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A study is made of the effect of adding a ferromagnetic interaction to Fisher's superexchange
antiferromagnet. Our results can be considered as either the exact treatment for an infinitely weak and
infinitely long-range ferromagnetic interaction or as the mean-field treatment for an arbitrary
ferromagnetic interaction. In addition, our model is equivalent to a three-dimensional metamagnetic

system in which spins in the same plane interact via a superexchange antiferromagnetic interaction
while spins in different planes interact via a ferromagnetic interaction. When the model is interpreted as
a host-impurity system, the results can be compared with those found experimentally for solutions of
hydrogen in metals. We find that as the ratio of the antiferromagnetic to ferromagnetic coupling is

varied, we reproduce qualitatively the behavior of the phase diagrams found when low and moderate
concentrations of hydrogen are absorbed in palladium, in tantalum, and in niobium. Application of our
model to absorption problems is also briefly discussed.

I. INTRODUCTION

It is of interest to find and study statistical
models that are simple enough to permit an exact
solution and yet are rich enough in structure to
afford an insight into the relationship between the
nature of the intermolecular potential and the
phase-change behavior of the system. In this study
we have considered a two-dimensional lattice mod-
el in a field whose intermolecular potential con-
tains two terms: a reference term that represents
a short-range antiferromagnetic interaction be-
tween spins and a perturbing term that is an in-
finitely weak 2nd infinitely long-range ferromag-
netic interaction between spins. The model can
be solved exactly and yields a variety of phase-
change behavior, which we describe in detail.

It can be shown" that the equation of state for
a magnetic system with a two-body interaction po-
tential that includes a reference term and an in-
finitely weak and infinitely long-range ferromag-
netic perturbing term can be expressed in terms
of the equation of state for the corresponding ref-
erence system (the potential of which contains
only the reference term). This has enabled us to
obtain the equation of state for our system, which
has a short-range antiferromagnetic interaction
and an infinitely weak and infinitely long-range
ferromagnetic interaction, in terms of the equa-
tion of state for the reference system, which has
only the short-range antiferromagnetic inter-
action.

Our reference system is Fisher's superexchange
model, ' which is a two-dimensional model of an
antiferromagnet in which the antiferromagnetic

coupling between magnetic Ising spins takes place
indirectly. Magnetic spins are placed on the bonds
of a lattice which contains a square array of non-
magnetic spins. This is called "decorating" the
bond. These magnetic spins form a square array
if viewed at an angle of 45' with respect to the
original lattice. Each magnetic spin interacts with
the two nonmagnetic spins at the ends of the bond,
so that the interaction between magnetic spins is
indirect. The superexchange model can. be solved
exactly in a field and exhibits behavior very much
like that expected from the standard nearest-
neighbor antiferromagnetic Ising model, which has
yet to be solved exactly in a field.

T he infinitely weak and infinitely long-range
ferromagnetic interaction, which is the perturbing
potential, may be characterized mathematically
either as a limiting case of the equivalent-neighbor
interaction, ' which is given by -(4/N)(gs;)' where
4 is finite and N is the total number of spins, or
as a limiting case of the Kac potential, 2 which is
given by Jy~f (yr, &) whe—re r, , is the distance be-
tween particles i and j, d is the dimensionality,
y is a positive parameter, and f(yr, , ) is a positive
function which satisfies certain weak conditions.
In the thermodynamic limit of N-, the equiva-
lent-neighbor potential becomes infinitely weak
and infinitely long range. The Kac potential also
becomes infinitely weak and infinitely long range
in the limit of y-0 after N-~. Since these two
potentials are identical after the limits are taken,
we shall, for simplicity, give the discussion only
in terms of the equivalent-neighbor potential. We
wish to emphasize that our results can be viewed
as either the exact treatment of an infinitely weak
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and infinitely long-range potential or as a mean-
field treatment of an arbitrary ferromagnetic in-
teraction. '

Our model is also mathematically equivalent
to a three-dimensional model of a metamagnet in
which spins in. the same plane interact via a super-
exchange antiferromagnetic interaction while spins
in different planes interact via a ferromagnetic
equivalent-neighbor interaction. Our treatment
of the ferromagnetic interaction in this case may
also be thought of as a mean-field treatment of an
arbitrary ferromagnetic interaction.

Our model exhibits a variety of interesting be-
havior when it is interpreted as a host-impurity
system. The phase diagrams are found to bear
a striking qualitative resemblance to the phase
diagrams found experimentally for several hydro-
gen-metal systems. ' By varying the ratio of the
anitferromagnetic to ferromagnetic coupling, the
phase diagrams can be made to reproduce quali-
tatively the low- and moderate-concentration
phase diagrams of hydrogen in palladium, hydrogen
in niobium, or hydrogen in tantalum. In addition,
for a certain range of ratios, our isotherms share
some of the features of the isotherms found ex-
perimentally when argon is adsorbed on graphi-
tized carbon black.

In Sec. II we review the properties of the super-
exchange model that were found by Fisher. We
also make a comparison between the phase bound-
aries of the superexchange model and the phase
boundaries of the Ising antiferromagnet. In Sec.
III we describe the method used to obtain the equa-
tion of state. The results are discussed and the
phase diagrams for different values of the ratio
of the antiferromagnetic to ferromagnetic coupling
are given. In Sec. IV we discuss the interpretation
of our model both as a decorated lattice-gas model
and as a host-impurity system.

II. REVIEW OF PROPERTIES OF SUPEREXCHANGE
MODEL AND COMPARISON WITH ISING

ANTIFERROMAGNET

A. Superexchange model

as shown in Fig. 1. This ensures that the magnetic
spins, which lie on a square lattice at an angle
of 45'with respect to the original lattice, will be
antiferromagnetically ordered in the ground state.
The model captures many of the features of those
real antiferromagnetic materials in which the
coupling takes place indirectly via a nonmagnetic
intermediary atom, ' although it lacks some of the
details of the superexchange interaction found in
such materials.

If we denote s,. = +1 as the spin variable of a non-
magnetic or vertex spin, s,. = +1 as the spin vari-
able of a magnetic spin on a vertical bond, and
s„=+1 as the spin variable of a magnetic spin on
a horizontal bond, then the Hamiltonian is

Xgp= - J~R s. Sg+ JgR s,. s„
hb

—p.H, g s,. —p.H, g s„ (2.l)

Z(Z, L)= g
s ~ = &I s~= &1 s&= &1

$

x exp Q s] s ~
—g s ~ s~

vb hb

N N

~ r g s, + z p s,)
.

j=l 4=1
(2.3)

By introducing a modified interaction param-
eter G(K, L), Fisher' is able to obtain the following
form for the partition function, Z(K, L), of the
decorated la.ttice.

where 8, is the applied magnetic field, 4,R is the
strength of the nearest-neighbor (short-range)
interaction, p. is the magnetic moment of the mag-
netic spins, N is the number of vertex, vertical,
or horizontal spins (so that there are 3N spins
all together), and Q,„(Q») is the sum over all
vertical (horizontal) bonds. If we introduce the
dimensionless parameters

K = Jsa/kT, L = WHO/kT, o! = pHo/2 J~a,, (2.2)

where T is the temperature and k is Boltzmann's
constant, we may write the partition function as

The superexchange antiferromagnet' is a stan-
dard two-dimensional square Ising lattice which
has been decorated by placing a magnetic spin
on each bond. At each vertex of the Ising lattice
there is a nonmagnetic spin. By nonmagnetic we
mean that the spin interacts with only infinitesimal
coupling with the magnetic field, i.e., its magnetic
moment is zero. The interactions are between
the nonmagnetic vertex spins and the magnetic
bond spins. The signs of the interactions are
positive (ferromagnetic) on vertical bonds and
negative (antiferromagnetic) on horizontal bonds
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FIG. 1. The superex-
change antiferromagnet.
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Z (K, L) = [f (K, L)]'"g exp G(K, L) s,. s,.

=[f(K, L)]'"e(G(K L)) (2.4)

(2.7)

where I is the total magnetization of the lattice
(which is just the sum of the magnetizations of the
spine on the vertical and horizontal bonds). The
saturation value of the magnetization is given by
M, =2. The magnetization can be obtained by using
Eqs. (4)-(7) in conjunction with Onsager's solu-
tion. This yields

M(K I)=( ) U"(G)+&( i),
where

(2.6)

U*(G) = (1 + [2 tanh'(2G) —1](2/v) K(k, )] coth(2G)

(2.9)

is the reduced energy of the standard square net as
defined by Onsager and

k, =2 tanh2G/cosh2G (2.10)

is the modulus of the complete elliptic integral of
the first kind. Thus, the equation of state, M(K, L),
can be represented by a surface in M, T, II, space.
For its projections onto the M-T, M-IIo, and

H, -T planes see Figs. 9, 10, and 11 of Fisher
(Ref. 3). The transition field as a function of tem-
perature, H, (T), is shown in Fisher's Fig. 11 by
the dashed line. Below this transition curve, long-

Here Q(G) is the partition function of the standard
square Ising lattice of N spins in zero field with near-
est-neighbor interaction energy 4*=kTG. The func-
tions f (K, L) and G(K, L) are defined by the equa-
tions

f'(K, L) =2'cosh(2K+L) cosh(2K —L) cosh'L,

(2.6)

e'~'x'~' =cosh(2K+I ) cosh(2K —L)/cosh'L.

(2.6)

The decoration transformation' [Eqs. (4)-(6)]
is a mapping of the antiferromagnetic decorated
lattice at temperature T (-1/K) and magnetic field
H (-L) onto the standard Ising lattice in zero field
at modified temperature T* (-I/kG). The thermo-
dynamics of the decorated lattice can be derived
in terms of Onsager's solution' for the standard
square Ising lattice in zero field and the model
can therefore be solved exactly.

The equation of state for the magnetic spins in
this model can be obtained in the usual manner.
The reduced magnetization per vertex is defined as

=~'(») '
(,~.) U"(&)

+ — D*G +2 —, , 211

where D*(G) is simply related to the specific heat
C* of the standard square Ising net. More expli-
citly

B' lnQ(G) BU* kT*'C
BG BG

2 2
= 2 coth'2G —K(k, ) ——E(k, )

(( —(.,") (+0,"—K(k, ) ),

(2.12)

where E(k, ) is the complete elliptic integral of the
second kind with modulus k, and

k,"= 2 tanh'(2G) —1. (2.13)

The initial (or zero-field) susceptibility is a con-
tinuous and smoothly varying function of T with a
maximum 40/o above the critical point, however
By/BT is infinite at T =T, =1. 38014k/. For Hoc0,
the susceptibility has a logarithmic singularity
as a function of temperature at the transition point
T =T, (H,).

Since we can calculate the susceptibility as a
function of temperature and field and the magneti-
zation as a function of temperature and field, we
can graph the inverse susceptibility versus the
magnetization for fixed values of the temperature.
In Fig. 2 we plot (J«ys)) ' versus M for different
values of the reduced temperature K '. Notice
the spike to zero in the inverse susceptibility
which is an indication that at that particular tem-
perature and magnetization a phase transition will
take place. As the temperature is increased from
zero the spike moves from M, =0.58579 at T =0
towards the M =0 axis until at T =T, =1.30S41
(J,„/k) the spike is absorbed into the M =0 axis.
Above this temperature there is no spike present,
and hence there is no phase transition. Notice
that as T approaches T, from below a hump is
developing in the inverse susceptibility [see

range antiferromagnetic order prevails with mag-
netic spins on vertical and horizontal bonds point-
ing predominantly in opposite directions. Above
the transition curve the behavior is essentially
paramagnetic.

The susceptibility of the magnetic spins can also
be determined

BM(K, L) (((2 B'lnZ(K, L)
8&o kT BL'
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long range in the thermodynamic limit. The sum
is over all the magnetic spins. It can be shown'
that the equation of state for this system, H(M, T),
can. be expressed in terms of the equation of state
of the superexchange model, H, (M, T), by the
following transformation:

H(M, T) =[H,(M, T) —2 J„M)
+ Maxwell type of construction. (3.3)

A graph of field II versus the magnetization M for
fixed J«and T will have van der Waals loops. A

necessary condition for equilibrium is that the
Gibbs free energy per spin, E(H, T)," of the two
phases be equal. Differences between E(H, T) on

any point on the curve and some reference point
are given by

E(H, 2') -E,„,=-

~ 1—2~pRXs)- ~ ~sR~~~
~ret

where the integration variable & is defined in Eq.
(2.2). The Maxwell type of construction referred
to in Eq. (3.3) is just an equal-area construction in
the H-M plane. For computational purposes we
prefer to find the magnetizations at the transition
point by locating the intersection point on a graph
of [E(H, T) —E„,] vs H where H„; =0.

It can be shown that Eq. (3.3) also holds for the
case of a three-dimensional metamagnet in which
spins in the same plane interact via a superex-
change antiferromagnetic interaction while spins in
different planes interact via a ferromagnetic equiv-
alent-neighbor interaction. We find that if we
define the magnetization variable to be Q', ",s, /N',

'

where N equals the number of planes as well as
the number of vertices, the equations are identical
to the equations found for the two-dimensional
superexchange antiferromagnet w'ith equivalent-
neighbor interactions. Thus, the results which we
have obtained also describe the behavior of this
three -dimensional metamagnet.

ferentiating Eq. (3.3). Thus

1 dH 2JsRd& 1
2 JLR— 2 JLR (3 ~ 5)

dlvd z dM Xsf.'

or

1 1

~sRX ~«X sr.

When (dH/dM)r ——1/X =0, which occurs when 1/X~,:
=WLR, we get a spinodal point which is ~ust the
maximum or minimum point of the van der Waals
loops. Since the transition magnetizations will
bracket the spinodal point magnetizations, the
location of the spinodal points gives us a good in-
dication of where the transition magnetizations
mill lie. The critical point is a special spinodal
point at which not only I/y =0 but also d(l/y)/dM
=0. In order to find the spinodal points for a par-
ticular value of the ratio JLJJ,«and temperature
T we locate on Fig. 2 the intersection points of the
curve I/Js«ysF and the constant 2JL«/Js«. To find
the critical point we locate the tangency point be-
tween the curve I/JqRyz&: and the constant 2JL«/Js«.

As an example of how to obtain qualitative and
quantitative information about the full system from
the reference system graph of 1/Js«ps&: vs M, we
mill focus our attention on particular temperature
values (which are scaled by the short-range inter-
action strength). For the following discussion
refer to Fig. 2. For kT/Js«=1 there are two spino-
dal points for 0 &2JLR/Jq«&~. This means that at
kT/JqR 1 there wi-l—l always be a first-order phase
transition about some value M (M O 0). For
kT/J, .«=1.5, there are no spinodal points for 2J„„/
Jq«&1.415, there is a critical point for 2JLR/Js«
=1.415, there are two spinodal points for 1.67
& 2JL«/J~R& 1.415, and there is one spinodal point
for 2JL«/Jg«&1. 67. This means that at kT/Js«=1. 5

there will be no phase transition for Ji «/JsR& 1.415,
a CI'1'tlcal polllt fol' 2JLR/Js«=1. 415, a fll"st-ol'del'
transition about M 0 0 for 1.67 & 2JLR/Js«& 1.415,
and a first-order transition about M =0 for 2JLR/JSR
&1.67. In this manner we can determine qualita-
tively the behavior of the full system for each
value of JL«/JqR and kT/Js«

A. Qualitative behavior of the equation
of state —Spinodal line B. Phase boundaries

We find that much useful qualitative information
as mell as some exact quantitative information can
be obtained from an inspection of graphs of simple
thermodynamic functions of the reference system. "
In particular, we shall consider graphs of the sus-
ceptibility versus the magnetization for the refer-
ence system, as shown in Fig. 2. The susceptibili-
ty of the full system can be expressed in terms of
the susceptibility of the reference system by dif-

We now describe the phase boundaries which have
been calculated for different values of the ratio
J «/JRR Throughout this section we shall loosely
refer to the temperature variable as "T" and to
the field variable as "II." Actually the tempera-
ture variable is the reduced temperature kT/Js«
and the field variable is the reduced field H/J, R.
We have divided the range of values of the ratio
AR/Js« into different regions. Within each region
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l.4

l.2

l.o

—0.8kT
JSR

0.6

I

I.O

M

l.5 2.0

FIG. 3. Phase boundary in the T Mplane -for J„+Jsa
= 0.500 (region I), 0.5827 (region II), 0.625 (region II),
and 0.750 (region III) ~

the transitional behavior is qualitatively the same
for different values of the ratio. For each region
we pick a typical value for the ratio and show the
exact phase boundaries in H-T space and in T-M
space. Finally we present a diagram in the kT/Jsa
vs JLa/Jsa plane which delineates the different re-
gions and shows more fully the behavior which
occurs. All of these calculations were performed
on the IBM 360 computer at the State University
of New York at Stony Brook.

a. Region I: 0& J|R/Jsa&0. 5827. We choose as
a typical value for this region JLR/Jsa=0. 5. For» (T,)s,: (the critical temperature of the super-
exchange antiferromagnet), there are no phase
transitions. At T = (T,)sE, a critical point at M =0,
H=O develops. As T decreases below (T,),„., the
critical point separates into two first-order phase

transitions about nonzero values of M and at nonzero
values of H. The transition near T =(T,)s' is al-
ways of first order. At T =0 it can be shown by a
simple geometric argument that the value of H
at the phase boundary for any value of JLa/Jsa ls
given by H(T =0) =2 —2J| R/Jsa and the values of M
at the phase boundary are M =0 and M = +2. The
M Tph-ase boundary for JLR/Jsa.=0.500 is shown in
Fig. 3 and the H-T phase boundary is shown in
Fig. 4. Note that although the M-T diagrams are
symmetric about M=O, we will only show the
right-half plane. Similarly, in the H-T diagrams
we will show only the upper-half plane. In the re-
gion between the M=O axis and the left-hand side
of the phase boundary we' find antiferromagnetic
behavior. The area above and to the right of the
phase boundary is paramagnetic.

b. Region II: 0.5827&JLa/J'a&0. 655. For T
&(T,),„. there are no phase transitions. At T =(T,)sE
a critical point at M =0, H =0 develops. As T
decreases below (T,)„:, this critical point separates
into two first-order phase transitions centered at
a nonzero value of M and at a nonzero value of H.
At T =T, a second critical point develops at some
nonzero field and magnetization. For T & T, there
are four phase transitions until at T =TTP(the tri-
ple-point temperature) they merge into two phase
transitions. At T =0 the phase transitions have
boundary points at M =0, M = s2 and at H=2 —2JLa/
~SR.

The M Tand H Tp-hase bo-undaries for JLa/Jsa
= 0.5827 and 0.625 are shown in Figs. 3, 4, and 5.
We have included the value Jta/Jsa=0. 5827 which
is the left-hand endpoint of this region because it
is at this value that the second critical point first
appears. The value Ji a/Jsa=0. 5827 may be charac-
terized as the point at which TT,= T, or as the point
at which d'(l/I, „y)/dM' =d'(1/Isa'„:)/dM' =0.

The region to the left of the phase boundary in
M-T space is antiferromagnetic and the region

I.O

0.8 0.8-
JLR+SR"-0.6250

0.6
H/JSR

0.4

0.6

H/JSR

04

0.2 0.2

I

0.2 0.4 0.6 0.8 I.O l.2 I.4

kT/JSR

0.2 0.4 0.6 0.8 I.O l.2 L4

kT/JSR

FIG. 4. Phase boundary in the H-T plane for JLR/JsR
= 0.500 (region I) and JLR/JsR = 0.5827 (region II).

FIG. 5. Phase boundary in the H-T plane for JLR/JqR
= 0.625 (region II) ~
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1.0-

0.8-

0.6-
H/JSR

04

JLR/JSR = 0.750
JSR= I o

0.2

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
kT/JSR

FIG. 6. Phase boundary in the H-7.' plane for JLR// JsR
= 0.750 (region III),

I.S

I.6-
IA

)12"
kT IO. ,

JsR
08 ~

above and to the right is paramagnetic.
c. Region III: 0.655- JLR/JsR&0. 7667. The be-

havior in this region is very similar to that de-
scribed for region II. The only difference is that
here T, & (T,)»: whereas in region II, T, & (T,),F. The
M Tand H-Tphase b-oundaries for J~R/Jsa =0.750
are shown in Figs. 3 and 6. The region to the left
of the phase boundary in M-T space is antiferro-
magnetic and the region above and to the right of
the phase boundary is paramagnetic.

d. Region IV: 0.7667& Jta/V&a&0. 7770. This is
a very small region. We have chosen as a typical
value for this region JLR/JsR=0. 7700. For T&T,
there are no phase transitions. At T =T, a critical
point develops at M = +M„ II = +II, . As T de-
creases below T, the critical point spreads into
two first-order phase transitions centered at some
nonzero value of M until at T =TT", the phase tran-
sitions merge to become one transition about

M=O and at II=0. At T =TTp +TT'p' the transition
breaks into two transitions and moves to ~H~ &0.
At T = (T,)„:a second critical point develops at
M =0, H =0. For.T & (T,)s; there are four phase
transitions and for T =TTpthere is a triple point
at which these four transitions merge into two
transitions. At T =0 there are two transitions
with boundaries M=O and M = +2 and transition
field H =2 —2J a/JsR. The left-hand endpoint of this
region, JLR/JsR=0. 7667, is the point at which
T",p' = T-'„'p' =1.58. The right-hand endpoint of this
region, Jt.RPsa =0.7770, is the point at which T",,',
(T,)»-, , and TTpall meet at M=0. It is also the
point at which TTp = 7& at M =0 The phase bound-
aries in the M Tand H-Tplane-for JLR/Jsa=0. 7700
are shown in Figs. 7 and 8. In the M-T plane the
area between the M =0 axis and the left-hand side
of the phase boundary below T = (T,)„:is an anti-
ferromagnetic region. The area directly above this
is a paramagnetic region. The area to the right of
the phase boundary is paramagnetic.

0.7770 & JLR/Jsa& 1.000. We choose
as a typical value of J&a/JsR in this region the value
JLR/JsR=0. 875. For T & T, there are no phase tran-
sitions. At T =T, a critical point develops at M=0,
II = 0, At T = T Tp this phase transition splits into
two smaller transitions centered at nonzero M
and at nonzero II. At T =0 the phase transitions
have boundary points at M=0, M=+2 and at II
=2 —2' R/JsR. The right-hand endpoint of this
region, &LR/JsR=1, is the point at which TP,' =0,
i.e., for Jr.R/JsR=1, H =0 at T =0. The phase bound-
aries in M Tspace and -H Tspace for J-LR/JsR

=0.875 are shown in Figs. 9 and 10. The area to
the left of the phase boundary is antiferromagnetic,
and the area above and to the right of the phase
boundary is paramagnetic.

f. Region VI: Jt R/JsR& 1.000. The qualitative

JLR/JSR=0.7700
JSR=~O

~OOIO-
H
.0005-

0.6-
0.4-
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0.2 0.4 0.6 0.8 I.O I.2 I.4 I.6 I.8 2.0
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0.6-

H/JSR 0.4

0.2

I.80 I.85
kT/JsR

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 IQ

kT/JSR

FIG. 7. Phase boundary in the T-kl plane for JL~/Js~
= 0.770 (region IV).

FIG. 8. Phase boundary in the H-T plane for JLR//Jsz
= 0.770 (region IV).
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3.5-

2.5

2.0
kT
JsR

15

00

change antiferromagnet changes the phase be-
havior of that system. Where once there were
only single second-order phase transitions there
are now first-order phase transitions with rather
complicated structures that change as J«/Jss is
varied.

Figure 12 summarizes the behavior that we have
described in this section. In the kTPsR —JLRPsR
plane we show the boundary lines T = (T,)sF, T = T, ,
T =TTp, T =TT", and T =TT", . The number of phase
transitions within each area is also indicated.

I.O

0.5

I.O

M

I.5 2.0

FIG. 9. Phase boundary in the T-M plane for JLR/JsR
= 0.875 (region V) and JLz/JsR—- 1.000 (region VI).

behavior throughout this region is similar to the
behavior at its endpoint, Ji.R/JsR=1. For T&T,
there are no phase transitions, at T =T, a critical
point develops at M=O, H=O, and for T&T, there
is one phase transition centered at M =0 and at
H =0. The phase boundaries in the M-T and H-T
planes are shown in Figs. 9 and 11. We see that as
the strength of the long-range interactions becomes
greater than the strength of the short-range inter-
action, we obtain a diagram in M-T space that
looks qualitatively like the coexistence curve of a
simple lattice gas with infinitely weak and infinite-
ly long-range attractions. The area to the right
of the phase boundary is paramagnetic.

Thus we have seen how the addition of an in-
finitely weak and infinitely long-range ferromag-
netic interaction to the potential of the superex-

P~H
v -M (4.1)

IV. OTHER SYSTEMS DESCRIBED BY THE
SAME DECORATED —LATTICE MODEL

A. Lattice -gas interpretations of the results

In order to more fully understand the signifi-
cance of our results we shall interpret them in
terms of fluid or lattice-gas language in this sec-
tion. It has long been known that there is a close
analogy" between the thermodynamic behavior of
magnetic systems described by the variables M,
H and T, and the behavior of systems such as a
one-component fluid that are described by the
variables P, v, and T where P is the pressure,
v is the specific volume (v=1/p) and T is the tem-
perature. This analogy has been very much il-
luminated by the Yang-Lee" demonstration of the
isomorphism between the Ising model and the lat-
tice gas, an extension of which we give in the next
section. The analogy was well known prior to that
demonstration and can be understood from a purely
thermodynamic viewpoint, divorced from the de-
tails of a particular pair of isomorphic models.
There are in fact two well-known alternative
thermodynamic correspondences between P, v, T
and M, H, T systems. The first is given by the
correspondence (up to additive and multiplicative
constants)

06—

H
0.4—

SR

0.2

JL~Jss = 0.875
JSR= l.000

0.6-

0.4-
H/JSR

0.2-

JLR/Jgg = 1.0
JSR= I.O

0 I

I.O
I I

2.0
kT/ "sR

I

3.0 0.4 0.8 1.2 l.6 2.0 2.4 28 5.2 58
kT/JSR

FIG. 10. Phase boundary in the H-T plane for JL&/Jsz
= 0,875 (region V).

FIG. 11. Phase boundary in the H-T plane for JLR/JsR
= 1.000 (region VI).
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while the second is given most directly in terms
of the chemical potential p, (again up to additive
and multiplicative constants)

p. ~H~

p —M.
(4.2)

The second correspondence is also yielded by the
usual Ising-model —lattice-gas isomorphism. There
are two routes to a lattice-gas interpretation of
our model both of which yield Eq. (4.2). The first
involves an extension of a lattice-gas version of
the superexchange antiferromagnet that was first
proposed by Fisher. The second involves an in-
terpretation based upon a direct superexchange-
model —decorated-lattice -gas isomorphism that is
an extension of the Ising-model-lattice-gas iso-
morphism of Yang and Lee.

1. Correspondence with Fisher s planar lattice gas

Fisher" considered a square lattice gas with
nearest-neighbor repulsions of strength V, and
next-nearest-neighbor attractions across alternate
squares of the lattice. The model can be solved
exactly for the case V, -~ (i.e. , when it becomes
a hard-core lattice gas), but only for one particular
isotherm. In order to so solve it, Fisher first
considered the general case in which the hard core
is softened, i.e., V, 4~. He also introduced one
other interaction, a "four-body" repulsive inter-
action of strength V* =4okT which comes into play
between adjacent atoms when the remaining two
sites in the alternate squares are unoccupied. This
interaction was introduced as a device which
enabled h'im to transform the problem into the
super exchange model.

It is a simple matter to find how his results
change when an infinitely weak and infinitely long-
range attractive interaction of strength eL„/N
(which is the lattice-gas version of the eguivalent-
neighbor potential) is added to the potential of the
soft-core lattice gas. It can be shown, however,
that for a given set of interaction parameters, the
behavior of this soft-core lattice gas with long-
range attractions can be found for only a single
isotherm. For this reason we cannot relate the
phase boundaries of this lattice gas to the phase
boundaries of our model. Therefore we have not
considered this model any further.

8 =1
z = 2(L 2& 2eI[ R/N)

z„=2(L+2K —2J, R /N),

4~SR &SR

4~I.,R &L R

(4.4)
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0 phase
transl i I

T=~Tc~sE
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I.O-

0.5-
2 phase

transition

attractions is to make a direct Ising-model-to
-lattice-gas transformation. In this section we
describe the results of this transformation and

show how to interpret our spin-system phase
boundarie s in lattice -gas ter ms.

In order to make the correspondence with lattice-
gas language we let s, =+1 (where l =i,j, k) corre-
spond to an occupied site and s, = -1 correspond
to an unoccupied site. If we designate T, as the
occupation variable so that 7, =1 indicates an oc-
cupied state and 7, =0 indicates an unoccupied
state then s, = 2w, —1. Substituting this into the
Hamiltonian [Eg. (3.1)] and proceeding in the usual
manner" we find that the partition function of the
superexchange antiferromagnet with weak long-
range attractions is related to the grand partition
function of a lattice gas with infinitely weak and
infinitely long-range attractions in the following
way:

Z(K, L, Jt R/kT) =e '" ""« " (z, , z,. , z„e~„/'kT, e~R/kT)
or

(4.3)
—E/g T —~L+ 2NJLR +3NP/P T

where now

2. Superexchange - anti ferromagnet —decorated
lattice -gas isomorphism

0.25 0.50
JLR~JSR

0.75 I.06

A second way to make an identification between
the superexchange antiferromagnet with equivalent-
neighbor ferromagnetic interactions and a lattice
gas with infinitely weak and infinitely long-range

FIG. 12. Diagram in the kT- JLR/JqR plane showing the
boundary lines T = (T,)»,-, T = TTp, T = TTp~ and T = T &~.p~ .
The number of phase transitions within each area is also
indicated.
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The magnetization that was given in Eq. (2.8)
corresponds to a density function, p, of the j and
particles

p= —'(p&+p ) = —'(M+2), (4.5)

where p,. =P 7,/N .and p» =Jr, /N Th. e magnetiza-
tion of the vertex or i particles, 4', which was cal-
culated by Fisher corresponds to the dens tiy of
the i partic les, p, In order to find the density of
the i particles by the formula. p, =z, (e/ez, )(in=),
a limiting process must be taken since z,. = constant.
This yields

p; =k(~'+1) . (4.6)

'Thus we have found a decorated lattice gas with
inf inite ly weak and infinitely long-range attrac-
tions that is iso mo rphic to the model that we have
been studying. 'The inte rac tio ns are the same,
i .e . , a particle on a vertical bond site will be at-
trac ted to its neare s t neighbors and a particle on
a horizontal site will be repelled by its nearest
neighbors .

From Eq. (4.3) the pressure-field relationship
for this decorated -lattice -gas model is

P= sif —-'sd« —(free energy)/spin . (4.7)

Alternatively, we may wish to find the pressure in
terms of the variables ~ and H. To do this we
make use of the following relation:

dP = s dT +p,. dp. , +p,. d p. ~ +p„dp.„
'Ihen the pressure is given by

(4 8)

(4.9)

where T is constant. Now dP, = 0 (since p, , is a
constant), P(p = -~) = 0 and dp

&
= dp, at constant

T so that

P g „p;
P(p. ) - P(p, = - ) = p; dP, ; + p,. dli, +p, .dP, „,

(in which there is frequent crossing of isotherms),
are rather unusual and warrant some comments .

First we notice that the P-T curves in Figs . 13
and 14 have a temperature maximum at T = (T,)s,:
as a function of pressure . For example, see the
curve for e«/esR= 0.500 in Fig. 13. The lower
part of this curve is for p & —,

' and the upper part is
for p & —,

' . The reasons for the occurrence of this
feature become clear when we recall that the
pressure corresponding to a certain field, H, is
an area in the H-M plane as described in Eq. (4.10).
For H &0 (M &0 or p & —,') this area increases with
increasing temperature and for H &0 (M&0 or p & —,)

this area decreases with increasing temperature.
The unusual shape in the P ppla, ne-for p & —', (it
looks "upside down") reflects the fact that the
pressure decreases with increasing temperature .
'Ihe coexistence curve on the p & —,

' side is inverted
about the pressure at which the te mperature is a
maximum. In fact, we can say that any magnetic
Ising system which is symmetric about I= 0, has
a nonzero transition field, H, such that H )0 for
~)0 and H & 0 for ~(0, and such that the absolute
value of H decreases with increasing temperature,
will have a temperature maximum as a function of
pressure in its corresponding lattice -gas system.
This temperature maxi mum as a function of pres-

R= 0.500

l.5-

p I 0-

0.5-

H
P= —,'(M+2) dH . (4.10)

0.5 I.0
kT/JsR

I

l.5

In this way we are able to relate the thermodynamics
and hence the phase diagrams of our model to the
equivalent thermodynamic s of aP, V, T model. The
phase boundaries in M-T space will map into a coexis-
tence curve in p Tspace via Eq. (-4. 5) since lines
of singularities in one space are mapped into line s
of singulariti es in the other spac e .

In Figs. 13-16 we present the coexistence curves
in P -p space and the phase diagrams in P-T space
for ELs/ass =J, R/Js~ =0.500, 0.625, 0.750, 0.875,
and 1.000. (We have not included any diagram for
region IV. ) The coexistence curve in p Tspace-
can easily be visualized because it is the same as
the full ~-T diagram. The curves in the P-p plane

l.5-

p I 0

0.5

O.l 0.2 0.5 0.4 0.5 0.6 07 0.8 0.9 l.0
P

FIG. 13 . Coexistence curve and phase boundary for
ELR/Esp= 0.500 and for sLR/ssR 0.625.
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sure was also noted by Matsuda, "in his study of
the three-dimensional lattice gas with repulsive
nearest neighbors using the mean-field approxima-
tion. The melting temperature maximum as a
function of pressure has been observed in many
solids. " Usually, in association with this maxi-
mum, the solid also exhibits a solid-solid transi-
tion at some higher pressure. This does not hap-
pen in our model nor does it happen in Matsuda's
approximation.

In Fig. 13 we also present the coexistence curve
and phase diagram for e, R/&-&R=0. 625. The critical
point has already appeared as the endpoint of a
spur in the P-T plane and at the top of the usual
dome in the P-p plane for p &—. It is accompanied
by its inverted image in the P-p plane for p + —', .

For &,R/c, „=0.750 (see Fig. 14) the spur and its
image in the P- T plane have lengthened. The
pr essure of the upper spur first decreases and
then increases as a func tio n of temperature. This
change in direction is reflected in the P-p plane
for p &-, by another inversion in the already in-
verted coexistence curve.

For e„~/&zq=0. 875 (see Fig. 15) the behavior
is markedly different. For T &TT'p the P-T curve
has the characteristic temperature maximum fea-
ture at T=TT'p. For T+TT'p there is just one
curve in which the pressure increases with tem-

perature. (Recall that for T & TT'~~ there is one
extended transition about &~ =0.) The coexistence
curve in P-p space is relatively complicated and
difficult to represent in two dimensions. The
best way to understand it is to trace out the iso-
therms. For T &TT'p the isotherms resemble step
functions with origin at p = —,'. For T & TTp, the iso-
therms have a more familiar behavior which ends
in a critical point.

For ~«/~»=1. 0 (see Fig. 16) the behavior is
most familiar. The effects of the long-range inter-
actions have increased to the point where we have
a coexistence curve whose shape qualitatively re-
sembles that of a lattice gas with simple hard
cores and attractive interactions.

B. Interpretation of model as a host-impurity problem

The decorated lattice gas discussed in the last
section lends itself to immediate interpretation as
a host-impurity system. We define the host par-
ticles as those particles that are located on the
vertices of the lattice and the impurity particles
as those particles that are located on the bond
sites. The presence of a host particle can be
thought of as corresponding to a spin-up on a ver-
tex and the presence of an impurity particle to a
spin-up on a bond site. Spin-down indicates that

0.6-
EL„/es„=0.750

0.6
gLR/6SR =0.875

P 0.4-
0.4
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p

FIG. 14. Coexistence curve and phase boundary for
~,R/~, R =O.750

FIG. 15. Coexistence curve and phase boundary for
&LR/ &sR 0'87~ ~
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the site is unoccupied. Thus, looking at the prob-
lem presented in the last section in slightly dif-
ferent language we have

p = ,'(p,-+p., ) = ~(M+2),
imp

(4.11)

(4.12)

Alternatively we can imagine that all vertex sites
are occupied by host particles, but that only some
of them become activated by the impurities. Then
spin-up on a vertex corresponds to an activated
host particle and spin-down to an inactive host
particle that is not interacting with impurities.
Under this mapping the p„„,of (4.12) corresponds
to the density of activated host sites. It is this
interpretation of p„. , that seems most relevant to
host-impurity problems of physical interest. Both
the interaction energy between the impurity and
the host and the chemical potential of the impurity
are determined by which of the two sites (horizon-
tal or vertical) the impurity particle occupies.
For certain values of the variables one of the sites
will be preferentially occupied. This corresponds
to antiferromagnetic ordering in the equivalent
magnetic system. For other values (when the
equivalent magnetic system is in a paramagnetic
state) the sites will be occupied with equal prob-
ability.

We now discuss a family of host-impurity sys-
tems whose thermodynamic behavior is similar to
the thermodynamic behavior found in our model.
Hydrogen-metal systems such as hydrogen in
niobium, in tantalum, and in palladium have been
of growing interest to physicists in recent years.
One of the problems that remains unsolved is that
of deriving theoretically the phase diagrams that
occur for these systems. It has been known for
many years" that the hydrogen-palladium system
is amenable to study by a simple nearest-neighbor
lattice-gas approach. This particular system has
a coexistence curve with a critical point that re-
sembles a typical van der Waals type coexistence
curve. The other systems are not as well under-
stood theoretically since the phase diagrams are
more complicated.

The phase diagrams for H in Ta, Nb, and
Pd, " are shown schematically in Figs. 17(a),
17(b), and 17(c), respectively, as they are usually
plotted in the T —x plane where x=p, ,/p„„,, Since

p, , =1 for hydrogen-metal systems, we can think
of these diagrams as being essentially T-p„„
phase diagrams and hence compare them with the
T- p,. phase diagrams of our model. We see
that the phase boundaries in T- p. space for
e«/e, „=0.5827, 0.675, and 1.000 as shown in

Figs. 17(d), 17(e), and 17(f) reproduce qualitative-
ly the coexistence curves of H in Ta, Nb, and Pd,

ELR/5SR I 000

I.O-
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I.O 20
kT/JsR
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I.O
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O.I 0.2 03 0.4 0.5 06 07 0.8 0.9 I.O

P

FIG. 16. Coexistence curve and phase boundary for
eLR/egR ——1.000.

respectively. In addition to this similarity between
the shapes of the coexistence curves in our model
and the shapes of the coexistence curves in hydro-
gen-metal systems there is a correspondence be-
tween the phases in our model and the phases in
hydrogen-metal systems.

We begin by discussing the hydrogen-niobium
system which is the most general of the three
hydrogen-metal systems that we will consider.
The hydrogen atoms occupy interstitial sites with-
in the niobium's bcc lattice structure. "

In the hydrogen-niobium phase diagram there
are three phases n, o.', and P phases. The ct and
n' phases are regions of low and high hydrogen
concentrations, respectively. These two phases,
which can coexist as regions of compression and
dilitation, differ in that the lattice parameter of
the n phase is smaller than the lattice parameter
of the n' phase. Both the n and n' phases retain
the cubic symmetry of the niobium lattice so that
all of the interstitial sites will be occupied with
equal probability. In the P phase the lattice be-
comes orthorhombic and looses the cubic symme-
try of the niobium lattice. This occurs because
certain of the available impurity sites are pre-
ferentially occupied by hydrogen atoms, thus
distorting the host lattice.

Now let us compare the phase diagrams that we
have found in regions II and III (0.5827& eLR/esp
& 0.7667) with the phase diagram of the hydrogen-
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niobium system [ Fig. 17(b)j . In Fig. 17(e) we
have plotted the phase diagram for e«/e, R=0.675
which has typical behavior for this region. In our
model there is a coexistence region between two
phases, one of low impurity concentration and the
other of high impurity concentration. In both of
these phases, the two sites available to the impur-
ity atoms are occupied with equal probability. We
can identify these two phases with the e and n'
phases of the H-Nb system. There is a third phase
of very high impurity concentration in which one of
the two sites available to the impurity atom is pre-
ferentially occupied. We can identify this phase
with the P phase of the H-Nb system.

We can make similar identifications between the
phase diagrams found in the H-Ta and H-Pd sys-
tems and the phase diagrams of our model shown
in Figs. 17(d) and 17(f). In the H-Ta phase diagram
the triple point temperature just equals the critical
point temperature so that the n' phase that was
present in the H-Nb system no longer appears. In
our model this occurs when the parameter e«/e«
=0.5827. In this case we have a coexistence re-
gion between a phase of low impurity concentration
in which the two sites available to the impurity
atoms are occupied with equal probability and a
phase of high impurity concentration in which one
of the two sites available to impurity atoms is
preferentially occupied. These phases can be
identified with the o. and P phases of the H-Ta sys-
tem.

In the H-Pd phase diagram there is a coexistence
region between the n and a' phases. Once again
it is possible to identify these phases with the two
phases in our model present when e«/e, R

~ 1.
Thus we see that the shapes of the coexistence

curves of hydrogen-metal systems are qualitative-
ly similar to the shapes of the coexistence curves
in our model and that it is possible to make a
direct identification between the o. and n', and P
phases of hydrogen-metal systems and the phases
found in our model.

There are several ways in which our model ap-
pears to capture certain key features of hydrogen-
metal systems. In particular, they are the follow-
ing: (i) The model contains two different species
which can be viewed as host and impurity parti-
cles. These two species reside on separate lat-
tices so that the impurity particles are interstitial
rather than substitutional. There are two dis-
tinguishable impurity sites per host atom. (ii) The
model contains a very-long-range attractive inter-
action between the impurity atoms. It has been
suggested'" that there is indeed a long-range at-
tractive interaction between hydrogen atoms dis-
solved in metals and that this may be due to elastic
forces." (iii) The model contains a mechanism

b)

c) f)
0

FIG. 17. Diagram showing schematic drawings of the
phase boundaries in the temperature-concentration plane
for (a) tantalum, (b) niobium, and (c) palladium. For
comparison we have presented the coexistence curves of
our model in the temperature-density plane for e& R/e~~
= (d) 0.5827, (e) 0.675, and (f) 1.000.

for the creation of preferential occupation of sites
which appear to be a necessary feature if one is to
obtain the P phase.

On the other hand, our model contains certain
features which do not seem to correspond in any
obvious way to the physics of hydrogen-metal sys-
tems. For instance, we can think of no reason
why hydrogen-metal systems should literally have
attractive interactions on bonds between hydrogen
and metal atoms in certain directions and repulsive
interactions on bonds between hydrogen and metal
atoms in other directions. The possible relevance
of this type of interaction for hydrogen-metal sys-
tem is rather that is serves as a mechanism for
obtaining impurity ordering, i.e., preferential oc-
cupation of certain sites. A second obvious dif-
ference is in dimensionality. However, since the
qualitative behavior of Ising models is well known
to be the same in two and three dimensions, the
qualitative nature of our results should be inde-
pendent of dimensionality. At the same time, there
is little sense in our making a quantitative com-
parison between the two-dimensional version of
our model studied here and experimental metal-
hydrogen results, and we have not attempted such
a comparison.

Such differences notwithstanding, we think it is
significant that in a single model we have been
able to obtain phase diagrams which have shapes
similar to the shapes of the experimentally ob-
se rved H-Nb, H- Ta, or H- Pd phas e diagrams and
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have phases which can be directly related to the
o. , o. ', and P phases that are found in these hy-
drogen-metal systems. We hope that this may pro-
vide a new viewpoint for modeling the physics of
hydrogen-metal systems.

It is also of interest to compare our results to
the results for real two-dimensional host-impurity
systems such as adsorption systems. In region II,
typified by eL~/e» =0.625, the phase diagrams
for p &—,

' are in agreement with what is known of
the experimental phase diagrams for argon adsorbed
on a substrate of graphitized carbon black. However,
the available experimental results are too sparse to
allow comparison for more than a few isotherms. '
Our model mayprove tobe of even greater value
as a model of chemisorption than of such physical
adsorption. At the very least, because of the great
similarity between the properties of the two-di-
mensional superexchange antiferromagnet and the
two-dimensional Ising antiferromagnets, our mod-
el should be useful in studies of chemisorption for
the same reasons that the Ising model with near-
est-neighbor repulsion and longer range attraction
has already been found useful. " Our model has the
immense added advantage that it is exactly solv-
able. But more than that, its built-in host-impur-
ity structure may-make it and its immediate gen-
eralizations" more natural than the Ising model
in this connection, and it automatically incorpo-
rates many of the features to which other workers
have already been led from quite different starting
points. " For example, the indirect superexchange
interaction between adatoms via activated host
sites can be taken as the "through-bond" interac-
tion discussed in Ref. 31 and references therein,
while the longer-range direct adatom-adatom in-

teraction can be taken as the "through-space" in-
teraction of that reference.

In closing, we note that although our model
shares many of the features common to most sys-
tems with competing interactions, there is one
striking difference: the lack of a tricritical point
of the sort found experimentally in He'-He mix-
tures and expected" in the Ising model with near-
est-neighbor antiferromagnetic interactions and
next-nearest-neighbor ferromagnetic interactions.
In order for such a tricritical point to be found in
our model, the sharp spike which goes down to the
horizontal axis in Fig. 2 would have to terminate
at some nonzero value of X

'. We conjecture that
a graph of g

' vs M for the Ising antiferromagnet
may differ from our Fig. 2 in just this respect, so
that if we were using the Ising antiferromagnet
instead of the superexchange antiferromagnet as
a reference system, we would expect to find a tri-
critical point of the He'-He' type at &+0 over a
certain range of values of 4«/J, ~.

Our model does exhibit another type of tricriti-
cal point of the type found in Nagle's one-dimen-
sional Ising chain with nearest-neighbor anti-
ferromagnetic interactions and equivalent-neighbor
ferromagnetic interactions. " In fact we find that
our model exhibits all of the complexity found in
the Nagle model (including its version of a tri-
critical point) in the subregion of our Fig. 17 de-
fined by &T( T}», .
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