PHYSICAL REVIEW B

VOLUME 11, NUMBER 6

15 MARCH 1975

Band-gap shrinkage of semiconductors

D. Auvergne, J. Camassel, and H. Mathieu
Centre d’Etudes d’Electronique des Solides, associé au Centre National de la Recherche Scientifique, Université des Sciences et
Techniques du Languedoc, Place E. Bataillon, 34060 Montpellier-Cedex, France
(Received 12 September 1974)

Direct experimental evidence of band-gap shrinkage due to the presence of impurities in
semiconductors is given. Experimental results are obtained using a piezomodulation-spectroscopy
technique over the (4-300) °’K temperature range. They are interpreted in the linear-screened-potential
and effective-mass approximations. Coupling spectroscopic and helium-temperature magnetotransport
measurements allowed us to obtain in this model a good description of the transition edges over the
entire temperaure range. We studied different GaSb samples with impurity concentration allowing us to
observe band-gap shrinkage with one and two types of carriers. This is easily obtained in the GaSb
case whose band structure presents I' and L minima located very near in energy. On heavily doped
samples, the low-temperature values of the band-gap shrinkage are used to obtain further informations
concerning subsidiary minima. On lightly doped semiconductors, non-k -conserving transitions initiating

on the residual acceptor level are clearly shown.

I. INTRODUCTION

There has been great interest in the rigidity of
the band structure of semiconductors, when alarge
concentration of impurities is introduced into the
lattice. More particularly, the large wavelength
shift of band-edge emission in doped semiconductor
lasers and its temperature variation have been
studied by several authors.!=® For example, using
a lossless cavity Holonyak et al.® pointed out that
it was possible to obtain stimulated emission at
an energy greater or lower than the energy gap,
depending on the pumping level.

On the other hand, absorption experiments on
doped Ge, * InP, ® and® GaSb crystals and modulated
reflectivity on’ GaAs showed that the variation of
the transition edge in heavily doped semiconductors
cannot be entirely explained by the introduction
of the Burstein shift. In particular, experimental
values are always lower than theoretical predic-
tions, and obey a law’: E,, = E,,+ a Ep, where E,,
is the fundamental edge on pure crystal and a is
a constant less than unity. This lowering of the
gap on doped materials, as well as the properties
of the spontaneous emission edge, have been inter-
preted by different models. From qualitative con-
sideration the screened potential of randomly dis-
tributed donors tends to depress the conduction
band and to form tails of the density of states at
the band edges. This shrinkage of the energy gap
has been described, in terms of Coulomb and ex-
change interactions, ®'° to compute the spontaneous
emission rate in order to evaluate the properties
of injection lasers.

Using three different models,’ the second-order
perturbation method used by Parmenter in the vir-
tual-crystal approximation, the theory of Kane ap-
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proach, the theory of Halperin and Lax derived
from the minimum counting method, C.J. Hwang'®
shows that the number of occupied states in the
bandtail is much less than the total number of elec-
trons, and that the Fermi level in the uncompen-
sated n-type crystal is never located in the band-
tail for any impurity concentration at which the
calculation is valid, This result is in agreement
with a number of experimental results such as ob-
tained in!® GaAs and!* GaSb injection lasers. Con-
sequently, physical-parameter characteristics of
doped semiconductors such as position of electron
Fermi level relative to the shifted band edge,
carrier screening length, and band shift due to
Coulomb interaction can be calculated with suffi-
cient accuracy using a parabolic density of state.
In order to obtain precise evidence of this shrink-
age in this paper we shall discuss the variation with
temperature of the band shift obtained in doped
semiconductors with different impurity concentra-
tions. This band shift is obtained directly from
the comparison of direct transition energies deter-
mined inpure and doped samples. In order toelim-
inate uncertainties involved in transmission ex-
periments, we compare, using modulation spec-
troscopy, the temperature variation of the funda-
mental edge, obtained in a pure GaSb crystal, to
the transition edge measured in Te-doped crystals
with different impurity concentration. The low-
temperature Fermi energy is determined in doped
samples from oscillations of the resistivity in
a longitudinal magnetic field. Experimental re-
sults are presented in Sec. II. In Sec. III we re-
view the theoretical formulation of the band-gap
shrinkage, using the simple model of a screened
potential, in order to describe the interaction be-
tween all charges. Particular care is taken in the
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FIG. 1. Schematic band structure of (a) moderately and (b) heavily doped direct semiconductors. E,, and E,, are, re-

spectively, the energy gap in pure and heavily doped samples.

Er is the Fermi level measured from the bottom of the

conduction band. In the (b) case, where the subsidiary minimum is also degenerate, the temperature evolution of the
population in the conduction band is strongly dependent on the AE, temperature variation.

formulation of the temperature dependence of the
carrier distribution in different minima of the con-
duction band.

Comparison of experimental results with theoreti-
cal predictions of the band-gap shrinkage is given
over the all-temperature range, in the last part.

II. EXPERIMENTAL RESULTS

In order to obtain precise information about the
fundamental edge, we choose a piezomodulation
technique described elsewhere.!? As mentioned,
this method permits us to work easily at any tem-
perature over a large energy interval,

As shown in Fig. 1, to interpret the experimen-
tal results a knowledge of the Fermi energy is re-
quired at each temperature and doping level. For
this reason we have studied Te-doped GaSb samples
because this impurity introduces a donor level,
degenerate with the conduction band, at 125 meV
above I'..'® In this case, for sufficient doping
the free-carrier concentration is constant and tem-
perature independent. Knowing the Fermi energy
at 4 °K, it is then possible to determine its temper-
ature variation.

We have studied four samples with different dop-
ing levels (labeled A, B, C and D in Table I), in
which the Fermi level was determined from longi-
tudinal magnetoresistance oscillations, similar
to those shown in Fig. 2.

Approximating the low-temperature Fermi func-
tion by a step function we calculated the transition
energies in doped samples,!* corrected for the
Burstein shift, by means of

@

The results are given in the three first columns
of Table I.

Figures 3 and 4 show low-temperature piezore-
flectance spectra measured in these samples and
the evolution of transition energies between 4 and
300 °K. Figure 4 gives the comparison of these
variations to that obtained in a natural p-type sam-
ple. The E,, low temperature transition edges are
also given on Table I, with the difference AE=E},
- E,, between experimental and theoretical [Eq.
(1)] values.

E},=Egp+ Ep (1+m,/m,).

TABLE I. Comparison of the experimental and theo-
retical values of the fundamental edge, determined on
a n-type GaSb samples with different doping level. The
theoretical edge Ej, is deduced from Eq. (1), the ex-
perimental one; Eg,,, is obtained from the piezoreflec-
tance spectra.

" Epld°K)  Ep@°K) Enm@d°K)  AE@°K)
Sample (10 cm™3) (meV). (meV) (meV) (meV)
A 2.2 99 924 882 42
B 1.2 86 909 862 47
C 0.46 40 858 774 84
D 0.23 30 847 784 63




At high temperature the transition energy for
doped samples, is lower than that obtained in a
natural one (E,). On C and D samples the transi-
tion edge is always lower than E,.
an apparent non-Z-conserving excitation acceptor-

This denotes

FIG. 2. Tllustration of
the longitudinal magneto-
resistance spectrum ob-
tained in the B sample at
helium temperature. The
oscillations of the resis—
tivity correspond to the
crossing of the Landau
level through the Fermi
level: Ep=(n;+3) e H;/
m,, where H; represents
the value of the field at
the n; oscillation. This
gives Ep=[an/A(1/H))
(eri/mg).
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level —~ Fermi-level, as this can be obtained from
the % extension of the impurity wave function in
compensated semiconductors.® The AE lowering
can be interpreted in terms of the interaction be-
tween all the charges contained in the system. We
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FIG. 3. Examples of
low-temperature piezo-
reflectance spectra ob~
tained on Te-doped GaSb
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FIG. 4. Comparison of
transition energy edge be-
tween pure (p type) and
n-doped GaSb samples.

At helium temperature
Ep(4)=99 meV, Ep(B)
=86 meV, EHC)=40 meV,
and Ep(D) =30 meV.
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are going to review the different terms contribut-
ing to AE in order to describe the experimental
results over the entire temperature range by means
of

Eg =Eg+Ep (1+m/m,) - AE, (2)

III. BAND-GAP SHRINKAGE

In order to calculate stimulated and spontaneous
emission spectra of GaAs lasers, Hwang!® deter-
mined in the effective-mass approximation the
conduction and valence-band density of states in
doped semiconductors, modified by the core po-
tential of the impurities.

Using Wolff’s® results he shows that the system
of all electrons in the conduction band can be
approximated by single electrons moving in the
field of a screened impurity potential, provided the
whole conduction band is shifted downward by a

quantity equal to EZ. E¢ represents the electron-
electron interaction energy.

In this case the one-electron Hamiltonian can be
written as

vl

:-W +E2-E§—E§+V(x), (3)

where EQis the energy of the =0 conduction-band
state in the crystal, E{ is the average impurity
potential producing the shift of the conduction band,
and V(x) represents the potential fluctuation about
E:¢.

When V(x)=0 the solutions of H are plane waves,
and the density of states is parabolic at energies
greater than EJ - E¢ -~ ES, The fluctuations V()
produce localized band states below the conduction
band: the tail of the density of states at energies
lower than E9~ E¢ - ES, The self-consistent cal-
culation by Hwang'? of the density of states in the
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tail shows that the number of electrons in tail
states is always smaller than the electron concen-
tration. So the Fermi energy relative to the bottom
of the band can be calculated with a good accuracy
in the formalism of a parabolic density of states.

In these conditions the valence~-conduction-band
transition edge measured in doped materials can
be developed by means of an expression similar
to Eq. (2), in which AE is the band-gap shrinkage
produced by the charges contained in the crystal.

For an n-type semiconductor AE is composed
of two terms:

e 4 3 L3 1/3
ArEc= 57 €€, (;) n'" (ev), @)
which represents the electron-electron interaction
term.® Equation (4) is only applicable for heavily
doped semiconductors. This corresponds to the
condition that the average electron separation is
lower than the Bohr radius in the crystal. This
gives a condition on the carrier concentration:

nt/3>11, 7x107 (m,/mg) (1/¢,) (cm™), (5)
B:Eg:(e/io €, Qa) Z N, Z, (eV), (6)

which represents the average screened potential
produced by N, impurities of charge Z,.

Q%= & (7)

defines the reciprocal screening length of the car-
riers moving in the band «. In the linear screen-
ing approximation of Thomas-Fermi'® this quantity
is given by

2
Qh= o J pe(® —(5’%—(5—)—> aE, (8)

where p, (E) is the density of states and f(E) the

Fermi function in the conduction band. In the para-
bolic approximation'® we obtain
o 4t mdE enRT)/? 5 Ep - E,
T Rl 2 kT

(9)
where F_;,, is the Fermi integral. 18 Equation (9)
can be simplified in two limiting cases: (a) For
a degenerate electronic system (Ez — E,>0),
F, ()= n**/(k+1)! and Eq. (9) becomes

I

z_ At 3)”3mani/3, (10)

Q [ €0€r ;zz (7—7

where 7, is the free-carrier concentration in the
band a. (b) For a nondegenerate system (Ep
- E,<0), Fp(m)=~e" and

ez

2
Qo= Ny «

€€ kT (1)
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In the case of interest, in heavily doped GaSb
samples (4 and B) the carriers are distributed in
the I'" and L conduction-band minima. Labeling by
my, ny and my,, n, the effective mass and carrier
concentration of the I' and L minima, the screen-
ing length of a degenerate sample takes the simple
form

1 & (m\M3 1 12)
Q2 T4me’ 3) myni’S+myny’3
This gives
#(m\L/3 ny+n
c -2 (T 1+
Ee(eV)=gr5 (3) myni3emynd’® (13)

Figure 5 gives an illustration of E variation
vs doping level in the GaSb case at 4 °’K. The
values of the parameters used are m; =0.047m,,
AE,=85 meV and various values of m,. In the
case of one kind of carrier (n,=0), E is a linear
function of #3/3/m,. For myni'®=m,ni® the
variation of E: shows a discontinuity correspond-
ing to the advent of the carriers of heavier mass.
For these carriers the screening length is lower
than that of the first minimum, so this decreases
ES. When myn3/®>m,nt® we obtain the n}/?
variation which is this time inversely proportional
to the second-minimum density-of -state mass.

As a verification we have plotted in Fig. 6 the
difference Eg,— E,, corresponding to the direct
edge of As-doped germanium, as determined by
Pankove! at helium temperature, In this particu-
lar case free carriers are only located in L mini-
ma and we can write

ng/s

Egp = Egy=EC~ (14)

ma
With m,=0.53 m,,'" we obtain ES(meV)=4.67% 3
in excellent agreement with the value of 4.7 repre-
senting the slope of the variation given in Fig. 6.
We have to note that the straight line of this figure
does not intercept the axis origin because Eq. (10),
(13), and (14) can only be used in the degenerate
case,

We are now going to show that using this defini-
tion of the band-gap shrinkage, we are able to re-
produce the variations of transition energies ob-
served in doped semiconductors.

IV. RESULTS AND DISCUSSION

We want to show that using the preceding formu-
lation of the band-gap shrinkage it is possible to
explain the variations E,, Ez, Ec, and Ej plotted
in Fig. 4 by using the E,, variation modified by the
conservation equation (2). This equation permits
us to compute the energy at which interband tran-
sitions occur in a doped sample, in terms of the
energy gap determined in a pure crystal and the
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T'y¢, Ly, band population. The Fermi energy is de-
termined at helium temperature from the oscilla-
tions of the magnetoresistance (Fig. 2). The total
concentration of free carriers is then obtained from

s/2 Ep - E
o= A 3/2 [(P1y Lp = L
Ny+ng (RT) P Fi/2 T

o )l

where AE, is the L, - I';, energy difference.

mg 1/2 kT

On Te-doped samples, between 4 °K and 300 °K,
ny+n, is constant. Knowing the AE (7T) variation
we can then calculate E; at each temperature and
consequently n;, n,, and E,,.

A. Low-temperature results

1. A and B samples

At helium temperature the relation (15) can be
simplified by

- - C . .
Egp Egn _Ec Direct band gap shrinkage
60 on germanium
(meV] at 4°K
l/
50}
FIG. 6. Relative varia~
tion of the direct edge of
40 - As-doped Ge vs carrier
/ concentration, at helium
- temperature (Ref. 4).
30
-/ ® from Pankove [4]
20 K slope 4.6
n2/3 [1012cm—2}
D e —————
L i 2 [ 1 [l 'l 1
1 2 3 4 5 6 7 8
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m 3/2 ! s/2
mny =8 (25) " (B - B

My 3/2 3/2
v (52) e - (B aB) ] ao
My

In this case Eq. (2) takes a simple form and the
E,, - E,, values (respectively, 69 and 49 meV) de-
termined at 4 °K on A and B samples can be used
to obtain further information on the value of the
L, density-of-state mass and of the L,, - T, gap.
Inserting the experimental values of Fig. 4 in Eq.
(2), (4), (13), and (16), we obtain two equations of
the form

m3’3 (@ - AE)/2[(b-c(a~AE,)] =d, 1

which gives #2, =0. 22my and AE, =85 meV, in good
agreement with recently published determina-
tions,!81°

2. Cand D samples

We noted that the energy variations obtained on
these samples, always lower than E,,, could be
interpreted in terms of a transition initiating in the
residual-acceptor level always present in natural
GaSb samples.?

Ey=Egp+Ep—AE,—E, , (18)

where E, is the ionization energy of the acceptor.
Using the helium-temperature E,, (C and D)
and E,, values (Table 1) we obtain:

sample C: E,=36+5 meV,
sample D:E, =30+ 5 meV,

These values are in good agreement with the de-
termination of the residual-acceptor ionzation en-
ergy determined on GaSb by Mathieu et al. #
(E,=30+2 meV).

B. Temperature evolution of £,

Having specified the AE, (4 °K), m, and E, val-

ues it is now possible using the E,, (T') variations,
to calculate [Eqgs. (2), (4), (13), and (18)] theE
E,,(T) variation obtained in the samples under con-
sideration and to compare these values to the ex-
perimental results. The basis of the calculation
is to determine, at each temperature, the carrier
distribution in the I and L conduction-band minima,
This permits to obtain the quantities Ez, Eg, Eg,
and then E,,.

For a given sample Eq. (15) gives

EF"Ec EF_EC_AEC(T)
rT BT BT :

n=Ct=AF,

(19)
AE,(T) is deduced from the helium-temperature
value, assuming a linear temperature variation
with a coefficient of —=1.7x10™ eV/°K.?? It is then
possible to obtain the value of Ep - E, satisfying
(19) and to deduce E,, (7). The theoretical values
of E,, we have calculated, using this method, are
compared in Fig. 7 (a) and (b) to the experimental
data.

The good agreement obtained confirms the mod-
el of linear screening and of parabolic density of
states. At high temperature, the E,, value is
lightly overestimated in the A and B samples.
This is due to the electron-electron interaction
term whose validity conditions permit only to take
account of the I'j, electron, This gives for E¢
lower values than we could obtain in a more com-
plete calculation. This shows that it is not the
bandtail but the carrier-carrier and the carrier-
impurity interactions which really reduces the band
gap.
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