PHYSICAL REVIEW B

VOLUME 11,

NUMBER 6 15 MARCH 1975

Vibrational properties of amorphous Si and Gel

R. Alben and D. Weaire
Department of Engineering and Applied Science, Yale University, New Haven, Connecticut 06520

J. E. Smith,Jr. and M. H. Brodsky
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
(Received 10 September 1974)

Calculations of the vibrational density of states and the Raman and infrared spectra have been
performed for random-network, microcrystalline, and polymorph structures of Si and Ge. The
polymorphs considered include SiIIl, Ge IIl, and two clathrate structures. The calculations are based
on simple semiempirical forms for interatomic interactions and Raman and infrared activities. The
results for some representations of the random network compare favorably with experimental
measurements on amorphous Si and Ge. The apparent similarity of the vibrational densities of states of
amorphous Si and Ge to those of diamond cubic Si and Ge is explained by a study of the form of the
density of states for nearest-neighbor central forces. There is an interesting relationship to a simple
tight-binding theory of the electronic density of states in this limit. The variations of infrared and
Raman activities in different parts of the spectrum are discussed. Numerical calculations for energy-loss
spectra in neutron scattering are also presented. A simple model explains the oscillation of intensity
between the high- and low-frequency parts of the spectrum as the scattering vector increases.

I. INTRODUCTION

In this paper we gather together the available
experimental data on the vibrational properties of
amorphous Si and Ge and present a theoretical
analysis of most of the major features of the ob-
servations as well as some predictions for neutron
scattering. The theory is of a semiempirical na-
ture. It would clearly be most inappropriate to
attempt for amorphous semiconductors what is al-
ready a difficult undertaking for their crystalline
counterparts, namely, the calculation from first
principles of vibrational eigenstates, band struc-
ture, and hence the Raman and infrared cross
sections which depend upon them. We choose in-
stead to use a simple force-constant prescription
for the calculation of the vibrational spectrum and
express the matrix elements for Raman and infra-
red intensities in terms of contributions from in-
dividual bonds, involving few adjustable parameters.

In addition to such a scheme for the calculation
of spectra, one must adopt a specific model for
the structure of amorphous Si and Ge. Indeed,
current uncertainties regarding the details of this
structure provided much of the motivation for this
study, since it was hoped that vibrational proper-
ties might offer a further means of discriminating
between rival structural models. All that is rea-
sonably certain, on the basis of x-ray diffraction
evidence,! is that amorphous Si and Ge are tetra-
hedrally bonded, with bond lengths equal to those
of their crystalline forms to within about 1% and
a modest spread of bond angles about the ideal
value of the order of ten deg. Beyond this, one
can only say that the diffraction data ‘are persua-
sive of the validity of the random-network model
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of Polk? and others, but not conclusive. In particu-
lar, Rudee and Howie® have suggested on the basis
of other evidence that the structure of amorphous
Si and Ge is of a microcrystalline nature, the mi-
crocrystals being of the wurtzite structure, and
they claim such a model can be compatible with

the x-ray data.

In most of our calculations we employ represen-
tations of the continuous-random-network structure.
Since there is no unique set of coordinates which
defines such a structure, we have done calculations
on a number of network models, including those of
Henderson® and Polk,? as well as models which we
ourselves have constructed. We feel that the de-
gree of success achieved lends further support to
the network structure. We have investigated some
simple microcrystallite models and our calcula-
tions will show that it would be necessary to add
further refinements (such as large internal strains)
to these in order to achieve the same degree of
agreement with experiment.

In view of the uncertainties regarding the stuc-
ture of amorphous Si and Ge, it is fortunate that
there exist well-defined metastable crystalline
structures of Si and Ge which have large unit cells.
These are the so-called BC-8 and ST-12 struc-
tures.® They have already served to test ideas
regarding electronic properties®® of the amor-
phous forms, and they may similarly serve to test
our approach to the vibrational problem. A pre-
liminary calculation of this type has been reported®
and compared with Raman data for SiIll (BC-8)
and Gelll (ST-12). We will present here addition-
al calculations for the BC-8 and ST-12 structures,
as well as results for certain clathrate structures!®
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with even larger unit cells. Experimental data on
Si-Na compounds in which the silicon atoms form
these structures may soon be available.

Finally, we present predictions for inelastic
neutron scattering in amorphous Si and Ge. In
the limit of large momentum transfer, this pro-
vides a direct measurement of the vibrational den-
sity of states without the complication of any
weighting due to matrix elements as in the Raman
and infrared experiments. For smaller momentum
transfer we find an oscillation of scattering inten-
sity between low- and high-energy loss as the mag-
nitude of the momentum transfer changes by about
1.5 A" (for Ge). This behavior is well explained
in terms of the character of modes at the upper
and lower ends of the spectrum, and it is rather
different from that predicted for a polycrystal.

We shall begin with a short review of past and
prevailing theoretical ideas and a summary of the
available experimental data.

II. REVIEW OF THEORY AND EXPERIMENT
A. Theoretical background

Our intention here is not to give a full review of
theoretical ideas in this area, but merely to set
the scene for the results of the following sections
by mentioning some relevant previous work. Re-
cent reviews have been given by Bell,'* Dean,?
Lucovsky,'® and Béttger.*

In many amorphous solids there is short-range
order (usually meaning nearest-neighbor coordi-
nation only) similar to that of crystalline phases
of the same composition. In such cases the vibra-
tional spectrum is found to strongly resemble that
of the crystal. The finding of Smith ef al.'® that
this is true for amorphous Si and Ge (see Sec. IIB)
is thus typical of many amorphous solids. Most
of these are much more complicated than Si or Ge,
and it is difficult, in general, to pursue the matter
further except to say that it is indicative of the
short range of the dominant interatomic forces.
The short range of such interactions would seem,
however, to be a necessary rather than a sufficient
condition for the invariance of major features of
the spectrum, and the nature of the modes respon-
sible for the various features must be studied to
give an adequate explanation of their lack of depen-
dence on structure. The classic analysis of this
kind was that undertaken by Bell and Dean!!*? for
Si0,. They performed extensive numerical calcu-
lations for random-network models and associated
each of the various peaks on the vibrational spec-
trum with modes of a particular local character,
in terms of the bending and stretching of bonds.
Even SiO,, however, is a comparatively complex
system, and the picture evolved by Bell and Dean
is necessarily less tidy than that given below for
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Si and Ge. The comparative simplicity of the latter
and the well-developed theory of electronic and
vibrational properties of their crystalline phases
make them ideal prototypes for the theoretical
study of amorphous solids in general.

The numerical calculations of Bell and Dean
used special techniques!! to find the eigenvalue
spectrum, rather than direct diagonalization of
the dynamical matrix. This enabled them to deal
with rather large random-network clusters of sev-
eral hundred atoms. However, the advantages of
this procedure are somewhat diminished when one
considers the problem of estimation of Raman and
infrared intensities, and also of identifying and
projecting out boundary-related effects. These re-
quire the calculation of eigenvectors which are not
directly given by the most efficient methods for
computing eigenvalues. Bell and Dean thus calcu-
lated only small samples of eigenvecwors, and this
was found not to be entirely satisfactory, since the
intensities did not vary smoothly from one eigen-
vector to the next, It is for these reasons that we
have chosen to simply diagonalize dynamical ma-
trices, representing relatively smaller models
than those of Bell and Dean, but with more sophis-
ticated boundary conditions. Although the develop-
ment of more efficient procedures to treat larger
models along the lines suggested by Bell and Dean
is, in the long run, desirable, we believe that at
present more can be gained from studying smaller
clusters with better boundary conditions.

In this regard it might be noted that prior to the
work of Bell and Dean, most interpretations of ob-
served spectra had been based on the study of iso-
lated clusters such as SiO, (see, e.g., Gaskell'?),
This is a highly questionable approach in any sys-
tem which cannot be divided into strongly bound
molecules which interact weakly. Only very re-
cently has there been an effort to incorporate into
this point of view a proper allowance for the inter-
actions of the molecular unit with its environ-
ment,!%17

The k =0 selection rule restricts Raman and in-
frared spectra to a series of sharp lines for crys-
tals, while for amorphous solids the absence of
periodicity allows all vibrational eigenvectors to
contribute to the spectrum; so the Raman and in-
frared spectra both extend over the entire vibra-
tional spectrum. Of course, this statement does
not imply that the weighting of different parts of
this spectrum need be similar. In practice, it is
often the case that the infrared and Raman spectra
are only moderately distorted by this weighting,
Shuker and Gammon'® asserted that theoretical con-
siderations would lead one to expect a roughly con-
stant weighting within each of the bands of which the
Raman spectrum is composed. However, subse-
quent developments have not given much support
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to this idea. In particular; as mentioned in Sec.
VIB, the lowest-frequency bands have a striking
variation of intensity in both Raman and infrared
spectra. (See also discussion by Whalley and
Bertie. !®)

Hass?® estimated infrared intensities for SiO,
on the basis of a point-charge model, and Bell and
Dean have made some preliminary calculations of
the same sort, as well as calculations of Raman
intensities for SiO, using a bond-polarizability mod-
el analogous to the one used here. We might note
here that, while the choice of the appropriate
zeroth-order approximation for infrared intensities
is an obvious one in most cases, being given sim-
ply by a point-charge model, in the case of a homo-
polar solid such as Si or Ge this gives zero. Here
it is necessary to invent a more elaborate model,
which we undertake in Sec. IIIC.

The key to several of the interpretations of the
experimental and numerical results which we shall
give is the consideration of a simplified model in
which all but the nearest-neighbor central forces
are neglected and nearest neighbors are assumed
to have exact tetrahedral symmetry. At first, this
might seem an unreasonable model for a covalent
semiconductor, since tetrahedrally bonded struc-
tures cannot even be stable with respect to such
forces. Nevertheless, it does appear to be true
that the central forces are the strongest forces
at work in the determination of vibrational eigen-
states. It has proved very useful, at every stage,
to develop a clear picture based on these simplifi-
cations, which is then perturbed by the considera-
tion of the effects of the smaller noncentral forces
and distortions from local tetrahedral symmetry.
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B. Experimental background

We know of at least five different experimental
methods which have given information on part or
all of the vibration density of states of amorphous
silicon and germanium. These methods are Raman
scattering, 12 (¥-26 infrared absorption®*™?° or re-
flection,®® low-energy electron tunneling,®%? high-
energy electron energy loss, *3 and neutron scat-
tering.* The most comprehensive data, as regards
the variety of samples studied, have been obtained
by Raman and infrared spectroscopy. We shall
review the results of each of the above types of
vibrational spectroscopy on amorphous Si and Ge
as well as the results of studies on Si and Ge poly-
morphs,®36:37

1. Raman scattering

Smith and his co-workers!®2!~2% yere the first
to obtain Raman spectra of amorphous Si and Ge
as well as a number of related III-V amorphous
semiconductors. A direct trace of a typical low-
temperature (27-K) spectrum of amorphous Si is
shown in Fig. 1. A first-order Stokes Raman
spectrum is proportional to the factor n(w, 7)+1,
where 7 (w, T) is the Bose-Einstein distribution
at temperature 7 for vibrational energy w. The
anti-Stokes spectrum is proportional simply to
n(w, T), and so vanishes as the distribution func-
tion goes to zero. At 27K and w>100 cm™,

n(w, T)<1 (as can be seen by the absence of the
anti-Stokes spectrum), and the Stokes spectrum
is independent of the distribution function. The
spectrum shown therefore differs from the vibra-
tional density of states only by the factor 1/w dis-
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FIG. 1. Raman spectrum of amorphous Si at 27 K. The material was prepared by high-energy ion bombardment.

In-

strumental resolution is 10 ecm™, The spectrum was excited by 0.24 W of 488-nm light and the measured peak height at

480 cm™ is 35 photons/sec  (Ref. 21).
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FIG. 2. (a) Top: Room-temperature infrared absorption constant (solid line) vs wave number for amorphous Si
(Ref. 29). Also shown is the reduced Raman spectrum (dashed line) from room-temperature data (Ref. 21), Bottom:
Density of states (dashed line) of crystalline Si from a fit to neutron-scattering data [Ref. 35(b)]. The solid line is the
broadened density of states; the broadening is described in Ref. 21. (b) Top: Room-temperature infrared absorption
constant (solid line) vs wave number for amorphous Ge (Ref. 29). Also shown is the reduced Raman spectrum (dashed
line) from room-temperature data (Ref. 15). Bottom: Density of states (dashed line) of crystal Ge from a fit to neu-
tron-scattering data [Ref. 35()]. The solid line is the broadened density of states (Ref. 21).

cussed in Ref. 18 and by factors accounting for
the dispersion in the Raman coupling. Smith

et al.® observed that for energies below about

550 cm™ this Raman spectrum is similar to the
vibrational density of states of crystalline Si, and
they suggested that (i) the dispersion in the Raman
coupling is a slowly varying function of frequency
and (ii) the vibrational spectra of the amorphous
and crystalline forms of Si are very similar. The
broad continuum above the first-order spectrum
ending at about 1050 cm™ is probably second-order
scattering; this is supported both by the tempera-
ture clepe’ndence21 and the analysis given in this
paper.

Smith ef al. have also performed a variety of
experiments to establish that the reported spectra
are characteristic of amorphous Ge and Si and in-
dependent of method and temperature of prepara-
tion. Amorphous Si was prepared on substrates

at temperatures from 300 to 750 K. Methods of
preparation included vapor condensation of Si or
Ge, chemical vapor deposition of. Si from SiH,,
rf sputtering of Si and Ge, and high-energy ion
bombardment of polished crystalline Si or Ge sur-
faces. No measurable differences in the Raman
spectra were observed. Wihl ef al.? have observed
a difference in the location of the high-frequency
peak of amorphous Ge prepared by the sputtering
and electrolytic methods and relate this to a 1%
difference in the material densities. To our knowl-
edge no studies have been performed on samples
prepared and maintained below room temperature.
The upper part of Fig. 2 (a) shows the reduced
Raman spectrum of amorphous Si. The reduction
corresponds to multiplication of the Stokes spec-
trum by the factor w/[n(w, T)+1]. Shuker and
Gammon!® have pointed out that in the absence of
matrix-element effects the shape of this reduced
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spectrum would be that of the vibrational density
Figure 2(b) gives equivalent results

of states.

for amorphous Ge.!® The results of Wihl et al. %
are in good agreement with those shown in Fig, 2.
The lower parts of Figs. 2(a) and 2(b) show the
crystalline densities of states, as well as broadened
versions of them.!'®2! It is clear that the general
features of the reduced Raman spectra are given

by the crystalline density of states, appropriately
broadened, although the higher-frequency modes

of the reduced Raman spectra are relatively stron-

ger.

700

FIG. 3. (a) Transmit-
tance of 37 um of a-Si on
both sides of a wedged
high-resistivity crystal-
line Si substrate relative
to a matched uncoated
substrate. (b) Transmit-
tance (solid line) of 25 um
of a-Ge on both sides of a
wedged high-resistivity
crystalline Si substrate
relative to a matched un-
coated substrate. The
dashed curve is an esti-
mate of the interference
fringes in the transmit-
tance (see Ref. 29).

2. Infrared spectroscopy

22175

The infrared absorption spectra of Brodsky and
Lurio?® are also shown in Figs. 2(a) and 2(b).
There is a well-defined peak in the middle of the
spectrum where the Raman results show only a
hint of structure; in addition, there are low- and
high-energy peaks as in the Raman spectrum.
However, because of the experimental difficulties
in the far-infrared region, the relative strengths
of the three peaks are not known precisely.
believe the Si data to be more reliable, the rea-

We
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sons for which are easily seen from the raw data
of Fig. 3. The complicating effects of multiple
reflection interference effects and low absorption
in the thin-film samples distort the Ge spectrum.
The Si data are clearer mainly because of thicker
samples, the higher frequency range, and a fortu-
itous masking out of the fringes because of thick-
ness variations. In Fig. 4 we see that the ab-~
sorption measurements of Prettl et al.?® and the
reflectance measurements of Stimets et al.*° show
relative intensities of the three peaks of amorphous
Ge different from the results of Ref. 29. In the
absorption spectrum (Fig. 4) of Prettl e al.2® the
two lower-frequency peaks are barely discernible
as shoulders in the high-frequency peak. In con-
trast to this, the reflectivity data of Stimets et al.%°
have been analyzed to give an absorption spectrum
(Fig. 4) with the three distinct peaks, but the two
lower-frequency peaks are relatively more en-
hanced than in the Brodsky-Lurio results. For
the sake of comparison with our calculations be-
low, we shall use the amorphous Si data of Fig. 2.
However, the lowest-frequency peak should be
regarded with some caution, in light of recent mi-
crowave loss measurements®*® which suggest that
mechanisms other than lattice vibrations might be
important for low frequencies.

The total strength of the infrared absorption in
amorphous Ge and Si is substantial compared to
the usual lattice absorption of the closely related
crystalline III-V compounds. The integrated ab-
sorption strength, expressed as Ae¢, the contribu-
tion to the low-frequency dielectric constant, is
about 0. 5 for amorphous Si and 0. 3 for amorphous
Ge.?® Typical values for crystalline III-V’s are

0.0 /1 1 1 1 1
o] 100 200 300 400

ENERGY (cm)

FIG. 4. Comparison of the absorption constant vs
wave number for amorphous Ge as determined by three
different groups. Solid line: Brodsky and Lurio, Ref.
29, 0oy =166 cm™; short-dashed line: Stimets et al.,
Ref. 30, 0/pay =164 cm™; dash-dotted line: Prettl et al. ,
Ref. 28, Oy =910 cm™t,
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FIG. 5. Tunneling density of states of amorphous Ge
as deduced by Ladan and Zylbersztejn (Ref. 31). Here
o is the tunneling conductivity at the voltage V=#w/e.

around A€ =2, Although some workers®® 3 have
attributed the disorder-induced absorption in amor-
phous III-V’s to a redistribution of the crystalline
oscillator strength, it is clear that in the case of

Si and Ge, where there is no first-order oscillator
strength for the crystal, the spectrum cannot be
viewed as a broadening or redistribution of process-
es allowed in the crystal.

3. Tunneling spectroscopy

Ladan and Zylberstejn®’*2 have deduced the vi-
brational spectrum of amorphous Ge from phonon-
enhanced electron tunneling through a Ge barrier.
Their samples were evaporated onto 77 K sub-
strates, but apparently exposed to ambient tem-
peratures before being cooled to 4.2 K for mea-
surement., As seen in Fig. 5, their results are
qualitatively similar to the reduced Raman spec-
trum. We have not made any calculations of tun-
neling spectra.

4. Electron-energy-loss spectroscopy

Schrdder and Geiger®? have reported that high-
resolution (5-meV) detection of the energy loss of
25-keV electrons can show features of the two
phonon spectra of amorphous Si and Ge. More
recently Schréder® reported that the single-phonon
density of states is also observable by similar
techniques. We make no effort to interpret these
results.

5. Inelastic-neutron-scattering spectroscopy

Axe et al.®® have preliminary results for the

elastic-neutron-scattering spectrum for the low-
frequency branch of the amorphous Ge. The re-
sults show that the low-frequency peak in the den-
sity of states of amorphous Ge is slightly broader
and shifted to lower frequency compared with the
transverse accoustic (TA) peak of the crystalline
form. As we show below, the neutron technique
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should be a good measure of the entire vibrational
density of states, particularly if proper account
is taken of the dependence of the spectrum on mo-
mentum transfer. However, our treatment does
not give any explanation for the observed small
shift of the TA peak.

6. Polymorphs and clathrates

There exist several crystalline polymorphs of
Si and Ge. These phases are generally obtainable
by various high-pressure and -temperature cycles.?
Several of the polymorphs are metastable at am-
bient conditions after the completion of the pres-
sure-temperature processing. In addition, there
are complicated cagelike forms of Si with small
amounts of Na which have clathrate crystal struc-
tures.!® Raman spectra of GeIll (ST-12), SilIll
(BC-8), and wurtzite Si (2H-4) have been report-
ed®%%37 and analyzed with a model similar to that
used below for the clathrates. We have tried to
observe Raman scattering from Si clathrates and
have yet to succeed.

III. INGREDIENTS OF A THEORY

A. Structure

Our numerical calculations are, in essence,
simply normal-mode calculations for various mod-
els intended to represent amorphous Si and Ge. A
prerequisite for the calculation is then a set of co-
ordinates defining the positions of all the atoms in
the model. It is desirable that the model contain
many atoms in order adequately to represent a
nonrepeating structure, but it is also desirable
that the dynamical matrix, which is of the order
of three times the number of atoms (z) be small
enough to be conveniently diagonalized. The gains
in resolution, volume-to-surface ratio, and limit-
ing wavelength all vary as fractional powers of #,
while the calculation cost tends to increase as »®
for large n. These conditions limited the size of
models to about 90 atoms, with relatively little
to be gained from considerable increase in cost
and/or computational complexity for larger num-
bers of atoms. Since simple clusters of 90 atoms
tend to have about 60% of the atoms with at least
one surface bond, boundary conditions are quite
important. This is especially true in calculations
of infrared intensities, as will be discussed in
Sec. LIC.

We have done calculations on three types of rep-
resentation of the continuous random network.
These are hand-built periodic “Henderson” mod-
els,* computer-generated periodic-defect models,
and hand-built relaxed-cluster “Polk” models®
with quasiperiodic boundary conditions. It might
be noted that the computer-generated cluster mod-
els with relatively low distortions and no dangling
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bonds have only very recently become available.?®
It would be most desirable if low-distortion peri-
odic models could be generated by computer, but
this goal has yet to be achieved. (See, however,

Ref. 40.)

The first type of model is constructed by filling
a cube, which would contain 64 atoms in a diamond-
cubic arrangement, with tetrahedral units connect-
ed in such a way that (i) a substantial number of
fivefold rings of bonds are present, (ii) all atoms
with bonds protruding through the surface can be
connected with other atoms in the structure dis-
placed by unit vectors parallel to the cube edges,
and (iii) distortions from tetrahedral bonding at
each site are as small as possible. These models
can therefore be considered as repealing crystal
structures with large unit cells. Henderson® has
built such a model with 61 atoms and an rms angu-
lar distortion of 12.5°. We have built another
such structure with 62 atoms with an distortion
of 14.9°, These models have much greater angu-
lar distortion than the 7.1° of the Polk model be-
cause the severity of the constraint of periodic
boundary conditions requires considerable relaxa-
tion of the requirement of small distortions from
tetrahedral symmetry.

The second type of model is derived from a dia-
mond-cubic structure by a computer procedure
which creates defects containing fivefold rings of
bonds. In this procedure an atom is selected at
random and removed. Those atoms which had been
neighbors of the removed atom are bonded to one
another. This reduces the number of sixfold rings
of bonds, creates fivefold rings, and also disorders
the structure in some sense. At each stage in the
process tests are made to ensure that no fourfold
rings of bonds are created. When the desired num-
ber of defects have been created, the structure
is relaxed in such a way as to minimize the Keat-
ing®! elastic energy. Structures created in this
way have relatively large distortions and are con-
sequently of little direct use, but it is interesting
to compare the results which arise from them with
those of other models.

The third type of random-network modelis derived
from the tetrahedrally bonded cluster described
by Polk.? These clusters have a good deal less
distortion from tetrahedral bonding than do the
periodic models. They present the problem of the
treatment of surface effects. Bell and Dean'"*?
used “fixed” and “free” boundary conditions. The
following quasiperiodic boundary conditions seems
preferable. Each atom with a surface bond is
bonded to another such atom displaced by a vector
chosen to minimize the deviations from tetrahedral
bonding. Pairs of bonds to be so connected are
chosen so that fourfold rings of bonds do not occur.
In this way we have created models with very low
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FIG. 6. Radial distribution functions for some of the
model structures used in the calculations of vibrational
spectra. “6l-atom?” is a periodic hand-built computer-
refined structure due to Henderson; ‘62-atom’” is a sim-
ilar structure built as part of this work; “58-atom” is a
periodic defect structure derived from diamond cubic;
“Polk” refers to low-distortion nonperiodic models of
the type studied by Polk. (See Table I for distortions
and ring statistics of these models).

TABLE I. Summary of structural properties of mod-
els.

fivefold sixfold

Model (a2t 27 (aZg)t/2 rings/atom  rings/atom
61 3.8% 12.3° 0.41 0.90
62 4.3% 14.9° 0.42 0.85
58 3.5% 12.5° 0.38 1.07
Polk?® 1% 7° 0.38 0.90

2Does not include distortions associated with quasiperi-
odic boundary bonds. Typical boundary-bond angular
distortions are 15°—20°, Boundary-bond distance distor-
tions are constrained to be zero.

interior distortion, and distortions at the surface
only somewhat higher than for periodic models.
For properties which are particularly sensitive to
the distortion, which include infrared absorption,
it is still desirable to count only contributions from
the internal part of the cluster (see Sec. IIIC)..

A comparison of some of the models for which
vibrational properties were computed is given in
Fig. 6, where we show radial distribution func-
tions, and in Table I, where we indicate bond length
and angle distortions and ring statistics for rep-
resentatives of the three types of structure.

B. Force constants

The phonon dispersion relations of the crystal-
line group-IV semiconductors have been investi-
gated with extraordinary thoroughness by means
of neutron scattering,*? both on and off the princi-
pal symmetry directions. Various semiempirical
models have been used to interpolate and interpret
the data. In all of these, nearest-neighbor central
forces are the largest forces involved. If smaller
short-range forces which resist angular distortions
are also included, one obtains a qualitatively sat-
isfactory spectrum. If one demands a very high
degree of agreement with the experimental data,
it may be necessary to include quite distant inter-
actions, as Herman showed.*® This should not,
however, be allowed to obscure the essential sim-
plicity of the phonon dispersion relations in these
materials.

If simple forces resisting angular distortions
are to be incorporated in a force-constant scheme
there is some arbitrariness in the choice of the
form of such forces, The prescription of Keating?
is to use a term in the potential energy of the form

1

3 - =y = - > -
167, 2, (@ =Ta) - Far 0+ @ -Ta) T OF (1)
16 ° ;{7

to represent such bond-bending forces. In addi-

tion, there is the central-force term, which may
be written
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%a ;[(ﬁz U, - Ta (P, (2)

where the expression in square brackets is the
compression C, (I) of the bond A of atom I, Here
(and throughout this paper) a and B are bond-
stretching and bond-bending force constants, re-
spectively; the sums are on atoms / and their
nearest neighbors A; ¥, (7) is the unit vector from
the equilibrium position of atom 7 to that of its
neighbor /A; U, and U;, are the displacement vec-
tors of these atoms. Equation (1) may be derived,
in the harmonic approximation, from the assump-
tion of a potential-energy term which depends only
on the scaler product of nearest-neighbor vec-
tors.'"** The alternative “valence-force” model*®
is derived from the replacement of this scalar
product by the corresponding interbond angle. Yet
another choice is that of the Born model, *® in which
the potential energy is

Foon 37 (@ - 51a) B OF
ia

aBorn—B orn Z (ﬁl—ﬁlA)z .
4 1a

+
Somewhat confusingly, « and 8 are also conven-
tionally used here, but their meanings are not the
same as in the Keating model—hence our designa-
tion “Born.”

A priovi, there is not much to be said in favor
of any of these except that the first two, being ro-
tationally invariant, avoid certain possible pitfalls
inherent in the Born model, ¥ Martin*8 has argued
in favor of the Keating prescription, on the grounds
that the identity which it implies, relating the three
elastic constants of the diamond-cubic structure,
is close to being satisfied by the experimental data.
The Keating model is also attractive in that it is
slightly more economical for computation than the
valence-force model. We have chosen this pre-
scription for the calculations presented here but
do not wish to belabor the distinctions between it
and the others, which are of little significance at
the level of detail with which we are concerned.

By the same token the details of the phonon dis-
persion relations, such as the flattening of the TA
nodes near the zone boundary, ** which have been
much discussed in terms of more forces of longer
range, such as are incorporated in the shell mod-
el*® and the bond charge model,*® as well as exten-
sions of the above formulations, will not concern
us here.

However, the existence of such forces must be
borne in mind in the interpretation of our results.
As well as influencing the shape of the spectrum
and the character of the modes directly they may
also be reflected in the structure itself. Most
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model structures have been refined by the minimi-
zation of the energy without regard to these more
distant forces. It may be argued, for instance,
that the small width of the second-nearest-neigh-
bor peak in the RDF of the Polk model, relative

to the experimental RDF, is due to the neglect of
such forces.

C. Matrix elements

Having calculated the vibrational modes of a given
structure with suitable force constants, it remains
to assign infrared and Raman activities to these
modes.

Both activities may be written as complicated
integrals over the electronic states of the valence
and conduction bands.’"** However, even in crys-
tals where the calculation of such electronic states
is relatively straightforward, such a first-princi-
ples calculation is a formidable undertaking. In
In the case of diamond cubic Si and Ge, for which
the k =0 TO modes are Raman active (and not in-
frared active), only Swanson and Maradudin®® have
attempted such a calculation to date.

The expressions which we will use to calculate
Raman and infrared activities are based on a local-
ized point of view, in which these quantities (or
rather, the transition probabilities associated with
them) are written as sums of local contributions.
Short-range order and local symmetry can then be
used to restrict the allowed forms to a few possi-
bilities, which may be weighted with adjustable
coefficients., Presumably the Wannier-function
formalism is the key to the relation of such a pic-
ture to that which involves integrals of matrix
elements of extended wave functions. While one
may appeal to this in principle, it is difficult to
follow through in practice, and we appeal rather
to the general success of theories based on the
local picture, as practiced by Phillips®® and others
in recent years, as a justification for such an ap-
proach. A resort to the band picture might be nec-
essary if, for instance, any significant dependence
of the Raman spectrum on the exciting frequency
were to be found. To date, no such dependence has
been reported. It should be noted, however, that
the frequencies which have been used are rather
close together.

The transition probability whose square deter-
mines infrared activity is proportional to the dipole
moment M associated with the vibrational mode.

If we write the displacement of atom / in a given
vibrational mode as {, then, to first order, the
dipole moment is a linear function of U;. In keep-
ing with our above remarks, we may try to ap-
proximate this function by a sum over all of the
nearest-neighbor bonds of the system. However,

if it is further assumed that each bond can be treat-
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FIG. 7. Mechanism for infrared activity. During a
vibration, bond charge moves from extended to com-
pressed bonds, resulting in a local electric-dipole mo-
ment M. The local moments cancel for modes of the
diamond cubic structure, but they do not cancel in amor-
phous structures.

ed as having inversion symmetry about its center,
as is reasonable for a homopolar material, and
that a rigid translation of the bond can give no di-
pole moment, such a description will give identi-
cally zero for the induced dipole moment. To
see this, consider the dipole moment associated
with a given bond, which, by the second of the
above conditions, may be written

M (T - G). (4)

M=T -

Here U, and U, are the displacement vectors of the
two atoms joined by the bond, in some given vibra-
tional mode. Under inversion, the vector upon
which T operates does not change sign, but M
must do so, and thisisincompatible with the invari-
ance of T , unless T =0, This is the same argu-
ment as that applied by Lax and Burstein®®5 to
the diamond-cubic structure, but is here applied
to a single bond. See also Zallen®® and Chen and
Zallen,5¢

Clearly it is necessary to consider contributions
from more than one bond at a time, if a nonzero
infrared activity is to be obtained. The obvious
choice is take pairs of neighboring bonds. Denoting
each atom by 7 and its nearest neighbors by 14, we
write

-

M= 2, [Fu ) =FaI[@E-8)° 7o)

1{aar})
_(ﬁz _ﬁm') * -fA' (l)] (5)

This formula may be interpreted as representing
the dipole moment due to the transfer of charge
from extended to compressed bonds (see Fig. 7).

It may be reexpressed in various other forms. One
of these, which is given in Appendix A, is especial-
ly convenient for the qualitative understanding of

(5) and also for certain calculations. This is
because if we attempt to use (5) for an isolated

SMITH,

JR., AND BRODSKY 11

part of a fully bonded cluster, as is desirable in
some cases where the surface termination is not
fully satisfactory, we obtain large contributions
from the surface, due chiefly to certain terms
which identically cancel when summed over a fully
bonded system. These terms are precisely the
ones which are set aside when (5) is reexpressed
as (Al).

We have not explored any further forms of the
infrared activity, since (5) gives quite good results
by itself.

The Raman activity of a mode is given by the
induced polarizability. In this case, therefore,
we are dealing with a second-order tensor which
is a linear function of the displacements ;. Again
we write this as a sum of contributions from in-
dividual bonds, imposing invariance with respect
to translations and inversion., Even if we further
restrict the range of possibilities by the imposi-
tion of cylindrical symmetry about the bond, so
that each bond is to be treated precisely as a homo-
polar diatomic molecule, there remain three in-
dependent forms for the polarizability:

T =2 [Fa(F () -5T 18, F4(0 6)

o= D A Fa DTG FAD] =41 10, F40)
(7

Ty = ;: T 4-7.0), (8)

&

where T is the unit dyadic. By collecting terms
referring to pairs of neighbors, we may note that
the first and third expressions depend only on the
bond compressions C, ().

1t is difficult to attribute relative degrees of
importance to these expressions a priovi since,
as we noted in the Introduction, the first-principles
expression for Raman activity is so complicated.
However, there is one important distinction be-
tween the first expression and the other two. The
latter vanish in the case of perfectly symmetric
tetrahedral bonding, since in that case

;;A (=0. 9)

The first expression, on the other hand, has a
quadratic dependence on the bond vectors ¥, (7)
and hence does not vanish, If (9) were to be

very small in a given structure, clearly the ex-
pressions (7) and (8) would be expected to contrib-
ute little to Raman activity. However, for ran-
dom-network structures of interest, the quantity
(9) typically has magnitude 0.2 times the nearest-
neighbor distance, and @, and @5 cannot be ne-
glected on grounds of approximate symmetry,



DENSITY OF

STATES "INFRARED

VIBRATIONAL PROPERTIES OF AMORPHOUS Si AND Ge

2281

FIG. 8. Theoretical

RAMAN results for density of

LS LALLM L LU L L L L LG L S B

EXPERIMENT

L O L 0 B O

states, infrared absorp-

i tion, and Raman scatter-
ing for 61- and 62-atom
periodic models compared
with the experimental
data of Fig. 1 on amor-

1 phous silicon. The infra-
1 red absorption mechanism
1 used in the theory is that
b of Eq. (6). The Raman

6! - ATOM
T

mechanism is given in

1 Egs. (6)—(8) with the rel-
ative weights described in
the text. The position of
i the maximum frequency
mode for diamond cubic

: ] (the Raman-active TO

| | mode) is indicated by the

I ] dashed line on the Raman
} i graphs; the position of

I the density-of-states min-

62 - ATOM

Ad bbb v bl

Lav a1y

, the spectrum for diamond
- cubic with the force con-

E stants used in these cal-
culations is indicated by

4 the arrow at 380 cm™ on

- the infrared-theory re-
sults. Spectra are formed
1 by adding weighted Lor-
entzian contributions from

¥
: 4 imum near the center of
|
|
|

b

dadef (0 1) 000 gt gy

200 7400
ENERGY (cm™)

200 400 600 0 600 O

IV. NUMERICAL RESULTS
A. Results for hand-built periodic-random-network models

Figure 8 shows the results of a calculation using
Henderson’s periodic 61-atom random-network
model and our 62-atom model and the theory of
Sec. II compared with experimental data for Si.
The force constants used are « =0.475x10°
dyn/cm, B/a=0.2. The choice of 8/ is some-
what arbitrary, in view of the simplicity of this
force-constant model. Values in the range 0. 15—~
0. 35 are consistent with various aspects of the
phonon dispersion relations for the diamond-cubic
structure. Keating’s values, which were fitted to
elastic constants, should not be assumed to have
any universal validity.

The above value of 3/a was chosen at an early
stage in this investigation and was not varied
thereafter. The position of the lowest peak in the
spectrum depends on 8 in an essentially linear
manner (as we shall show in Sec. VIA). It is clear
that the theoretical peaks could be brought into
slightly better agreement with the experimental

-
k=0 modes and are nor-
malized to the same max-
imum value.

200 400 600

ones by a small adjustment of 8/a, but this would
hardly add much to our understanding. Having
fixed B/, the value of o was fixed by fitting the
zone-center TO frequency calculated for the dia-
mond-cubic structure (indicated by a dashed verti-
cal line in Fig. 8) to experiment. Another signifi-
cant frequency, as will be discussed below, cor-
responds to the minimum in the LA-LO density of
states for the cubic structure. This is indicated
by the arrow in the result for the infrared spectrum
of the 61-atom model.

The weighting of the various contributions to
the Raman activity was determined as follows.
The third mechanism is associated with a depolari-
zation ratio of zero. The fact that the observed
spectrum was found to have a similar shape in the
HH and HV?'® configurations®‘® with a depolari-
zation ratio of 0.8+0. 1 then precludes any signifi-
cant contribution from @3, and it was accordingly
given zero weighting. This leaves (apart from
the over-all scale) only the ratio of the coefficients
of @, and @, to be determined. By itself, &, pro-
vides a reasonable description of the upper half of
the spectrum, but gives too little activity in the
lower half. The inclusion of @, remedies this de-
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ficiency. The ratio 1:3 for the weighting of the These spectra show certain sharp structures (e.g.,

two expressions was used in the calculations of
Fig. 8.

In Sec. VI we shall give an interpretation of
these and other results, i.e., an explanation of
how these results arise from the assumed forms
for force constants and activities., They play a
primary role in our interpretation of the experi-
mental data.

B. Other random networks

In Fig. 9 we show results for density-of-states,
infrared, and Raman spectra for defect models.

the splitting of the lowest-frequency peak) which

are associated with k =0 modes of 64-atom diamond-
cubic cell from which the models were derived.
Nonetheless, it appears that there is a third peak

in the center of the spectrum and a corresponding
enhancement of the ir scattering from this peak,

as for the hand-built model.

In Fig. 10 we show results for quasiperiodic
models. There is a difficulty in obtaining mean-
ingful ir spectra for such models, since a few
strongly scattering regions with large distortions
can dominate the spectrum. (The ir contribution
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FIG. 10. Theoretical
density-of-states, infra-
red, and Raman results
for 85- and 92-atom
quasiperiodic Polk mod-
els. These models have
very low interior distor-
tions, but large effective
angular distortions at the
boundaries. The Raman
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mechanism for these cal-
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coefficients. Only the HH
spectrum is shown. The
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the same as for Fig. 8.
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mal modes of the finite
clusters.
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from a given atom is proportional to its deviation
from tetrahedral symmetry. See Appendix A.)

We attempted to minimize these effects by weight-
ing the contributions of modes to the spectra (and
the density of states) by their projection on the 36
fully bonded interior atoms in the cluster, i.e.,

by the sum of the squares of the components 1,
associated with these atoms. This reduces the
effects of boundary-condition-induced modes. How-
ever, this was judged still to be unsatisfactory,

and calculations were therefore performed in which
only the interior bonds contributed to the infrared
matrix element. This is done by using the alter-
native form (A1) and summing only over interior
atoms. [Use of the original form (5) would lead

to difficulties in this case. ]

Of significance is the relative sharpness of the
uppermost peak of the density-of-states and Raman
spectra compared with the periodic models. This
appears to be associated with the lower angular
distortion for the interior bonds of this model.

The experimental results, interestingly enough,
seem to be in better agreement with the more dis-
torted models.

C. Microcrystals

Microcrystallite models have been proposed to
explain certain aspects of electron diffraction on
amorphous Ge. A microcrystal presumably is a
region of well-ordered material separated by an
identifiable boundary from other well-ordered
regions., (By contrast, the random network would
be regarded as structurally homogeneous.) Be-
cause of the boundaries, a small microcrystallite
would not rigorously obey the usual % selection
rule in Raman scattering or infrared absorption.
To investigate this we examined spectra from
approximately spherical 64-atom samples of dia-
mond or wurtzite-structure models. These mod-
els represent quite small microcrystals and have
many surface bonds. Even so, the Raman scatter-
ing seems to indicate a very sharp crystallike TO
peak (see Fig. 11), To broaden this peak, it ap-

conditions are shown,
The Raman mechanism is
the same as for Fig. 8.

pears that internal strains comparable with those
in the random-network model would be necessary.

Note that, according to the arguments of Ap-
pendix A, the infrared activity calculated here for
a microcrystal arises entirely from surface con-
tributions.

D. Polymorphs

In Tables II-V we give the mode identification
and intensities for the infrared and the three Raman
mechanisms of Egs. (6)-(8) for the BC-8, ST-12,
136-atom, and 46-atom clathrate structures.

(The numbers refer to the number of atoms per
cubic cell.) The Raman mechanisms are given

TABLE II. Calculated spectra for the 136-atom clath-
rate (silicon). Lines with relatively large intensity are
underlined.

Relative Intensities

Energy
em™)  Type Infrared A B C
137 Fy, 0.000 0.006
142 E, 0.000 0.020
194 Fy, 0.003
232 Fy, 0.003
236 Fy, 0.000 0.000
278 Fy, 8.907
279 Fop 0.000 0.018
321 Aq 0.182
390 E, 0.002 0.000
401 Fy, 0.315
418 Ay I 0.032
435 Fy, 0.036 0.000
452 Fy, 0.615
491 Fy, 0.012
492 Fy, 1.149  0.000
499 Agg 0.015
504 E, 0.006  0.000
505 E, 1.442 0.002
507 Fy, 0.051
510 Fy, 1.116 0.003
510 Fy, 0.000 0.000
517 E, 0.176 0.000
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FIG. 12. Theoretical density~-of-states (of 138 k=0 modes), infrared, and Raman spectra for a clathrate structure

with 46 silicon atoms in the unit cell.

separately, since it is not at all clear that the
weighting of various terms used in Sec. V A should
apply to these structures.!® Both infrared and
Raman intensities are divided by the number of
atoms in the unit cell and multiplied by a constant
which is the same for all structures. It might

TABLE HOI. Calculated spectra for 46-atom clathrate
(silicon). Lines with relatively large intensity are under-
lined.

Relative intensities
Energy
em™) Type Infrared A B C

120 Fog 0.001 0.000 0.000

153 Fy,

168 E, 0.000 0.008

201 Fog 0.000 0.003

206 Fy, 0,042

226 E, 0.004 0.002

231 Fy, 0.003 0.030

240 Fy, 0.002

312 Fy, 6.627

317 Fop 0.000 0.012

332 F, 0.002 0.000

355 Ay 0.411

398 Fy, 14.114

435 Fyp 0.018 0.003

444 E, 0.020 0.010

450 Fy, 4,971

455 A, 0.020

488 Fy, 0.801

493 Fop 0.432 0.003

496 E, 0.576 0.018

497 Fop 0.546 0.006

502 Fy, 1.587  0.003

506 Fy, 0.015

509 Ay 0.024

513 E, 0,574 0.002

523 Fy, 0.105

536 E, 0.124 0.002

Mechanisms are the same as for Fig. 8.

be noted that in these structures there is a dis-
tinct tendency for the Raman intensities to be high-
est for the highest-frequency modes, while the

ir intensity is highest in center of spectrum. This
behavior is similar to that found for random-net-
work results, we give in Fig. 12 a spectrum of
Raman and infrared intensity as well as density

of k=0 modes for the 46-atom clathrate.

E. Other force constants

We have also done calculations on random-net-
work models with Born-model force constants. Re-
sults for the Henderson 61-atom model are shown
in Fig. 13, where it may be seen that there is no
really significant difference from the Keating force-
constant results, except for expected slight shifts
in the relative positions of the various peaks.

V. INTERPRETATION OF EXPERIMENTAL
AND NUMERICAL RESULTS

A. Density of states

We shall begin an interpretation of the experi-
mental and theoretical results of the previous sec-

TABLE IV, Calculated spectra for SiIIl (BC-8).
Lines with relatively large intensity are underlined.

Relative intensities

Energy

em™) Type Infrared A B C
200 Fop 0.000 0.063

228 Fy, 0.039

439 Fo 0.003 0.147

440 Fy, 110.274

454 Ay 2,327
480 Fop 3.621 0,100

529 E, 1.18 0.206
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FIG. 13. Theoretical results for density-of-states, infrared, and Raman spectra for the 61-atom model with Born
(rather than Keating) force constants. Here we have taken 8/apq,=0.6.

tions with an examination of the relationship be-

tween structure and the vibrational density of states

N(w), and give an explanation of the similarity of
N (w) for the amorphous and crystalline phases,
discussing not just the two prominent peaks, but
also some more subtle structure in the center of
the spectrum.

TABLE V. Calculated spectra for Ge IIl (ST-12).
Lines with relatively large intensity are underlined.
TO
Relative intensities ™
Energy

(em™) Type Infrared A B C

70 By 0.001 0.001

97 E 0.000 0.010 0.214
101 A, 3.765
104 Ay 0.002 0.064 1.026
108 B, 0.000 0.000
115 E 0.007 0.000 0.068
122 Ay 0.000 0.143 1.319
129 By 0.000 0.000
167 A, 79.674
184 E 0.638 0.006 0.000
204 E 0.249 0.046 0.016
209 By 0.001 0.001 TA
218 Ay 0.007 0.030 0.354
245 By 0.009 0.000 LA LO
250 By 0.915 0.000
252 A, 0.477
255 E 0.050 0.094 0.001
259 By 0.089 0.000 1
274 E 0.004 1.333 0.012 | |
293 E 0.030  0.030 0.046 0 0.5 1.0
299 A2 6.822 w/wqu
303 E 0.065 0.090 0.004
304 Ay 0.508 0.007 0.052 FIG. 14. Density of states for the Keating model with
315 By 0.006 0.000 B/a =0.2 for the diamond cubic structure. Histogram is
316 B, 0.000 0.000 formed from frequencies for 4000 randomly chosen &

Figure 14 shows a histogram of the vibrational
density of states for diamond-~cubic Si derived
from the Keating model with the same o and 8
parameters used for previously discussed struc-
tures. This simple model is known to be slightly
inaccurate in the region of the TA peak,42 but this
level of detail hardly concerns us here.

points.
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FIG. 15. Density of states for the Keating model with

p/a =0 for the diamond cubic structure. 6 functions at
w?=0 and 8a are represented by finite blocks.

The most prominent features of the density of
states are the peaks at low and high frequency,
arising from bands which are conventionally la~
beled TA and TO, respectively. The terms “trans-
verse,” “longitudinal, ” “acoustic, ” and “optical, ”
as usually defined, are only meaningful in a peri-
odic system. It is therefore inappropriate to use
them in an amorphous system. One must instead
concentrate on the bond-bending or stretching
character of the modes, as Bell and Dean have em~
phasized,!**? if one wishes to develop a classifica-
tion of modes which may have relevance to the
amorphous case. One way of seeing the essential
character of the modes is to take the limit in which
the forces resisting bond bending (i.e., changes
in interbond angles) go to zero, 8/a — 0 in the no-
tation of Sec. IV. The appropriate values of 3/«
for a description of the observed density of states
are sufficiently small that this limit does not take
us very far from reality. Figure 15 shows the
nature of the density of states of the diamond-cubic
structure in this limit, (We shall shortly explain
the manner in which this was obtained, preferring
for the moment to emphasize qualitative features
while postponing related mathematics.) The TA
and TO bands are completely flat and hence give
6 functions in N(w). The TA modes are now at
w=0. The existence of N zero-frequency modes,
where N is the number of atoms, is easily demon-
strated since the system has 3N degrees of free-
dom, and the requirement of constant bond lengths
(and thus no change of elastic energy, if 3/a =0)
constitutes 2N linear constraints; so there are 3N
— 2Nsuchmodes. These are pure bending modes.
The origin of the second & function is more obscure,
since it is necessary to invoke tetrahedral sym-
metry to demonstrate its existence, as we shall
shortly describe. However, examples of both
kinds of modes can easily be set up on a closed
ring of bonds, as shown in Fig. 18.

Note that the simple arguments given above re-
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garding the existence of zero-frequency modes and
the explicit construction given in Fig, 16, do not
depend on the details of the diamond-cubic struc-
ture. All that is necessary for the existence of the
first 0 function is fourfold coordination, while for
the second one tetrahedral symmetry is also nec-
essary. The lack of dependence of these features
on the topology of the structure is expressed in the
following theorem, which also bears on the form
of the rest of the density of states.

Theorem. The density of states for the case of
equal central forces (3/a =0 in the case of Keating
model), expressed as a function of mw 2, has the
following form for a homopolar solid with perfect-
ly symmetrical tetrahedral bonds. There is a
function containing one state per atom at zero, an-
other at 8, and a band bounded by these values.
Furthermore, this band is given by the spectrum
of the simple Hamiltonian

H=a (41- 2o (ZAD,

which operates on (scalar) basis functions |7),
one of which is associated with each site.?”

A proof of this theorem has been outlined by
Weaire and Alben,’® A more economical version
was given by Alben ef al., the details of which
are contained in Appendix B, The essential step

(10)

FIG. 16.
»?=0 and 8a, which may be formed on any closed ring
of bonds if there is perfect local tetrahedral symmetry

Examples of localized modes, at frequencies

and central nearest-neighbor forces. The displacement
vectors are in the plane of the bonds which belong to the
ring and perpendicular to their bisector.
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TABLE VI. Corresponding approximations for the
electronic and vibrational problems.

Vibrational density of states
Realistic Hamiltonian (difficult)

Electronic density of states

Realistic Hamiltonian (difficult)

Simple tight-binding Hamiltonians Simple force-constant Hamiltonians
y
Allow only short-range forces;
in fact, only central nearest-
3 neighbor force constant o

Allow only short-range interactions

Keep iteration parameters V; and Keep o fixed and treat all bond
V, fixed at the same values angles as cos™ (&)
everywhere N Vi

Equivalent problem:
simple Hamiltonian
one basis function
per site (plus
additional 6
functions in the
density of states)

is the projection of the displacement vector U, along
each bond /A, The projections thus defined form

a new basis set of four (scalar) functions per atom.
The analogy with tight-binding theory is at once
apparent (four sp® orbitals per atom in this case).
However, the four projections of U, along the bonds
lA are not independent. For the case of tetrahe-
dral symmetry, the required constraint is simply
that these projections add to zero. Translating
this into tight-binding language, we have the condi-
tion for purely p-like wave functions. Thus by
forcing wave functions to be p-like (which is ac-
complished by making the weighting of an appro-
priate part of the tight-binding Hamiltonian go to
infinity and discarding the s-like part of the spec-

trum) we can make a precise analogy with the formu-

lation of simple tight-binding theory by Thorpe and
Weaire.’® The above theorem then follows from
the “one-band-two-band” theorem of the latter
authors, which relates the band structure for sim-
ple tight-binding Hamiltonians to that of (11) to-
gether with various 6 functions. The two & func-
tions correspond, respectively, to p-antibonding
and p-bonding functions.

It is amusing that these two formalisms should,
when peeled down to bare essentials, reduce to the
study of the same Hamiltonian. The steps involved
are indicated in outline in Table VI.

The above theorem is exact only for perfectly
symmetrical tetrahedral bonding, such as in the
case of diamond cubic (and was indeed used to pro-
duce Fig. 15 from the one-band spectrum®). How-
ever, we may expect it to apply in an approximate
sense to structures which are only close to this
condition, such as the random network. Remem-
ber that the w=0 & function would still exist in this
case, according to the argument given earlier in
this section, but the other one would be broadened
by departures from exact tetrahedral symmetry.
In addition, of course, both peaks have a finite
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width for finite B.

The picture evolved thus far is as follows. Any
perfectly tetrahedral structure should have sharp
peaks at low and high frequencies in the same
places as the diamond-cubic structure, but if the
tetrahedral bonding is not perfectly symmetric the
upper one will have an additional broadening. The
rest of the spectrum (which we shall discuss be-
low) is contained in the region between the two
peaks.

These conclusions are in good agreement with
the results of Sec. V. In particular, we notice
that the upper peak does broaden as distortions are
increased in the structural models used for calcu-
lations.

A further calculation which may aid in under-
standing the above remarks is shown in Fig. 17.
This shows that as - 0 the lower peak becomes
sharper, being roughly proportional to 8 in width,
while the upper one remains much the same, since
most of its width arises from distortions (see also
Fig. 2 of Ref. 58). The energy of the lower peak
also tends towards zero as 8— 0. Incidentally, the
asymmetry of the effects of distortion on the two
peaks is somewhat disguised by the linear scale for
w which is traditionally used in these plots. The
natural scale for a theoretical analysis is one pro-
portional to the frequency squaved (because this is
the eigenvalue of the secular equation). Plotted on
such a scale, the density of states for the diamond-
cubic structure becomes exactly symmetric about
its center for any force-constant scheme, such as
that of the Born model, which involves only near-

est-neighbor forces.
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FIG. 17. Density of states N(w) for the 61-atom peri-

odic model for g/ =0.15 and 0.05, illustrating the
change in the spectrum as g—0.
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FIG. 18. One-band
density of states for 61,
62, 85, 92, and 201-atom
models. Histograms give
the distribution of eigen-
values for k =0 modes for
61~ and 62-atom periodic
models and for the finite
number of modes of the
85-, 92-, and 201-atom
cluster models. The 201~
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The central part of the density of states is not
independent of topology, the particular form shown
in Fig. 15 being for the diamond-cubic and related®
structures only. According to the theorem dis-
cussed above and the work of Thorpe and Weaire,
this part of the density of states is closely related
[through the one-band Hamiltonian (10)] to the low-
er half of the valence band of electronic states.

The structure dependence of the latter has been of
some interest. Thorpe and Weaire® predicted that
the two-peaked structure found in the lower half of
the valence band of the diamond-cubic phase of Si
or Ge would be replaced by a single broad peak or
plateau in the amorphous phase. This was subse-
quently confirmed by x-ray emission,%® by x-ray
photoemission spectroscopy (XPS),% and by uv pho-
toemission,® but the force of the original argument
was somewhat diminished by numerical calcula-
tions of the density of states®® of the one-band Ham-
iltonian. These showed that the topological disor-
der of the Polk model is not, after all, quite suffi-
cient to give a featureless spectrum, but rather

60

atom cluster result is
probably representative
of the (unbounded) Polk
continuous-random-net-
work model.

one with a reduced, but still quite pronounced, dip
in the center (see Fig. 18 for one-band results for
various random-network structures). The explana-
tion of the experimental results is therefore not
conclusive, as was originally thought. It is inter-
esting to ask if significant structure can be dis-
cerned in the corresponding part of the vibrational
density of states. Does either theory or experi-
ment for the amorphous phase contain the dip found
between LA and LO peaks in the density of states
of the crystal? The answer in both cases appears
to be yes. This cannot be stated unequivocally on
the basis of the experimental data alone since, if
we examine the infrared data, it is not possible to
say whether the dip which precedes the highest-
frequency peak corresponds to the LA-LO splitting,
which is what we have in mind, or the LO-TO split-
ting. However, if we examine the numerical re-
sults of Sec. V, which agree rather well with the
experimental data, we can decide this, since the
dip occurs almost exactly at LA-LO dip frequency
of the corresponding crystal spectrum. Also, al-
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most exactly half of the modes lie below the dip in
which we are interested. This test strongly sup-
ports the former of the two possibilities considered
above. Thus the three peaks in the density of states
indicated by the observed ir and Raman spectra are
considered to correspond, respectively, to modes
of local character similar to the TA, LA, and LO
+TO bands for diamond cubic, the LO and TO hav-
ing merged because of the effects of distortions
(see above). This unfortunately piles paradox upon
paradox, since it is a result opposite to that which
is found in the corresponding electronic measure-
ments discussed above. A potential explanation,
however, may be provided by matrix-element ef-
fects. As we shall see, these amplify consider-
ably the effect of the middle peak inthe ir spectrum.
It is possible that other effects suppressthealready
diminished (compared to the crystal) structure ex-
pected on the basis of the one-band results for the
electronic problem.

B. Matrix-element effects

All of the immediately preceding analysis is re-
lated to the vibrational density of states. We shall
now consider how this is modulated by matrix-ele-
ment effects to give the Raman and infrared spec-
tra. We cannot claim to give any final explanations
here because of the semiempirical approach used
in the calculations, butneverthelessitwould appear
that much can be learned from them.

Again it is fruitful to consider the limit of purely
central forces. In this limit the mean-square com-
pression of bonds divided by the mean-square dis-
placement varies as w? over the entire spectrum.
(See Appendix A.) Now the dominant contribution
to the Raman tensor Ty.l involves only the compres-
sion of each bond. If we neglect the correlations
of compressions on different bonds, we are led to
expect an w? dependence of the Raman activity.

(The other contribution ‘&'2, which contributes
mainly at low frequency, cannot be so written.) We
can thus attribute most of the over-all increase of
Raman activity with w, apart from the low-frequen-
cy region, to the approximate w? dependence asso-
ciated with the mean-square compressionof bonds. &7

For the infrared spectrum a precisely similar
argument can be used to relate the activity to the
mean-square bond compression and hence to w?
but clearly this is not in keeping with the results
of Fig. 18. The uppermost peak has a much lower
activity than one would expect on such grounds
alone. Indeed, here lies the principal qualitative
difference between the infrared and Raman spectra.
In Appendix A we give a proof of a theorem which
explains the diminished contribution of this peak.

It is shovra that in the limit of purely central forces
the matrix element (5) is of second order in the dis-
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tortion from exact tetrahedral symmetry for the
modes which contribute to this peak, while it is of
first order for the spectrum as a whole. This ten-
dency for the infrared activity to be greatest for
modes near the center of the spectrum is seen in
Fig. 19, where we have plotted the dispersion of
the infrared activity per mode.

It is sometimes said that the differences between
the two spectra can be simply understood by appeal
to the results for the diamond-cubic structure, for
which the TO k=0 modes are Raman active and not
infrared active. This is far from obvious, since
the latter statements follow simply from crystal
symmetry without regard to the forces or matrix
elements involved. The interpretation of the data
for amorphous Si and Ge clearly requires consid-
eration of both forces and matrix elements in some
detail. If, for instance, 32 and 7);3 were the domi-
nant forms of Raman matrix elements, the calcu-
lated Raman spectrum for the random network
would be greatly changed, but the spectrum for the
crystal would necessarily still consist of the single
TO line.

V1. PREDICTIONS FOR NEUTRON SCATTERING

Inelastic neutron scattering at high-momentum-
transfer vector Q has been advocated as a means
of directly studying the phonon density of states of
polycrystalline and amorphous elemental solids.®®
In the case of polycrystalline systems, this isjusti-
fied by an argument to the effect that the experi-

(T T T T T T T I TTT TTT]T]
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FIG. 19. Frequency dependence of the average inten-

sity per mode for infrared absorption (61-atom model),
as determined by dividing infrared absorption by density
of states (see Fig. 8).



2290 ALBEN, WEAIRE,

ment is equivalent to a spherical averaging of the
cross section for a single crystal for all 6 having
a given modulus l@l, and these vectors, when re-
duced to the first Brillouin zone, will give an ap-
proximate average over the entire zone if IQ'I is
sufficiently large.%®"® In justifying the method for
an amorphous solid, it has usually been pictured
as a polycrystal,” but this is not necessary since
one can argue more directly as follows.™

The one-phonon contribution to the cross section
for the low spectrum in coherent inelastic scatter-
ing is proportional to’?

0@ £)-ME=L v T o, - mr,@ . (1)
n

This is a sum over all vibrational eigenstates 7.

The factors entering this expression are a phonon

occupation factor, a Debye-Waller factor,” a 5

function expressing energy conservation, and a

term which sums the contributions from all atoms j,

o am |2
?.QeiaRj (12)

Here R denotes the position of the jth atom and

uj is 1ts displacement vector for the nth vibration-
al eigenstate. In a random-network structure, one
may argue that if @ is much greater than 27 times
the inverse of the spread in nearest-neighbor dis-
tance, the phase Q Rj is essentxally random and
(2) may be replaced by Z Iuj Ql which may in
turn be replaced by 3IQI2 since the system is iso-
tropic and 2; luj is normalized to unity. Thus,

in the high-@ limit, one expects the coherent in-
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elastic-neutron spectrum to approach the phonon
density of states n(E). In practice, multiple-pho-
non processes become important at high Q; so
some compromise is necessary.® Thus it is im-
portant to understand the effects of structural cor-
relations on the form of the spectrum for inter-
mediate values of Q.

Model calculations should be useful in the design
and interpretation of neutron-energy-loss experi-
ments. In order to apply (12) to our models, all
we need to do is compute eigenvalues and eigen-
vectors and perform the indicated operations. We
present results for periodic and quasiperiodic mod-
els and compare them with those expected for a
polycrystalline powder of diamond-cubic material.

For the periodic model we regard the basic unit
as a unit cell of an infinite crystal. In this case the
usual crystal selection rules imply that @ must dif-
fer from the % vector of the modes which contribute
by a multiple of a reciprocal-lattice vector. How-
ever, in the limit that the unit cell is very large,
the Bragg points of the reciprocal lattice fill %
space quite densely. Thus if we restrict attention
to k=0 modes of the 61-atom model, as we have
done, we may still obtain S(Q, E) for a fairly dense
grid of Q points. In Fig. 20 we show such results
for $'(@, E), which is S(@, E) without the Debye-
Waller and phonon occupation factors. Parameters
appropriate to Ge have been used.

From the figure we see that at low @ there is a
sound -wave-like peak at a frequency proportional
to IQ! As IQI increases, there is an oscillation
of intensity between high- and low-frequency parts
of the spectrum with a period of about 1.5 A™! su-

w Q=1.60A" Q=3.094" Q=4.65A"
<
(%)
1 L 1 L L | il . L
@ | a=6.214" Q=7.90A™ Q:16,96A""' -
c o
" QU
I | ] 1 ] L | ! ] ! | !
o] 100 200 300 [0} I00 200 300 [0} 100 200 300 (0] 100 200 300
ENERGY LOSS (cm™)
FIG. 20. Calculated neutron energy-loss spectra for different values of momentum transfer Q for the 61-atom net-
wor_'_k model. § (@, E) is related to the usual dynamic structure factor S(@, E) as follows: S’ @ E)= S@,E) {ln(w) + 11/ w}
x1Q1 2)"1. The vibrational density of states p(E) is shown for comparison. Parameters appropriate for Ge were used.
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FIG. 21. Calculated neutron energy-loss spectra for the 85~-atom quasiperiodic model for Ge (see also Fig. 20).

perimposed on a background proportional to the
density of states. For |Q| greater than 6 A™, the
scattering is almost indistinguishable from the
density of states.

In Fig. 21 we show similar results for an 85-
atom quasiperiodic model. In this case the scat-
tering is treated as being due to a finite cluster,
and with this interpretation we may obtain mean-
ingful results for any 6 The results shown are
for Q”s along the z spatial axis. The results are
similar to those for the periodic model. We have
also considered Q’s along the x direction and ob-
tained similar results.

For comparison, we show in Fig. 22 results for
scattering from a diamond-cubic polycrystalline
powder. Except for the sharpness of the high-en-
ergy peaks in S(@, E), which follows from the rela-
tive sharpness of this peak in the density of states,
the behavior resembles that of the amorphous
model’s sound-wave-like behavior followed by in-
tensity oscillations with increasing Iél, and even-
tually a spectrum proportional to the density of
states. However, for the polycrystal the intensity
oscillations are far more complex than the simple
behavior seen in the results for the amorphous ma-
terials.

These results show that inelastic neutron scatter-
ing at sufficiently high |Q| (above about 8-9 A™)
or averaged over the oscillation period (1.5 A™)
should give a quite direct measure of the density
of vibrational states in amorphous materials. They
also indicate that oscillations in peak intensity with
increasing Iﬁl are to be expected because of struc-
tural correlations implicit even in random struc-
tures. Figure 23 illustrates this oscillation of in-
tensity between the TA and TO peaks. Here we
plot the ratio of the intensity for the energy loss
corresponding to the maximum in the upper peak
of the density of states to that at the maximum in
the lower peak. As IQI increases the ratio (for
two different directions of Q—i) displays quantitative-
ly the regular oscillations evident in Figs. 20 and
21, This oscillation agrees extremely well with a
simple function derived (with no adjustable parame-
ters) from the following approximations™: (i)
Modes in these two peaks are given the exact “pure-
bonding” or “pure-antibonding” character discussed
in Sec. VIA, which arises from tetrahedral sym-
metry and the dominance of central forces. (ii)
All other correlations are neglected. The function
which gives the ratio of the weights of the lower
and upper peaks is derived in Appendix C. With
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FIG. 22. Calculated neutron energy-loss spectra for a diamond cubic structure polycrystalline Ge powder. Histo-
grams represent contributions of from 1000 to 3000 modes with k+T1 = IQI within = 0.22 A of the values indicated.

(T is a reciprocal-lattice vector.)

the appropriate factor converting the ratio of
weights to that of heights, this function is given in
Fig. 23 by the full line. The agreement is seen to
be excellent even for comparatively low values of
IQl. We expect that this oscillation should be
found in real materials. We might note, however,
that for 1Q]>8 A%, the oscillation is sufficiently
small that we would predict that the neutron energy
loss does effectively reproduce the density of

states. For a more accurate measure of the den-
sity of states, it appears that the loss spectrum
should be averaged over one or more complete os-
cillations.

VII. CONCLUSIONS

As is the case with many electronic properties,
the vibrational properties of Si and Ge are domi-
nated by the effects of short-range order. For the
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FIG. 23. Ratio of calculated neutron scattering cross
sections for frequencies corresponding to the upper and
lower density-of-states peaks for the 85-atom model
compared to the calculated results for independently scat-
tering bond contributions. The dashed line gives the ra-
tio of the density-of-states peak heights. Full line is the
theoretical result described in Appendix C. The frequen-
cies w*and w” are, respectively, 0.97 and 0.39 times the
TO frequency of the diamond cubic structure of Ge.

amorphous phase, the broad features of the density
of states and the variation with frequency of the
matrix elements which weight the Raman and infra-
red spectra can be rather well explained in terms
of such short-range order and the complete ab-
sence of any effects due to correlations of longer
range (“k-selection” effects). Approaches which
start from results for perfect crystals and attempt
to smear out spectra to the point where they agree
with results for the amorphous phase are there-
fore in some difficulty. Even were they to suc-
ceed, we feel that they obscure the simplicity of
the situation by including effects due to long-range
correlations and then trying to dispel them by un-
certain procedures!

While it is an interesting intellectual exercise to
show that short-range order is, per se, sufficient
to explain a great deal, it must be admitted that it
would be highly desirable to go one stage further
and achieve an understanding of the finer details
of the spectrum and their relation to structure.
This is, however, a difficult task, necessitating
consideration of forces of longer range as well as
the achievement of calculations for clusters of
larger size. In the latter regard, the outlook is
hardly encouraging, since a significant reduction
in the “noise” due to the finite size of the clusters
demands a high price in computer time and stor-
age. For the present, we would caution against
overinterpretation of the finer details of the nu-
merical calculations performed so far.
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The availability in the forseeable future of neu-
tron-scattering data of high resolution should be of
considerable assistance, since this will present a
picture of the density of states which, while subject
to various uncertainties, requires no subtraction
of matrix-element effects.
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APPENDIX A: INFRARED AND RAMAN MATRIX
ELEMENTS

Consider the infrared absorption matrix element
(5). This can be rearranged in a number of differ-
ent ways, of which the one given below would appear
to be the most illuminating and useful. Writing
C, (1) for the compression of the Ath bond associat-
ed with atom [, for a given vibrational eigenstate,
M may be written

M:ZZ,:@: cA(l))@: FA,(1)> . (A1)

This may be obtained simply by multiplying out the
expression (5), keeping the cross terms, and not-
ing that the others cancel on each bond.

The second factor in the summand vanishes for
exact tetrahedral symmetry, since then

> F.()=0. (A2)
A

Thus the chosen mechanism is such that it gives
zero for any structure with exact tetrahedral co-
ordination of nearest neighbors,” and the total in-
frared intensity for random-network structures
should scale roughly as the square of the distortion
from tetrahedral symmetry, as given by mean-
square value of |3, T,(1)1.

There is, however, a remaining factor in the
summand of (A1) which depends on the character
of the vibrational eigenstate. Since it involves the
compression of bonds, it might be expected to in-
crease monotonically, roughly as was explained in
Sec. VIB in connection with the Raman tensor.
However, for the case of exact tetrahedral symme-
try and central forces only, we know, in particular,
that

2o Cal)=0 (A3)
A

for the modes in the § function at the top of the
spectrum. This follows from the development of
Sec. VI, since these modes are analogous to “pure-
p-bonding” electronic wave functions; the contribu-
tions to the compression of each bond due to the
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displacements of the two atoms at its end are equal.
This, together with (A2), gives (A3).

Thus, in the absence of noncentral forces, the
dipole associated with these particular modes
should be of second order in the distortions (i.e.,
the intensity is of fourth order). As argued in the
main text, the inclusion of the small noncentral
forces should not alter this conclusion qualitatively.
This therefore would appear to be a sufficient ex-
planation of the relatively low infrared intensity as-
sociated with these modes in the calculations of
Fig. 8.

Note that in the case of III-V compounds the
dominant contribution to the infrared intensity is
not of the form (A1), so the arguments given here
are not applicable.

The Raman polarizability tensors 71’1 [Eq. (6)]
and @z [Eq. (8)] can also be written in terms of
the C,(I)s:

El=b2ds[;A(l );A(l)— %T]CA(Z) ’ (A4)
E3= Z TCA(Z) ’ (As)

bonds

where each bond is counted only once in the sums.
If the contributions from each bond add incoherent-
ly, then the Raman cross section from these mech-
anisms will be given by the mean-square value of
C,(1), i.e., the mean-square compression of the
bonds. The latter has a simple frequency depen-
dence in the case of central forces. The equation
of motion for this case is
me?,=3a, Co(1)T,(1) . (A6)
A
Taking the scalar product of both sides of (A6) with
ﬁ, and summing over all I, we obtain

meZu?:&y Z [ca@)]?.

bonds

(AT)

When both sides are divided by the number of bonds,
this equation shows that the mean-square bond com-
pression is proportional to w? times the mean-
square displacement. The reduced Raman intensi-
ty per mode from mechanisms Nos. 1 and 3 is thus
seen to vary as w? over the whole spectrum in the
case of central forces when correlations among
different bonds are neglected.

APPENDIX B

In this appendix we give a proof of the theorem
of Sec. VIA. As explained there, we introduce
variables y according to

xa) =W, - T,() .

With perfectly symmetric tetrahedral coordination
of nearest neighbors they are related by

(B1)
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ZXA(Z)=0’ (B2)
A

since 3,1, (1) is O for each I. The potential energy
associated with nearest-neighbor central forces,
given by Eq. (2), may be written

SO RRUZTI PRGWCS) D)
The kinetic energy may be written

T=;mIZ.A:5<A(z i (B4)
since

LR WE0)=4T. (85)

Now, the eigenvalues of the dynamical matrix de-
rived by taking second derivatives of V with re-
spect to the y's would give the normal-mode fre-
quencies (to be precise, mw?) were it not for the
linear dependence (B2) of the variables. To allow
for this an extra term S22, [2, xA(Z)]? can be added
to V and, in the limit A—~o, that part of the spec-
trum which remains at finite frequencies is the re-
quired solution; i.e., the extra term projects out
vectors which obey (B2). With this addition the
problem is now identical to that studied by Thorpe
and Weaire® in the context of electronic properties,
provided we make the identifications

mw?-4a—E,

40"’ Vz, (B6)

}\(" °°)"’ V1 .

However, the spectrum of the tight-binding Hamil-
tonian of Thorpe and Weaire is in turn related to
that of the simpler “one-band” Hamiltonian
HY=v2 [1)1a] . (B7)
A

Here there is just one basis function |1) associat-
ed with each site.

In the limit V;~ =, the eigenvalues of the full
tight-binding Hamiltonian are related to those of
(B6), denoted by €, according to

E=-1V, Ve, (B8)

apart from two & functions at E== V,.%® This
translates, using (B6), into the theorem stated in
Sec. VI.

APPENDIX C: COMPARISON OF TA AND TO MODES IN
NEUTRON SPECTRUM

TA and TO modes are such that, approximately,
the projections of the displacements of neighboring
atoms onto their common bond are equal in mag-
nitude and, respectively, of the suire or opposite
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sign. Furthermore, the factor 6 -4, which enters
the neutron-scattering transition probability is ap-
proximately proportional to

I CIERD) SRR (1)

since T = EON FA(Z )'f'A(Z) for tetrahedral symmetry
(T is the unit dyadic). Using this we can write the
scattering amplitude, i.e., the expression whose
absolute square gives the intensity in (13), as a
sum over bonds. The contribution of one bond con-
necting two atoms A and B to the amplitude for a
particular TO or TA mode is

a13- 3oV G AT sintG - aRe2pA,

aip= 207G . ARA® cosi Q. ARABUAB
where RA? is the center of the AB bond, ARA? is
the vector from atom A to atom B, and U42 is (U,
+U,)-T,,. We assume that the phase of the U453
together with the factor e"a'ﬁéa, varies sufficiently
randomly from one bond to the next to justify the
“incoherent approximation,” which gives for the
intensities

1T« Z @™©)p, [TA« Z (@™A)? . (C3)
bonds bonds

With such an approximation, a simple spherical
average gives

T
™o ocf (QR cos0)? sin®(£QR cosh) sind do ,
°, (C4)
ITA o:f (QR cosb)?cos?(3QR cosb) sinbd 6
0

’

since the system is assumed to be (macroscopical-
ly) isotropic and there are no preferred directions
for the bonds. R is the magnitude of the nearest-

neighbor distance, taken to be constant. Equation
(B4) may be rewritten
To, 4 [OF/? 2 o2
I["Foc—ro pEsin“pudp
QR J.gr/e ’
(C5)
4 QR/2
[T — u?cos?udy .

QR J gr/e

The ratio of the intensities of the two types of
modes is

I ~QR/2 QR/2
o usinzudu/f u? cos®p dp
ITA 0 0

- 3(QR) ' sinQR - 3(QR) 2 cos@R +3(QR)*sinQR
+2(QR) T sinQR +3(QR)Z cosQR — 3(QR)®sinQR °

(C6)

1
oo}

This has the asymptotic behavior
Ito/Ira~1-6(QR)'sinQR, as Q- ()

in keeping with the assertion that the spectrum
should represent the density of states in this limit.
Note also that the sum rule

Ipa+I3o=(const)@? (c8)

also follows from (C5); so the combined contribu-
tion to the spectrum from the lowest and highest
peaks is constant in this approximation. There is
also a sum rule on the whole spectrum.”
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