«are in good
agreement with those obtained by Yu and Cardona. '
Kohn' has made a calculation of the photoelastic
coefficients in CdS and ZnO, but neglected here the
shear deformation potentials and the presence of

the third valence bands. Yu and Cardona' also
computed coefficients related to the photoelastic
coefficients in CdS and ZnO. They found that ex-
citon effects are important for the dispersion of
the photoelastic coefficients for these materials
and made semiquantitative fits to their measure-
ments. Unfortunately, it was not possible to de-
rive the values of the deformation potentials from
the fits.

We have extended the theory of Yu and Cardona4
to include the effect of the unbound continuum ex-
citon states above the fundamental band edge. We
calculate all the six independent components of
the photoelastic tensor, and we are able to derive
values for the shear deformation potentials of CdS
and ZnO by fitting to the experimental results.

II. PHOTOEI. ASTIC COEFFICIENTS

The photoelastic coefficients P;», are the com-
ponents of a fourth-rank tensor P defined by the
equation'

&(l/e) =P e,
where 1/e is the reciprocal of the tensor of the
dielectric constant, and e is the strain tensor.
ln the coordinate system where e is diagonal (with-
out applied strain) the following relations are
valid'.

h(l/ej;~= —6e;,./e;; e,, .

The definition of the photoelastic coefficients may
then be written

or with abbreviated suffixes, '
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III. EXPERIMENTA L RESULTS
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resonant cancellation point of the Brillouin scat-
tering simply corresponds to the isotropic point
of the stress-induced birefringence. This is the
spectral point where the elasto-optic effects van-
ish, namely, where the dielectric constant is in-
dependent of strain (up to first order). The strain
in the crystal obtained from static stress and
acoustical phonons is equivalent, whereas the
strain from optical phonons involves deformations
of the unit cell itself. Hence, one should expect
rather different. spectra for Brillouin and Raman
scattering. It is therefore surprising that the
Raman scattering from TO phonons in CdS' has
a cancellation point at the same wavelength as that
from Brillouin scattering. In ZnO, Raman spectra
have not yet been recorded in the region of the
cancellation point of Brillouin scattering. Pre-
liminary measurements' on hexagonal ZnS yield
an isotropic point for the piezobirefringence (in
the p«geometry} at 3600 A. Brillouin and Baman
spectra have not yet been recorded in this region.
However, Raman spectra, at longer wavelengths'
(corresponding to the P«geometry) seem to in-
dicate the presence of a cancellation point of about
8200 A. At these wavelengths we did not observe
any unusual piezobirefringence.

IV. THEORY

The resonant enhancement and cancellation of
Brillouin and Baman scattering are often described
in ter ms of Loudon's theory. ' Her e the enhanc e-
ment of the scattering is due to a dispersive con-
tribution from the fundamental band gap, while
the cancellation may occur if the contribution from
nonresonant terms have the opposite sign. It is,
however, more simple to derive the photoelastic
coefficients from the theory of stress-induced
birefringence. Piezobirefringence has been ob-
served in many materials. '" " Generally, a
strong dispersion in the induced birefringence is
observed near the fundamental band gap. Materials
with lowest direct gaps larger than about 0.7 eV
exhibit a sign reversal in the piezobirefringence
when approaching the gap. This may be under-
stood in terms of the following model. " There
are two contributions to the piezobirefringence.
One from the lowest direct gap yielding the dis-
persion, and one from higher bands represented
by an average gap (the Penn gap). It has been
shown thai the contribution from the average gap
is expected to have the opposite sign" of the con-
tribution from the lowest gap. If then the dis-
persion due to the lowest direct gap is strong
enough, the stress-induced birefringence changes
sign as the band gap is approached, giving rise to
an isotropic point where the intensity of the Bril-
louin scattering has a minimum.

where

K2Pgg Eg~
z+ir/2 "z,„-z-fr/2 ' (7a}

Here a labels the three fundamental valence bands;
E„and E~ are the corresponding ground-state ex-
citon and band-gap energy. 1 is the damping,
e„;& the background dielectric constant, while
X,P; &

and K,P;, are strength parameters for
ground-state exciton and continuum excitons plus
band-to-band transitions, respectively. Both the
strength parameters are proportional to P,"&, the
P matrix element squared,

(6)P;") =P,'~P„, +P,„P~(1—6;i) .
Here P,'~ is the P-matrix element for a transition
from the conduction band c to the valence band a
for light polarized along the ith direction.

From (3) and (7) the expression for the photo-
elastic constants is derived:

—(I +6(,)
26;] 6gg 88yg

0I ~En n+ r, p „"f'"g(E( —-„"(.'"~ ($)

where

K,PO Exn K2P
(z'„„-z'-izr„„)2 z,„(z, —z}

(10)

Here m and n are the usual contractions of the
indices ij and kl, respectively, as shown in E(I.(3a).

Yu and Cardona' found that exciton effects must
be taken into account when computing the piezo-
birefringence of II-VI compounds. They added a
single oscillator representing the ground-state
exciton to the ordinary parabolic band states in
their model and obtained good fits to the spectra
observed. However, they had troubles with the
band contribution for the wurtzite materials and
pointed out that one reason for this might be that
the parabolic band singularity due to exciton effects
might be sharpened. %e have taken this effect into
account in the present work, considering also the
unbound continuum exciton states.

As shown in Appendix B, the dielectric constant
may then be written (as the components of a tensor)

6~i J + pf i J(z)
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In Appendix C a perturbation calculation is car-
ried out for the strain-induced changes in strengths
and energy gaps for the quasicubic model. The
r esulting six photoelastic coeff ic ients are listed
in Appendix C. Of importance for the present work
are P44 and P„:

010

0.05-

P„=(l/e„e„)(K«+(C, /2u 2) F„),
Pss = (I/all) (Kss +2CIF66) (12)

0.00

where F44 and E«are the dispersive contributions
from the direct gap and are given by Eq. (C10).
C„. and C, are the shear deformation potentials,
while K«and K«are the constant contributions to
the piezobirefringence from higher bands (the
average band gap). It should be noted that the dis-
persion of P«and P« is (to first order in strain)
only caused by changes in the oscillator strengths.
Furthermore, only the shear deformation poten-
tials C, and C, enter these expressions (in first
order); so C, and C„ in principle, could be de-
termined more accurately from piezobirefringence
measurements than from energy shifts, where the
shear deformation potentials yield nonlinear shifts.

Some useful approximate relations may be de-
rived from the six photoelastic coefficients in Ap-
pendix C. If the crystal-field parameter 4 of the
quasicubic model tends to zero, the crystal be-
comes isotropic. In that case only two independent
photoelastic coefficients P„and P„exist:

P33 Pill P13 P31 P12

P44 P66 2 (Pl 1 P12)

Similarly, only two deformation potentials C, and

C, exist. From (13) with 6=0 one obtains

C, ~ C, —C„C4= —2C„C,= —C„C,= &2Cs .
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FIG. 5. p44 for CdS cpmputed from Eq. (11) (solid
line) and compared with the stress measurements
(squares) .

tained with E, —E„=44.5 meV, which was then
used for CdS. The only parameters obtained by
fitting are marked by a star in Table I. They are
the strengths of the continuum exciton states and
band transitions and the background dielectric con-
stants, These parameters were found by fitting
Eq. (2) to the refractive indices known from the
literature. " In determining P«(or P«) only two
parameters are left, the E«and C, parameters
(K«, Cs). The K«parameter (K«) is determined
fromthe zero in P«(P«) (which is well known since
it corresponds to the isotropic point or the cancel-
lation point of the Bri11ouin scattering). K«(K«)
is the negative constant contribution from higher
bands P«. (P«) is then proportional to C, (C,),
which may thus be determined by a mere scaling
of the computed curve. This means that the rela-

These relations are similar to those derived by
Bir et al'. " They yield useful information about
signs and approximate magnitudes of the deforma-
tion potentials. Similarly, approximate relations
between the contributions from higher bands are
obtained,

33 1'I 13 31 121 K44 66 2(K11 K12)

V. COMPARISON WITH EXPERIMENTAL RESULTS

The expressions (11) and (12) have been plotted
in ease of CdS in Figs. 5 and 6. The parameters
involved are listed in Table I. All parameters
connected with the ground state excitons are known
and have been taken from the literature. E~ —E,
should correspond to the exciton binding energy of
28 meV. Better agreement was, however, ob-
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FIG. 6. P&& for CdS computed from Eq. (12) (solid
line) compared with the stress measurements (squares).
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TABLE I. Parameters used in the calculation of p66
and p44 for ZnO and CdS. The values marked by an
asterisk are obtained from fitting to refractive indices.

CdS ZnO

Exi (eV)
E„2 (eV)
E„3 (eV)
KgP1 (eV2)

K1Pzz {eV )
F„=-F (meV)
a (n eV)
X (mev)
E~ (eV)
K2P (eV )
K2P2 (eV2)

~ (E&c)
~-t~~ (Elle)

2.4727
2.4876
2.5510
0.072
0.040'
0 044c
0.022
0 048c

40
27.0b
21 7b
2.5172
2.470*
2.725 +

4.132+

4.096*

3.306'
3.306 d

3 340
0.15'
0 30
0.0'
00
0.38'

40'
41b
-2.9 b

3.366
2.704*
3.153~
2.642*
2.524*

~ E. Gutsche and J. Voigt, in Proceedings of the II-VI
Semiconductor Compound Conference, 1967, Brown
University, edited by D. G. Thomas (Benjamin, New York,
1967), p. 337.

J. O. Dimmock, in Proceedings of the II-VI Semi-
conducto~ Compound Conference, 1967, Brown Universi-
ty (Benjamin, New York), p. 277.

D. G. Thomas and J. J. Hopfield, Phys. Rev. 116, 573
(1959).

M. Cardona, K. L. Shaklee, and F.H. Pollak, Phys.
Rev. 154, 696 (1967).

~ Reference 19.
f G. Hvedstrup Jensen, Phys. Status Solidi B 64, K51

(1974).

tive values (the shape or dispersion) of p«(or p«)
are computed essentially without any adjustable
parameters. The agreement between the experi-
mental results and the computed curve is thus

very good.
There is nothing in the theory which indicates

that the isotropic (or cancellation) point should be
positioned at the same energy both for P44 and P«.
However, .one might expect this on basis of the
quasicubic model. " When the crystal-field param-
eter 4=0, then P4, =P«. When 6&0 a hexagonal
strain field is present, but since the property of
the isotropic point is its independence of strain
(at least to first order), one should expect the iso-
tropic point to be nearly common to P44 and P«
also when 640. From Figs. 5 and 6 one obtains
C, =- 0.80 eV and C, = —2.98 eV (for CdS). Prev-
ious values obtained are C, = —1.5,"-1.2 eV"
and C, = —2.4,"—1.1 eV." The agreement is rea-
sonable taking into account that C, and C, prev-
iously were determined from second-order energy
shifts. The K values obtained are K4, = —6.655
and K86 = —2.670.

Similar results for P,4 and P«are shown for ZnO
in Figs. 7 and 8. The parameters used here are
listed in Table I. All parameters connected with
the ground-state exciton are known and have been
taken from the literature. E, —8, was chosen to
be 60 meV, which is the binding energy of the
excitons.

The strength of the continuum states and the
background dielectric constant mere fitted to re-
fractive indices taken from the literature. " K«,
K,4, C„and C, were obtained in the same way
as for CdS. In case of ZnO, however, the ex-
change splitting j of the excitons is comparable
to the spin-orbit splitting. This gives rise to
pronounced changes in the oscillator strengths.
As seen from Table I the oscillator strength of
the A. exciton is only half of that of the B exciton,
although the one-electron band-to-band transitions
for the A and B bands should have nearly equal
strengths.

Yu and Cardona' made an approximate calculation
of the influence on P«of exchange interaction be-
tween the ground-state excitons. Their correction
was only a few percent. However, they used a
wrong value of the exchange parameter for ZnO

(j = 5.8 meV"). This value corresponds, essen-
tially, to the splitting between the longitudinal
excitons, since it was determined from the split-
tings of ref lectivity minima, as pointed out in Ref.
(19). It is the exchange splitting between trans-
verse excitons which must be applied when de-
termining resonance energies and oscillator
strengths. The exchange parameter for the trans-
verse excitons is j=0.95 me&." With this value
it is not possible to neglect the influence of the A.

P44 ~

0.10

0.05-

0.00

-005-

-0.10

-0.15

4200 4400 4600 4800 5000 5200

Wavelength l A]

FIG. 7. P44 for ZnO computed from Eq. (11) (solid
line) compared with the stress measurements (squares).
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photoelastic coefficients were derived applying
perturbation theory within the frame of the quasi-
cubic model. Exciton effects have been taken
properly into account. A model dielectric con-
stant has been derived for a solid where both
ground-state excitons and unbound continuum ex-
citon states contribute. The shear deformation
potentials of CdS and ZnO were obtained for the
first time from linear expressions.
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APPENDIX A

FIG. 8. P66 for ZnO computed from Eq. (12) (solid
line) compared with the stress measurements (squares).
Values of K 66 and C& obtained with exchange interactio n
taken into account are also shown.

exciton as was done in Ref. (4), and the analysis
becomes more involved. In Appendix C we have
estimated the exchange effects by using the results
of Ref. (19). It should be noted that there also
exists exchange interaction between the continuum
exciton states. However, the value of j is dif-
ferent for these. For simplicity, we use the same
value of j for both bound and unbound states. The
result obtained in Appendix C is that the exchange
does not influence the dispersion of P«appreciably,
but only reduces the absolute values.

From Figs. 7 and 8 one obtains the K values

E44 = —5.612 and E66 = —1.757. Furthermore, we
find C, = —0.86 eV neglecting exchange and C,
= —0.97 eV including exchange and C, = —2.64 eV.
Thus it is not possible from the shape of the P«
curve to tell whether exchange effects are impor-
tant or not (at least in the wavelength region con-
sidered here). Previous values of the shear de-
formation potentials are C, = —1.2,"—1.2, ' 2nd
—1.24 eV' and C, = —2.0 eV." The agreement
seems to be reasonable, since the previous values
are determined from second-order terms.

VI. CONCLUSION

We have obtained the dispersion of P4, and P«
both from piezobirefringence and Brillouin scat-
tering measurements and thus established that
the Brillouin scattering in CdS and ZnO is deter-
mined by elasto-optic effects alone. The resonant
enhancement and cancellation of the Brillouin scat-
tering correspond to the dispersion in the stress-
induced birefringence and its isotropic point, re-
spectively. Expressions for the six independent

From Eq. (Sa) the following relations are ob-
tained:

2~»(&» e» + P» e»+&» ess)
2»»(P12» + P»» +~13 ss)

~ass = ebs(psi exi + &3x e22+ &as ess)

&&g3 = —2&gg &3gPgg ey3

(A1)

(A2)

(A3)

an = ~n, —b, n, = (1j2v'e„)(b,~„—&e„),
1 3/2 3/2~11 (P» P12)(» e 2) 11 P66 66

where

(A5)

66 (Sll 12) a d ~66 ~(~11 ~12) '

When the uniaxial stress X forms the angle n
with the c axis, the strain components are

e» = (S„sin'n +S» cos'o. )X,

e» = (S» sin'n+S „cos'n)X,

e» ——(S» sin'n +S» cos2o.)X,

e„=g S„sin(2o.)X .

(A6)

(A7)

(A8)

As seen from (A4) and (A9), the dielectric ten-
sor is no longer diagonal. The new eigenvalues
are

~i s = 2(cia + ass) + 2 Be» ebs) + 4~eisl

~2 =~~X .

The new eigenvectors are

when only the strain components e», e», e„, and
e» are considered.

For uniaxial stress X-Lc we have e» =S»X,
e» =S,+, e,3 =S,+, and e,3 =0. When the light
direction k is parallel to the c axis (k )) c), the
important birefringence is
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(1,0, (A,, —e„)/he„)); (0, 1, 0);

((e» —A.,)/be»), 0, 1).

The angle 8 between the new optical axis and the
old one is given by

tan& = 2&e~s
+e13 e» ess+ I. (e» ess) + 4+e13~

or, more conveniently,

transforming c,. In order to perform this trans-
formation we shall neglect the exponential in the
denominator. This is a reasonable approximation
since most of the transitions occur near the criti-
cal point E=Eg. In our model, furthermore, we
shall neglect the excited bound exciton states.
The model dielectric constant then attains its con-
tributions from the ground-state exciton and the
unbound continuum exciton states:

e, =(K,/E) 5(E -E„)+(K,/E)8(E -E,),
2~a

tan26) =
Elk —Ess

11 33 4 13 11 33 44tan28 =
~ss ass —E~~

APPENDIX B: DIELECTRIC CONSTANT FOR

II-VI COMPOUNDS

(A10)

where K, =2R,heK' and K, =K,/2R, How. ever,
we introduce an extra degree of freedom by letting
K, be independent of K, . This is done because the
one electron band-to-band transitions also con-
tribute. By Kramers-Kronig transforming this
expression we find

K~ K2 E~
wE„(E» —E) wE E4 —E

In II-VI compounds the exciton transitions are
relatively strong. Hence they must be considered
when computing the dispersion of the refractive
index. Yu and Cardona' have done this by adding
the contribution from an exciton oscillator to the
dispersion from a parabolic band. In that treat-
ment, however, the continuum states of the ex-
citons are neglected. Since these states possess
considerable strength, we shall include them in
the present work.

The absorption 1»(E) due to exciton transitions
has been derived by Elliott" and may be written ~

where e„ is the background dielectric constant
arising from higher-energy bands. With 2EX
=E~+E, we obtain the more conventional expres-
sion for the oscillator term,

e, (E) =e„+,', + ' ln
2K1/w Ks/w E4

X

Introducing a broadening I"„for bound excitons
and I for the continuum states, the complex mod-
el dielectric constant may be written

e(E) =e +
X x

K ~ 2R,5(E -E„) 8(E -E,)
'ns ' I e-n

E+ sI'/2 E -E ii'/2— (B4)

(B1)

where Ap is the ground-state exciton binding en-
ergy, E„ is the energy of the nth excited exciton
state, E, is the band-gap energy, 8(E E,) 1s the-
unit step function, N is the refractive index at the
energy E in question, while

Rp I 1 P 47T6~ RpPand K'=
E -E~ hc mp Ex

Here p, is the reduced exciton mass, mp is the
free-electron mass, e, is the relative value of the
static dielectric constant, and Ex is the ground-
state exciton energy, while P' =2~(p) ~3/3m, . (P)
is the momentum matrix element for a transition
from the valence to the conduction band.

From (Bl) the imaginary part of e, is found:

ff cK' 5(E E„) 8(E E4-)-
0 s 1 -2 f}

+
n

(B2)

The real part c, may be found by Kramers-Kronig

where F=2K,/w and K, =K,/w. Equation (B4)
forms the basis of the computations in the present
work. For ZnO, where the exeiton effects are
most pronounced, we obtain from fitting to re-
fractive indices that K, =2.70 eV. If the exciton
continuum states contributed alone to Kp, one
should expect K,'=F/4R, . For ZnO, E=0.45 eV3

and&p 60 meV; so K,'=1.9 eV. This means that
about —', of the Ks strength arises from the unbound
continuum states which then seem to contribute
considerably to the dispersion of the refractive
index. For these materials it may therefore be
of limited value to apply the parabolic band mod-
el.~

APPENDIX C: PERTURBATION CALCULATION OF

PHOTOELASTIC COEFFICIENTS

In the quasicubic model for wurtzite crystals"
the three P-valence bands are split by spin-orbit
splitting (3A.) and crystal-field splitting (A). The
corresponding three energies of the band gaps
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involved are"

3 =E,a ~[(A —A. ) + 8K']'~'+ —,'(6+3k.), (C1)

TABLE II. %ave functions of the quasicubic model.

where E, is the width of the fundamental band gap.
The wave functions of the three valence bands"
are given in Table II. Here the arrows indicate
spin functions. p, =2 '~'(p„+ip„), and p„, p„and p,
are basis functions for the P -valence bands with
pure x, y, and z symmetry, respectively, while

P~. =p, & 42. =~~,p &+~~ p. &

p-h g 2& =~0. p+h ~n-pg

g3, =~a, p &-~e+p, t

3q =~a-p )+~a pz~

n, = —,
' f1+ (A-Z)/[(a -A)'+8k. ']'~') . (C2)

We use the strain Hamiltonian H, of Pikus. "
The strain components e», e», e33 and e» are suf-
ficient for determining the six independent photo-
elastic coefficients. The relevant matrix ele-
ments are

(p„&~a,~p„&) =(p„&~a,~p, a) =A, -A, ,

(p, t(a, [p, t) =(p,~(a, )p, i) =A, + A, ,

(p, t)a, (p, y) =(p,o(a, Jp, y) =A, .
Here,

A, = (C, + C,)e» + (C, + C,)(e» + e»),
5

= C5( ii — 22)

A, =C,e,.+C,(ei, +e„),
A, = (1/W2)C, e„.

Furthermore, it is convenient to introduce

A, = A, —A, = C,e„+C,(e„+e„).

Here C, —C, are the six independent deformation
potentials for the P -valence bands of wurtzite
structures. We obtain the energy gaps as func-
tions of strain from a perturbation calculation up
to second order:

P„'„=-,'p'„(1 -2n, A, /Z„2n -A, /E„),
P'„=-,'p'„(1+2n, A, /E„+2n A, /E„),

P'„„= n, P'„(1+2A,/E»+2n A, /E„),
P» = —,'n, P'„(1 —2A, /E»+2n A, /E»),
P,', = n P', (1 —2n, A, /E„),
P'„„=,n P„'—(1+2A,/E» —2n, A, /E„),
P~~ = ~n P„(1 —2A /E5, ~

—2n A4/E 3),
P,', =n, P', (1+2n A, /E») „

(C4)

whereP, and P, are the numerical values of the
P -matrix elements for transitions from valence
ba.nds with pure x (or y) and a symmetry, respec-
tively. These expressions are identica1. with those
derived by Yu and Cardona. ' Finally, we need the
following contributions to the off -diagonal elements
of the dielectric constant:

formation potentials C, and C, of Howe ef-, al."by
C,~ and C,~ the correct values are given by

C, = 2C,~ a.nd C, = W2 C,a .

From the perturbed wave functions we obtain the
following expressions for the squared P -matrix
elements P,", [define.d in (8)]:

n, A', a A',

12 12

P.', = -P.P.A.(n /E„+n. /E„),
P'„, =P„P,A, (n /E„—1/E„),
P„', =P„P,A, (n, /Z„+1/E„) .

(C5)

n, e A~ A'
+ +E„2E23

n A', n+A26E, =E', +e A, +a,A, —3 3 -1 + 3 E13 2E13

n, a A',

2E23

(C3)

where E'. . .are the unperturbed energies given
by (Cl), a.nd E» =E', —E,', E» =E,' E,', and—
E» = E,' —E', . These expressions have previously
been derived by Rowe etal. " In their derivation,
however, there are errors of factors of 2 in their
expressions for C, and C,. Denoting the shear de-

It turns out that the exchange splitting j between
the excitons in ZnO may be important. Inclusion
of this effect will, in general, mean solution of a
12 &12 perturbation matrix. " Fortunately, j «A.
and ~ in CdS so that j may be neglected here. In
ZnO, however, j =A, while j and A. «4. Here, the
exchange effects are important, but because of the
large 4 the problem is considerably simplified.
It was solved by Skettrup and Balslev, "and we
quote the results here. In this approximation
A. /h«1, so n, =1 and n =0. This also implies
that these effects only play a role in connection
with the C, deformation potential. The results
are"
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P' = —'p„[1 —(j —A, )/N ],
P'„=-.'p'„[1 -(j+W,)/N, ],
P'„„=-,'p'„[1+(j —W, )/N ],
P'„= ,'p„'[1—+(j+A, )/N, ],

where

(C6)

2 3~.f.. ~-f..
E

E, =p„p, (a, —a, )+ ' (a, —a, )
E1.

+ (a, —a))1

E.3

N, = [A. + (j + A, ) ]'/

Furthermore, the exciton energies also split. The
A. and B exciton energies are given by"

E, =E,'+A, +Z+j -N, ,

E =E +A, +A. +j +N

where the upper and lower signs correspond to
light polarized along or perpendicular to the stress
direction, respectively.

The photoelastic coefficients may now be de-
rived from Eq. (9). The following six independent
coefficients exist:

&+f'. f.'. -c/-f.'. f'.. -
66

12 13

1 2 3„=g„„+g„„+g,„, G„=g„„+n, g„„+n g„„,
1 2 3 1 2 3~z gzz+gzz+gzz ~ Gz gzz+ ++ gzz+ +-gzz

where f, , , g,", , and P;, are given by (7), (10),
(C4)-(C6), while a,. =f„',/P„', .

In the case of ZnO, where exchange effects may
be important, E« is changed into

I 2 I
xx xx ~ 1 2+""- &-)

where

P „=(1/e', )(K„+2 C+ee —2 C~E, + C,G„+C~G„'),

p, 2
= (1/c, )(K„—2C,E8, —2 C~E, + C, G„+C~G„'),

P„=(1/c,e,)(K„—2C,E, + C,G„+C,G„'),

p„= (1/e,e,)(K„+2C4E,+ C,Gg+ C,Gg),

p„= (1/e', )(K„+2CQ,+ C,G, + C,G,'),
p „=(1/op, )[K„+(C,/2~ )E„],
p„=-,'(p„-p„)=(1/~', )(K„+2C,E„),

Here, the Z values are derivatives of the nondis-
persive-background dielectric constant as indicated
in Eq. (9), K«=-,'(K» —K») and

fxx —c/+f xx-
E

(g2+ 2)1/2 (y2
' 2)3/2

It appeared from Appendix B that both the ground-
state exciton and the continuum excitons are im-
portant for the dispersion of e(E). Hence, we
have included exchange effects for the continuum
excitons as well. This must be an estimate, how-
ever, since j is different for these states.

It turns out that the first term in E6'6 dominates
over the second term in the relevant wavelength
region. Remembering that for ZnO
E»=-2(&'+j')'/', n+—- 1, and o. =0, it is seen
that E«obtained with or without exchange interac-
tion have exactly the same dispersion. In this
approximation we have E,', =E«jB/A; so the ex-
change interaction only changes the absolute values
of p«, but not the dispersion (in the wavelength
region considered here).
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