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Scattering of polaritons by point defects in spatially dispersive media*
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For a simple model, we study the scattering of a polariton from a static point defect, in the presence
of spatial dispersion. The polariton is scattered elastically by the defect, and in analogy with the theory
of the reflection of light from the surface of a spatially dispersive medium, there are several final states
possible. For example, when the medium is isotropic (the case considered here), an incident transverse
polariton scatters into two transverse polariton final states, and into a longitudinal polariton final state
upon striking the defect. The contributions to the cross section from these various scattering processes
has been evaluated numerically, for a simple model and parameters appropriate to GaP in the infrared.

I. INTRODUCTION

When an electromagnetic wave pr opagates through
a real crystal, it is scattered from itsinitialdirec-
tion by any static defects that may be present. In
an optically isotropic medium, an electromagnetic
wave (polariton) of frequency 0 and wave vector k
is scattered elastically by a static defect into a
final state with frequency 0, and wave vector k',
where I k't = l k l .

In a spatially dispersive material, the scattering
process may be more complex in nature. To illus-
trate this, in Fig. 1, we present the polariton dis-
persion relations in a spatially dispersive medium,
where the excitation that couples to the dielectric
constant has a frequency which decreases as the
wave vector increases. An example would be an
infrared-active TO phonon in a semiconducting
crystal of the zinc-blende structure. If a transverse
polariton of frequency 0 and wave vector k, (see
Fig. 1) propagates through the crystal, a defect
may scatter it to a final state of frequency 0 and
wave k', where k' equals k, in magnitude, but dif-
fers in direction. However, for a given direction
of the scattered wave, the defect may also scatter
the polariton into the transversely polarized state
with wave vector k2, or the longitudinally polarized
state with wave vector k„asindicated in Fig. 1.
These last two processes are possible only when
spatial dispersion is present, since otherwise there
are no normal modes of the crystal with frequency

other than those whose wave vector equals ki in
magnitude. There is a direct analogy between the
situation just described and the theory of the re-
flection of light by the surface of a spatially dis-
persive medium. '

The purpose of the present paper is to calculate
the cross section for the scattering of a polariton
from a point defect in a spatially dispersive medi-
um in order to estimate the importance of the scat-
tering into final states of the type k~ and k, in Fig.
1. For this purpose, we employ a simple model
which has the virtue of providing reasonably simple
expressions for each contribution to the cross sec-

tion.
This calculation is motivated by the experimental

work of Evans and Ushioda. These authors find
that the shape and position of the Raman lines asso-
ciated with the TO and LO phonons observed in
backscattering from GaP are quite sensitive to the
manner in which the surface is polished. In their
paper, Ushioda and Evans argue that the origin of
the change in shape and position of the Raman lines
lies in the presence of macroscopic strains pro-
duced by surface pits present after the polishing
process. They form this conclusion after noting
that the line shape is altered by an annealing treat-
ment performed after the surface polishing pro-
cedure; the effect of annealing is to allow the
strains to relax.

But one can also suppose that defects of a micro-
scopic nature are produced by the surface polishing

(8Lo

FIG. 1. Dispersion relation for polaritons in a spatial-
ly dispersive media, where the infrared-active excitation
responsible for the spatial dispersion has a frequency
which decreases with increasing wave vector. A static
defect in the crystal can scatter a polariton of frequency
Q into final states with wave vector equal in magnitude to
k, , e, , ora, .
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procedure (atoms displaced from lattice sites into
interstitial sites and impurities introduced into the
near vicinity of the surface by the polishing and
cleaning process). The distribution of defects may
be aff ected by annealing, sine e they may diff use
during the annealing process. The presence of
these defects ean scatter a polariton, and thus af-
fect the Raman spectrum. If one estimates the
scattering cross section from this process by treat-
ing the polariton as a simple electromagnetic wave
in a dielectric material, then. one expects this scat-
tering to be very weak. [This estimate may be
made from Eq. (36) or Eq. (37) below. ] We find
that for frequencies near cuTo, the fact that spatial
dispersion allows scattering into the final states k~
and f~, of Fig. 1 leads to an enhancement of the
cross section by a very large factor, as large as
10' or 10". Nonetheless, even when this enhance-
ment is considered, we still find that the scattering
cross section is quite small, for infrared frequen-
cies. Thus, even under the most favorable circum-
stances, it seems difficult to explain the data of
Evans and Ushioda by invoking the presence of small-
sized defects present near the surface as a conse-
quence of the surface work. Thus, while we show
here that spatial-dispersion effects enhance the
cross section for scattering of a polariton from a,

point defect enormously, nonetheless our final con-
clusion supports the interpretation of the Haman
data offered by Evans and Ushioda, .

The organization of this paper is as follows. In
Sec. II, we define the model, and we derive expres-
sions for the contributions to the scattering cross
section described above. In Sec. III we present
numerical calculations which show that scattering
into final states of the type k2 and k3 in Fig. 1 can
be very large, so the dominant contribution to the
total cross section comes from these processes.
That this may be so is clear from phase-space
considerations, and our numerical results indicate
that in spatially dispersive media. , polaritons may
be quite strongly scattered by small defects be-
cause of the presence of the large wave-vector fin-
al states (k~ and k, ) illustrated in Fig. 1.

II. DERIVATION OF THE CROSS SECTION FOR
SCATTERING OF A POLARITON BY A

MODEL POINT DEFECT

We wish to consider a crystal of cubic symmetry
where in the presence of spatial dispersion„ the
polariton dispersion relation is similar to that dis-
played in Fig. 1. This mill be the case for a crystal
of the NaCl or zinc-blende structure, where the
normal mode which couples to the electromagnetic
field is the infrared-active TQ-phonon bra, nch.
Another case of interest is an exciton level, for
which the curvatore is positive rather than. negative,
as in Fig. 1. For simplicity we confine our atten-

&u'r(k) = ~~(1 —o.'k') (4)

The physical interpretation of n is clear from this
relation. Note that by letting a be negative, a.

dispersion relation appropriate to excitons is ob-
tained. For the longitudinal modes, D = 0, and
E~ = —4mP, a. statement true also when retardation
is present. The frequency ez(k) for the longitudinal
mode of wave vector k is found from

~~(k) = ~~+ &u'r(k),

where vp =4vne* /M The w. ave-vector and frequen-
cy-dependent dielectric constant e(k, 0) for the mod-
el is given by

e(k, &) = eo+ (u2~/[ur'r(k) —fl'] (6)

where eo is a background dielectric constant, as-
sumed independent of k and A.

From Eq. (6), we see that spatial dispersion ef-
fects enter the model only through the wave vector
dependence of ~r(k). In reality, the oscillator
strengths v„and co are also wave vector dependent.
Our model is reasonable for frequencies 0 close to
~T~, the region of primary concern for many ex-
perimental situations, since when 0 is close to «
the dominant contribution in the wave vector depen-
dence of e(k, 0) clearly arises from the wave vector
dependence of cur(k). Also note that in the model,
the curvature of &u'r(k) and ~~(k) are identical, and
e(k, &) remains isotropic, even for finite k. These
properties a,re specific to our pa, rticular model.

tion to cubic crystals.
In the absence of spatial dispersion, one consid-

ers coupling between the long-wavelength optical
displacement u of the ions in the unit cell, and the
electric field E associated with the polariton. One
has for the cubic crystal

u+ urTou = (e*/M)E (1)

where M is the reduced mass of the unit cell, and
e* is the Born effective charge. In terms of the
electric dipole moment per unit volume P =ne*u,
Eq. (1) becomes

~ ~

P+ &uToP = (ne*'/M)E .

We introduce the effect of spatial dispersion into
Eq. (2) in a phenomenological fashion by adding to
the left-hand side the term co~on V P, where n is
a phenomenological parameter that is the curvature
of the TO-phonon branch of the crystal in the long-
wavelength limit. Thus, we replace Eq. (2) by

~ I

&uTon~V'P+ ~2ToP+ P = (ne~~/M)E (3)

Consider the normal modes of the crystal gener-
ated by Eq. (3) in the approximation that retarda-
tion effects are ignored. For the modes of trans-
verse polarization, E =0, and the dispersion re-
lation is
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K = (1/n )(Op/(4)pTo- I) (8)

Even in a cubic crystal the curvature of (d'r (k) and

~~(k) will differ, and e(k, fI) will be anisotropic at
finite k. These special properties of our model
greatly simplify the algebra in the discussion below,
and allow us to characterize the effect of spatia, l
dispersion by introducing only one new parameter.
The use of a more complete model should not
greatly affect our qualitative conclusions.

If we now consider Maxwell's equations with
D = epE + 4vP, B = H and p = T = 0 everywhere, then
we find a second relation between E and P, for
waves of frequency 0:

V(V ~ E) —V E —(& /c')epE —(47rQ /c )P = 0. (7)

One may eliminate P from Eq. (7) by operating
from the left with the operator ((4)To —0 +(dTon V ).
If we introduce the parameter

gL, ,E, ( ) = —(&'/c') [(V'-K')Se, ( )

+(4 / ')&X,( )]E;( ),
where I.

&&
is the operator

L~ ——5;; (V —K)V+—pep+2 2 2 4~XL

C
B2—(V' -K')

Bx Bx (12)

To solve Eq. (12), expand the electric field in an
eigenf unction expansion

E;(r) = 2 &(q~)e (q~)e"" (is)
Q.

where the sum on ~ ranges over the three polariza-
tion directions (one longitudinal, and two trans-
verse) associated with each wave vector q. If this
form is substituted into Eq. (12), and the result is
multiplied by e ' ' and then both sides are integrat-
ed over the crystal volume, one has

and write the lattice contribution yL to the static
electric susceptibility at k =0 in the form

gi = (dp/47ÃdTo
2 2

then we have

2

(v' rrr)(v' ~ —,rr)4)(r) —-(v'-rr')
C

Z&(») (k'+K') k'- —... ~ ', P ., (k~)

—(4'+)'4')[)r 4()rr)]4,.
I0

M(k, q)e(qX) $(qA), (14)

s'Z, (r) 4 vol'Xi
X

Bx.Bx&

(io)

The result displayed in Eq. (10) applies to a, spa-
tially uniform medium. We now presume that a
defect in the material may be modeled by presuming
that the defective region is characterized by a back-
ground dielectric constant 6p+ A6p and a lattice sus-
ceptibility yL+ &yL. For a void in the crystal,
Ae =1 —ep, and A](~= —g~. Thus, in Eq. (10), we
let Ep6p+ 'Atp(r), y~ —y~+ A](~(r), and write Eq.
(10) in the form

where we have defined

3

M(k, q) = —(k'+K')(4 e,(r)

4rr)r, (r)),. rr ,.) ,.
Q (15)

We now multiply Eq. (14) by e;(k](.') and note the
orthogonabty property

Qe,.(k&)e, (kk') = 5~„, (18)

to obtain an equation for $(kX):

2 M(k q)e(B.) ~ R(qX') (q~')

c' (k'+ K') ((1 —5), ,)k' —(& /c )epj+ (4vXz ~ /

where ~& ~ is unity when A. refers to the longitudinal
branch, and zero when A refers to the transverse
branch.

We may solve Eq. (17) by iterative methods,
and by this means we study the scattering of polar-
itons by an array of defects.

Consider the form assumed by M(k, q) for an ar-
ray of nonoverlapping defects. Choose a reference
point R„within the nth defect. Also suppose that
4y~(r) assumes the constant value hy~~"', and

Aep(r) assumes the constant value 6ep"~ within the
nth defect. Then if Q=q —k, one may write M(k,
q) in the form

M(k, q) =—gV„(-(k +K )hap~"'
n

+ 4pay~'/n') x F„(Q)e'o' "~ (18)

where V„is the volume of the nth defect, and E„(Q)
is a form factor defined by

~ (g)
d p (r), p (19a)

n

where the integration ranges over the volume of the
defect, with the origin located at R„.Notice that
independent of the shape of the defect, E„(0)= l.
For a spherical defect of radius Jt,'p, one has
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(19b)

(n)
( ) ~ ( ) 47TEX~ (d~~ae "(k, Q) =&eo + z,k)vo(

F(Q)=,(sinQRo —QRo COSQRo).
3

QRo

If we recall the definition of e(k, Q), and define

and

82E'"( )=- ' 'P (k ~) ~. .v'-8~'

d k kz —Qz/cz

k k (Q /cz)e(k, Q)

then Eq. (17) becomes

Q~ 1
c' k'(1 —6, ,) —(Qz/cz)e(k, Q)

x ~gg~") k, 0
~r V

x+F„(Q)e'~' ".e(B') l(q&') &(q&'). (2l)

Equation (21) is in fact an integral equation for
the amplitude $(kX). To generate the Born series
of scattering theory, one may solve Eq. (21) by an
iterative method, using for the zero-order solution
a plane wave of the appropriate polarization, In
the language of Eq. (21), in zero order one has

(22)

E"'(r)= ' 'Q d'ke' '
8@3

x e(kX) [e(kX) ~ g(koyo) j
Q [e(k, Q) —lj

Q e(k, Q) —c kz(1 —6~, )

where Vo is the volume of the void.
Through use of the identity

(23)

gC,.(k~)e,.(k~) = a.. .
and the fact that e(kl) =k, the result in Eq. (23) may
be written

~(e~') = &o&;z,4,
where ko is the wave vector of the incident wave,
and &o its polarization.

VVe shall study the scattering produced by a single
very small void placed at the origin of the coordi-
nate system, in the first Born approximation. For
a point def ect, the form factor may be replaced by
unity, and the zero-order form for h(q&) given in
Eq. .(22) generates the first Born approximation,
when inserted into the right-hand side of Eq. (22).
For a, void, ae(k, Q) = 1 —e(k, Q).

With these approximations, the amplitude E "'(r)
of the scattered field is found to be

The contribution to the scattered field from Eq.
(24a) is the portion carried by the longitudinal mode
(the mode of wave vector k, in Fig. 1). One can
see this since the pole of the integrand comes from
the zero of e(k, Q). The contribution from Eq.
(24b) contains the contribution from the two trans-
verse polaritons of frequency Q (the modes with
wave vectors k& and kz in Fig. 1). All three modes
transport energy away from the defect only if the
frequency 0 of the incident wave lies below the
maximum in the lower transverse polariton branch.
One has several possibilities:

(a) The frequency of the incident wave (either
transversely or longitudinally polarized) lies below
the maximum frequency ~„ofthe lower polariton
branch. Then all three modes propagate, and
carry energy away from the defect.

(b) The frequency of the incoming wave lies in
the range ~„«&~«. Then the incoming wave
must be a longitudinal wave, since no propa, gating
wave of transverse character exists in this frequen-
cy region. The only propagating mode in the final
state is also a longitudinal mode; this is the only
polarization that carries energy away from the de-
fect. There is a disturbance of transverse polar-
ization induced around the defect, but its magnitude
drops to zero exponentially as one moves away from
the defect. [The zeros of czkz —Qze(k, Q) lie on the
imaginary axis in this frequency region. j

(c) The frequency of the incident (transverse)
polariton lies above ~«. Then there is one prop-
agating transverse mode in the final state, and the
remaining contributions to the scattered field decay
to zero exponentially as one moves away from the
defect. [The zero of e(k, Q) lies on the imaginary
axis, while one zero of c k —Q e(k, Q) lies on the
real axis and one in the imaginary axis. j

The contour integration in Eq. (24a) is readily
performed to yield the very simple result

Err&
- &oI'o

2', (se/sk),

E "' (r) = E '" (r) + E"'(r ),
where

g2 eik'-r
x Q C(koh. o) (25)

Z&'&(r) =- ', 'Pe,.(k,~,)

e'" r"

k' (k Q) (24a)

where k, is the wave vector (possibly imaginary)
where e(k„Q)=0. For frequencies below &u«,
where k, is real, after some rearrangement, in the
radiation zone far from the defect, Eq. (25) may be
written
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e""
Q Qp

(26)
1 n eset(k n) ————

)2e sk "~

where c, is the static dielectric constant at k = 0,
and n is a vector from the origin to the observation
point.

For transverse waves, one finds

@(~)(-) &oVo n
2m e

x dn (n) (1 —[n .e(koXo)]oj

dU,") nl So[ V() 8&
(

(e, —eo)o
dt 16m(4m)o sk " a4e4

x dO n n. j kp~p

(32)

(33)
, 2k, —

(2'7)

The sum includes the two wave vectors k, for which
e'k', = n e(k„n). For frequencies below the maxi-
mum w„ofthe lower polariton bra. nch, both va, lues
of k, are real. Then far from the defect, Eq. (27)
becomes

We define scattering efficiencies by dividing Eqs.
(32) and (33) by the energy/(unit time) incident on
the defect. If Ap ls the cross-sectional area of the
defect normal to the direction of the incident wave,
then the energy/(unit time) incident on the defect is

dU~
67( 0 I

, to( )
n e&(k„n) 1$ol'

r~ 2~ eg

xQ [e(k„n)—1]k( 2k, —
le I

e jktr
X—— (28)

From the expressions for the amplitudes of the
scattered fields given in Eqs. (26) and (28), we con-
struct expressions for the scattering cross section.
The Poynting vector gives the energy/(unit time)
(unit area) carried by a, wave. In the Appendix, we
derive the form of the Poynting vector S for our
model. In the presence of spatial dispersion, we
find

Note that the value of the angular integrals in Eqs.
(32) and (33) are independent of the polarization Xo

of the incident wave. The integrals have the value
8)7/3 and 4o'/3, respectively. Then for the scat-
tering efficiencies f ~ and f, of the longitudinal and
transverse waves one has

Vp 0
fg =

6
— c(k„n)c(k„n)—1,

~'~(k, n) ———(k n)2c eu

rr)r' f O.', , 0) ———(li, ri) ),

S—SE+ S~ (29)

where Sz= (e/4m)E xH is the Poynting vector of
electromagnetic theory, and S„is a contribution to
S from the energy transported by the excitation in
the medium. For S„wefind for our model

&&(k n) (&g, &o)

24&A0 8k

4'lTQ (dT o ~ 8P

hfdf

~2P
(3O)

where S~ is the jth Cartesian component of S„.
For a plane wave, the Poynting vector becomes

(in magnitude)

r:I%I' „, 1 rre(k, ru))
87)

' 2 2e &k
(31)

dU,'" elSoloV', n ' I

(k @)l (k n)
dt Bo(4o)o c

Thus, if we calculate the scattered energy per unit
time which flows through a sphere of very large
radius R, we have, for the transverse and longitu-
dinal waves, respectively,

The results in Eqs. (34) and (35) are the princi-
pal results of the present paper„Notice that a
necessary assumption in their derivation is the
replacement of the form factor E(Q), defined in
Eq. (19), by unity. This means that the results are
valid only if the wavelengths of all waves involved
in the scattering process (including the waves ko
and ko of Fig. 1) are large compared to the linear
dimensions of the defect. We shall base the numer-
ical calculations of Sec. III on these results.

We conclude the present section by displaying the
scattering efficiency fo for scattering from a defect,
in the absence of spatial dispersion. ' The results
appropriate to this case may be obtained from Eq.
(34) by letting e(k, n)- eo(n), the dielectric constant
of the material when- 0.2=0. This gives



2234 R. MADDGX AND D. L. MILLS

6 o'Ao c (36)
II

IO

which for a spherical defect of radius 8, becomes

fo = ~Ro I
&o(f~) 1

I (37)

III. NUMERICAL CALCULATIONS OF THE SCATTERING
EFFICIENCY

In this section we present a numerical study of
the scattering efficiency of a polariton from a point
defect. In the calculations reported below, we nor-
malize the scattering efficiencies f, and f, of Sec.
II by dividing them by the value fo [Eq. (36)j appro-
priate to the case where spatial dispersion is absent.
Thus, we study the quantities

~~=f& o

~t =f~&fo

IO

fg

fo
7

IO

5
lo

I

3IO-

I

IO
300 320

Q {cm-I)
360

II
10

10
9

7
10

f)
fo

5
10

10
500 520

Q {cm I)

I I

560

FIQ. 2. Hatio ft/fo for the TO-phonon polariton in QaP.
The parameters employed in the calculation are described
in the text.

We also assume that the incident wave is a trans-
verse wave with frequency below the maximum
frequency &„ofthe lowest transverse polariton
branch in Fig. 1. We have chosen parameters
characteristic of the TO phonon in Gap, i.e. , ~»
= 367 cm ', while g~ and &0 assume the values of
10.18 and 8.46, respectively. The only parameter
which remains is a, which is a measure of the
curvature of the TO-phonon branch at k =0. Inspec-
tion of the optical phonon branch of the simple di-
atomic chains shows that the order of magnitude of
ao, where ao is the lattice constant. For the cal-
culations reported here, we have chosen the value
o = 10' as a rough estimate.

FIQ. 3. patio f&/fo for the To-phonon polariton in QaP.
The parameters employed in the calculation are described
in the text.

First consider the behavior of r„defined in Eq.
(39). As one sees in Fig. 1, for each incident wave
with frequency less than ~„,there are two final-
state transverse polaritons, with wave vector k&

and k„respectively. The state k, lies to the left
of the state with wave vector k„that has frequency
&„,while the state k~ lies to the right. We denote
these two contributions to r, by r,' ' and r,~', re-
spectively.

In the absence of spatial dispersion, the quantity
r,' ' reduces to unity. We find that for the parameters
described above, r,"' is very close to unity for the
whole range of frequencies explored (300-366. 7
cm ') except for frequencies very close (within
1 cm ') of ur», where ru' begins to increase very
rapidly as 0 approaches u&„. Thus, the effect of
spatial dispersion on the contribution to r, from
scattering into final states of type k, in Fig. 1 is
very small, for all frequencies of interest. This
is what one would expect from physical consider-
ations.

In Fig. 2, we show the behavior of r& ', in the fre-
quency range from 300 to 366. '7 cm . This quanti-
ity is very large compared to unity, and it begins
to decrease rapidly as 0 increases toward (o„,
where it must join smoothly on to z,' '. In Fig. 3,
we show the behavior of r, . This quantity is very
large compared to unity also, although it is smaller
by one to two orders of magnitude than r,' '.

These calculations show that in the presence of
spatial dispersion, the rate for scattering of a po-
lariton from a point defect is dominated by scatter-
ing into the large wave vector states of the type k,
and k, in Fig. 1. Indeed, in the frequency range
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where such states are allowed, the cross section
is enhanced by many orders of magnitude over the
value appropriate to the Rayleigh scattering of a
simple electromagnetic wave from the defect [Egs.
(36) and (37)].

The physical origin of this behavior lies in two
effects. ' First of all, to use quantum-mechanical
language, the matrix element for coupling into a
final state of large wave vector is very big. Sec-
ond, the number of final states available is very
much larger for states of type k2 or k3, compared
to k&. These two factors outweigh the fact that the
energy transport velocity is small in the final state,
so these waves transfer energy away from the de-
fect inefficiently.

The calculations above show that the availability
of final states with large wave vectors leads to a
very large enhancement of the cross section for
defect scattering. %e conclude with an estimate
of the polariton mean free path.

If there are n defects per unit volume, and the
cross-sectional area of each defect is Ao, then the
mean free path l of the polariton is

APPENDIX' SOME PROPERTIES OF THE MODEL
DIELECTRK IN THE PRESENCE OF SPATIAL

DISPERSION

Consider first the energy density in the material.
In the absence of spatial dispersion, the total energy
density in the material is given by the well-known
form

(Al)

where

Uz= (1/8n')(eoE +H ) (A2)

dispersion effects is applicable to exciton polaritons,
a.s well as the TO-phonon polaritons described here.
However, while methods similar to those described
here may be applied in the exciton regime, the in-
teraction of an exciton-polariton with the defect
will be more complex than that envisioned in our
simple model. Thus, one would need to examine
pictures of exciton-defect interactions in detail,
and combine this with a calculation which proceeds
as we do here.

1/ l = nAO f,
where

(40)
Uz = &nMu + ~niVcoTou

j. ~ 2 1 2 2 (A3)

f=f&+Zf~ (41)

is the total scattering efficiency. If Vo is the vol-
ume of the unit cell of the crystal, and the defect
concentration is c, then n = e/Vo. Thus we have

l =(Vo/Ao)(l/&f) ~ (42)

The ratio V,/Ao is the order of the lattice constant
ao, so for the mean free path in units of the lattice
constant we have

1/a, = 1/cf. (43)

For a polariton in GaP with a frequency of 340
cm ', we estimate f0= 5x 10 '8. The calculations
in Figs. 2 and 3 than show f=5x10~. Thus, even
for a large concentration of microscopic defects
(c =0. 1, say), the mean free path of the polariton
is quite macroscopic, on the order of one millimeter.
Thus, even in the presence of the very large en-
hancement of the cross section produced by spatial
dispersion effects, the mean free path of the polar-
iton is so long that it is hard to imagine that scat-
tering of polaritons from microscopic defects can
influence the shape of the Baman line. Thus, as
remarked in Sec. I, the present calculation rein-
forces the conclusions reached by Evans and Ushioda
that the anomalous line shapes observed by them
have their origin in macroscopic strains.

The notion that the scattering rate for defect scat-
tering receives its largest contribution from states
of large wave vector accessible by virtue of spatial

where the notation is the same as in the text. If
we rewrite V„sothat it is expressed in terms of
the electric dipole-moment density P, and add to
U„the term in I VP)2 present when spatial dis-
persion is present, Eq. (A3) becomes

2 2 2

U 2m~ 2v~To~2 2va ~To~pp~2
N (d2

+
M2 4)2P P P

(A4)

We may derive an expression for the Poynting
vector by computing &U/&t, and then utilizing the
equations of motion in Sec. II of the text to write
the result in the form

8U
Pit

+~ ~ S=O

one finds the Poynting vector S has the form

s=5,+5„,

(As)

where

Ss=(c/4vgxH (A7)

is the Poynting vector of electromagnetic theory,
and the ith Cartesian component of 8„' is given by

41TH tdTo j8 P
N ~2P

(A8)

It is interesting to use the above results to com-
pute the energy transport velocity Vs(e, k) of a po-
lariton of frequency ~ and wave vector k, following
a method used by Loudon, s in the absence of spatial
dispersion.
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The energy transport velocity (always parallel to
k for our isotropic model) is defined by the relation

(s) = v,(g,

() IEI2
( )

Qse(kQ)
8m

' 2 8Q

Iso that

(A1O)

where (8) and(U) are the time averages of the
Poynting vector and energy density, respectively.
An explicit calculation shows that

(A9)

where the term Be/ek has its origin in the presence
of S„inEq. (A6) and Eo is the amplitude of the elec-
tric field in the wave. For (U), one has an expres-
sion quite similar to that obtained in the absence of
spatial dispersion:

V(k, A) (,~, Bee(k, A
( )

Aae(k, Q))

(All)

F, (k, Q) = &Q(k)/Bk

calculated from the dispersion relation

ck/Q =e(k, Q).

(A12)

It is straightforward to verify that the energy
transport velocity Vs(k, Q) is identical to the group
velocity
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