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Formation and dissipation of a Schottky barrier in a conducting dielectric*
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The formation of a cathode fall in an insulating material by means of a blocking electrode was

studied by von Hippel et al. In this paper we consider the formation of the cathode fall, assuming
that the material posseses an intrinsic conductivity whose carriers are not blocked by the electrode
contacts. It is shown that the contact barrier should gradually dissipate due to charge neutralization,
restoring the usual Ohmic behavior. The motion of the shock front and the external current are
calculated.

I. INTRODUCTION

The kinetics of a cathode-fall buildup was first
considered by von Hippel et al. ' In this picture a
cathode fall is formed when negative carriers are
pulled by an applied field away from the cathode
region, leaving that region with a net positive
charge. The presence of a blocking cathode pre-
vents the entrance of negative charges into the
crystal, thus allowing a strong potential drop to
form at the cathode. It was found that alkali-
halide crystals, additively colored with E centers
and under white light, yrovided a good system
for demonstrating this process. ' '

We know, however, that ionic crystals possess
ionic conductivity, and this would tend to neutralize
those positive charges responsible for the cathode
fall. In this paper we analyse the effect of such a
mechanism in the formation of the cathode fall,
under the assumytion that these carriers respon-
sible for the conductivity are not blocked at the
electrode.

Although the approach of von Hippel et al. was
devised for application in photoconducting crystals,
it provides a first insight for the understanding of
Schottky-barrier formation in general. The pre-
sent treatment's generalizing it can be helpful in
interpreting more complex situations.

II. THEORY

We shall assume that the material has mobile
positive charges, while the compensating fixed
matrix is negative. Their space-charge densities
will be denoted by +p,' and -p,', respectively. This
sign convention is opposite to that used in Ref. 1,
and so some of the effects described there will
have reverse polarity analogs here, for instance,
one should expect an anode (rather than a cathode)
fall to be formed. This change, however, is not
important, since it is easy to know what happens
when the signs of the mobile and fixed charges are
interchanged. Also, we shall assume that the

crystal has an intrinsic conductivity o' and that
the ca,rriers contributing to it are not blocked by
the electrodes.

We thus have two independent routes for con-
duction within the sample: the first is provided by
the conductivity, while the second is due to the
motion of the positive charges. The latter are
blocked at the anode and thus give rise to the
space-charge effects.

Under an applied external voltage V, the positive
charges will start moving toward the cathode. It
is then yossible to divide the crystal into the two
markedly different regions shown in Fig. 1. Region
II [d'(f') &x'&I] is characterized by the absence of
excess charge; it extends itself from the shock
front [e.g. , the position of the last front of positive
charge —a time dependent quantity which we will
denote by d'(f')] to the cathode at L Region I
[0&x'&d'(t')] is the (negatively charged) depleted
region bounded on one side by the anode, at x' =0,
and on the other side by d'(t').

As a result of inclusion of conductivity on the
model, one expects that the space-charge density
at any point in region I will continuously decay to
an asymptotic zero value. This will, in turn,
affect the motion of the shock front.

In Sec. IIA we set up the basic equations for the
position of the shock front as a function of time.
In Sec. IIB we will then seek the externally mea-
surable quantity, e,g. , the total current.

A. Motion of the shock front

We will assume a solution of the Poisson and
continuity equation such that (i) in Region I the
charge density is -p'(x', t') and the conduction
current density is given by O'E'(x', t'), E' being
the electric field and (ii) in Region II the net value
of the space charge is zero, while the conduction
current density is pp,'E'(d', t') +o'E'(d', t'). Intro-
ducing dimensionless variables through the rela-
tions
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l2
p(x, t) = l'p(x', f')/e V„p,=

eVO
'

I, . . . d'
E(x, t) = —E'(x', t'), d = —,

0

the assumed solution can be written
Region I: charge density -p(x, t), conduction

current density aE(x, t );
Region II: no net charge density and conduction

current density (p, + a)E(d, f)
Kith the help of the step function, here defined as

I1 for 0&x&d
IO for d&x&1'

we can write for the charge density p(x, t) and con-
duction current density i(x, t) the following expres-
sions valid for regions I and II:

p(x, t)= —p(x, t)6(d —x),

i(x, t) = aE(x, t)+ p~(x, t)e(x-d).

For 0&x&d, we find

Bp = Op.8t

Integrating around x = d, (2a) becomes

p(d, t)d = p,E(d, f).
Since the shock front moves with the velocity
d = E(d, t), we conclude that the modulus of the
negative charge density just after the front has
passed is p, . But this conclusion is just what we
should expect from the model.

Calling t(x) the time when the front passed the
plane at x, we write, as the solution of Eq. (3),

p(x t) p e- tt[t t(tt)]-

The function t(x) can be found as long as we know
d as a function of t, because inverting d = d(t) as
t = t(d) and substituting d for x, we have t(x). We

proceed to find d(t). For this, we will use the
condition

%e try to satisfy the Poisson and continuity equa-
tions, Edx= 1. (4)

Bp B?—+ —=0
Bt BX

For this we find

Bp Bp—= ——e(d - x) - p[}(d- x)d,
Bt Bt

Bz—= —ap8(d —x)+ p,E5(x —d),
BX

or, using (2)

——8 (d —x) —p[) (d —x)d
Bp
Bt

= a'p8(d —x) —p,E5(x -d) .

Calling E, the field just in front of the anode
(x= 0), we have

x

0 & x& d, E(x, t) = E,(t) —p, e "J e '[* }dx',
0

d

dexel, d}d, t}=d}t)—ee ",
J

e " 'dx'*
(6)

Using (4), and performing a convenient integra-
tion by parts, we find

)=Z (t) —de " f e" 'dx —J *x'e'"'* tdx')
0 0

Since d = E(d, t), we write, taking account of
Eq. (6),

d = 1-p,e-" x'e ""'dx'.
0

Region I
V= Vo

—I

I

I

I

I—
I—I

I

I

I

I

I

I
I

X'

Region Zl

y= g+ pod

Eq. (8) becomes

(9a)

Multiplying through by e ' and differentiating
once, we find

d + d (a + pt)d) = a' .

Integrating Eq. (7), we have, with C a constant

d+gd=o. t —2p d +Q.

At t= 0, d= 1, d= 0, and so C is found to be 1.
Calling

FIG. 1. Situation during the motion of shock front. y + ~ y = (y pop + pp + 2 0 (9b)
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FIG. 3. Contribution to the total current coming from the shock front for specified values of the parameters & and
2P/n.

We see that j is continuous but its derivative
with time is not. Besides, if the crystal were
short circuited after the shock front had reached
the anode, no current would be observed.

Another quantity of interest is the total charge
Q per unit area that circulates in the external
circuit, while the shock front moves from d = 0
to d = 1. Using Eq. (14) we easily find

t(& = z)

j dt = —,.' p, + o t(d = 1) .

The term ot(d = 1) clearly gives the contribution
coming from the conductivity. The remaining one
corresponds to the product of the charge p, with
the mean distance it travels during the process.
It is clear that as long as the shock front reaches
the cathode the total charge depends only on the
density of moving charges p,' and the electrode
distance I,.

III. DISCUSSION

Figure 2 shows the motion of the shock front in
units of z and T for some values of the parameter
e . The n = 0 curve reproduces the result of von
Hippel et al. ' For n = 0.01 the curve practically
duplicates that of a = 0, at least in the range of
T shown. For increasing n, the curve z vs T

tends to a straight line, as a result of the increas-
ing influence of the conductivity, which rapidly
destroys the space charge just formed behind the
shock front. The upper limit of T, corresponding
to z = —', n + (n/2P)(d = 1) depends on the pa, rameter
P, and so should be found accordingly. [Figure 3
is a plot of (2P'/o. ')j -P vs T, or the equivalent

(1/p, )(j —0) vs T ]Now, we .have chosen the pa-
rameters n and 2P/n= d'„/t to express our results.
Increasing values of n and decreasing values of
2P/n mean decreasing barrier length of the sample.

We see that significant differences between the
conducting and the perfect insulator crystals are
already present for 2P/u = 0.1 and o. of order of a
few tenths, stressing again the relative importance
of the conductivity for thin barriers. The o. = 0
curves reproduce, in each instance, the result of
von Hippel etal, .' and are only partially shown.

The present results constitute an exact solution
for the problem of a fixed negative matrix and a
free positive initially compensating space charge
in a conducting dielectric, diffusion being neglected.
In actual cases, the mobile space charge will not
be free and trapping mechanism will come into
play. Therefore at most we may expect an approx-
imate resemblance of our results with some ob-
served experimental dielectric polarizations.
Among these, the polarization of naphthalene has
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been attributed in part to the formation of a Schot-
tky barrier, ' and the time dependence of its polar-
ization is in apparent agreement with our results
for small 2P/n [Figs. 3(c) and 3(d)].

A competitive explanation for the nature of these
decaying polarization currents can be found in the
field of injection currents (space-charge limited
currents). ' Here a different boundary condition
is assumed, e.g. , ohmic contact at the injecting
electrode, as opposed to our blocking contact
for one kind of carrier. As Many and Bakavy'
have shown, the transient before the establishment
of the stationary regime can also show a decreas-
ing current when a great deal of trapping is pre-

sent and detrapping is almost absent. One of the
characteristics of such a process is the depen-
dence of the initial value of the current on V,/P,
differing markedly from the model studied in this
article, which predicts an initial value of the cur-
rent proportional to V,/l. Aside from experiment-
al difficulties, the difference just mentioned could,
in principle, be used to distinguish both kinds of
process.
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