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New method for the calculation of the binding energy of exciton complexes: The
exciton —ionized-donor complex

S. G. Elkomoss and A. S. Amer
Laboratoire de Spectroscopic et d'Optique du Corps Solide, * Institut de Physique, Strasbourg, France

(Received 13 June 1974)

The Callan method for the helium atom has been developed for complicated exciton complexes. This
method has been applied to the exciton —ionized-donor complex in CdS. With a mass ratio
cr = m,*/mg = 0.182, where m,* and mg are the electron and hole effective masses, very good
agreement with experiment has been obtained for the binding energies of the neutral donor, of the
exciton, and of the complex itself. The value 1.7 &( 10' for the relative oscillator strength obtained by
this method can be compared with the best value 3.6 )& 10 calculated by Suffczynsiki using a more
complicated wave function. The simplification of this method and the good agreement with experiment
for the exciton —ionized-donor complex indicate a substantial advance in the solution of complicated
exciton complexes having more than three particles whatever the value of o..

I. INTRODUCTION

The Pekeris ' and Pluvinage methods that
were used for helium atoms have been developed
extensively in previous papers6 to apply to exciton
complexes having three particles. Using these
methods, ' the binding energies for excitons bound
to ionized donors have been calculated for several
real systems of semiconductors. Good agreement
with experiment has been obtained. Due to the lim-
itations of the use of the perimetric coordinates,
the Pekeris method cannot be developed for systems
having more than three particles. For such sys-
tems the Pluvinage method gives rise to quite com-
plicated integrals which are difficult to solve with-
out making some approximations. For exciton
complexes of four particles various authors'
have used the Born-Oppenheimer approximation in
their calculations. This approximation is usually
valid for a small mass ratio o =m*, /m*„, where m,*
and m*„are, respectively, the effective masses of
the electron and the hole. On the other hand, com-
plicated exciton complexes having five, six, eight,
. . . , etc. , particles have been observed' "recent-
ly. For this reason, it is of considerable interest
to develop a method that can be applied to systems
of any number of particles and that is valid for any
value of 0. As the number of particles of the sys-
tem increases, the integrals that one has to deal
with become more complicated. Using the usual
methods for systems of five particles, it is almost
impossible to solve the problem. Any new method
has to contain from the beginning an appropriate
physical assumption to avoid such complicated in-
tegrals. In the case of systems of four particles
the exchange integrals can be solved analytically
instead of being computed numerically as in the
other methods. The basic idea of the Callan '"
method for the helium atom could be considered as
an appropriate physical assumption in solving such

complicated exeiton complexes. The Callan method
truncates the interelectron Coulomb potential at a
minimum distance R which is related to the energy
available to the electrons, and uses a constant po-
tential for smaller interelectronic distances. In
this article, this method has been developed to ap-
ply, for example, to three-particle systems. Other
advantages of the method presented in this paper
are that one can calculate not only the binding en-
ergy of the complex E„but also the binding ener-
gies of the neutral donor E~ and the free exeiton E„,
as well as the dielectric constants corresponding
to the neutral donor KD and the free exciton K„. In
the case of CdS, good agreement with experiment
has been obtained for the quantities E„ED, E„,
K~, and K„. Owing to the success of this method
for such exciton-ionized-donor systems, its appli-
cation to exciton-neutral-donor and neutral accep-
tor systems as well as the excitonic molecule are
in progress. In these calculations, the effect of the
polarizability has been considered and Haken's ex-
citon potential ha, s been adopted. It should be
noted that a somewhat similar approach to that of
Callan ' ' was taken by Clementi with the deletion
of a ring in the integrals to account for what is
called in atomic physics the Coulomb hole.

II. FORM OF POTENTIAL

In solid-state physics the effective mass m* and
the dielectric constant K are used to reproduce the
effects of the surroundings. The distances x;,. be-
tween any two particles i and j are screened by the
dielectric constant K. This reduces the N-body
problem to that of one particle. The exciton-ion-
ized-donar complex can then be represented by
three isolated particles, as shown in Fig. 1. Let
+j2 +f3 and r» be, respective ly, the distances
between the donor and the electron, the donor and
the hole, and the two particles of the exciton. Tak-
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FIQ. l. Exciton-ionized-donor complex.
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For the exgiton-ionized-donor complex shown in
Fig. 1, the potential energy of the system is

ing into account the effect of the polarizability of
the lattice, "the dielectric constant between the
hole and the electron of a delocalized exciton is a
function of the distance x», of their effective
masses, of the longitudinal vibrational frequency e
of the lattice, and of the optical (K,) and the static
(K,) dielectric constants. Due to the effect of the
polarizability of the lattice, the dielectric constants
along the coordinates r», r», and x» are no longer
the same. The distances x», x», and x» are then
screened by the different dielectric constants K(r,2),
K(3'23), and K(r»), respectively. The Coulomb po-
tentials along these coordinates are —Z,Z2e'/

12 ( 12) 2Z3 / 23 ( 23) nd Z1Z3 / 13 ( 13)
where e is the electron charge and Z, , Z2, and Z3
are, respectively, the absolute values of the charge
units on the fixed donor, the electron, and the hole.

Since atomic units in terms of a certain effective
dielectric constant K,«are usually adopted, the
generalized Haken's potential for any two particles
i and j of effective masses m*; and m*,. in a crystal
can be written in the following form:

I/K(&„) = (1/K„,) OZ& Z, ) [(K„,/K, )(1 —,' f;,)—
+ (K,11/K2) 2 g1~] j (1)

with

K„1 i 1 1 fC'f;, 4d7
K, "' K, K, f4'Cd7

The mean values X», X», and K3 are denoted by
p, , and v, respectively. The values X, p, , and

v depend on the fundamental constants m, , m*„, K„
K, , and (d.

The binding energy of the complex shown in Fig.
1 can be calculated in terms of the neutral-donor
binding energy ED,

E~ = —I*,e'/2If2Kn2 .
The dielectric constant K 11K(r»)=K,« is evaluated
using &=1. In this case the atomic units A2K, «/
m*, e and m*, e4/h K,«will be adopted for length and
energy, respectively, and the units m, = @=1 and
e /K, « = 1 will be used. The binding energy E~ is
simply then equal to & a. u. and the mass ratio o
= 1/m*„a. u. In these atomic units, the attractive
potentials between the particles 1-2 and 2-3 are,
respectively, —&/3'» and —v/3'23, while the repul-
sive potential is p. /3'» .

An atomic system such as. He or H could be con-
sidered as a particular case of Fig. 1. Such an
atomic system can be obtained simply by replacing
the positive hole (particle 3) of Fig. 1 by an elec-
tron of negative charge (Fig. 2). Neglecting the
effect of the polarizability and using the same atom-
ic units with K,« = 1, which is the case in atomic
physics, the attractive potentials between the par-
ticles 1-2 and 1-3 of Fig. 2 having the same charge
units Z =Z,Z2 =Z,Z, are, respectively, —Z/r» and
—Z/3'13. To pass from Fig. 1 to Fig. 2, one has sim-
ply tochange the signof p, and @and to consider the
particular case o = 1. The coefficients X and p. of Fig.
1 then correspond to what is denoted by Z in Fig.
2. In this case the absolute values of X and p. a,re
equal (polarizability neglected) and correspond to
the same value of Z.

III. METHOD OF SOLUTION

In these atomic units with I:~= 2 a. u. and using
the classical treatment of Hylleraas, the Schro-
dinger equationfor the system shown in Fig. 1 can
be written in the form

1 N g ~2y
~(+12 ~ 13& 23) 2 QQ Keff ij

where &», &», and Q3 are the coefficients of the
terms +v. +~3 and &23 respectively, and are given
by the terms in brackets in Eq. (1).

Owing to the difficulty that may occur in solving
the problem using the general potential of Eqs.
(l)-(3), mean values of &,,'s should be used. Know-
ing an approximate wave function 4 for the system,
one can write

PJG. 2. Three-particle atomic system, for example,
Heor H.



2224 S. G. E LKOMOSS AND A. S. AMER

1 92$ 2 9( o 92$ 2 81tt 1 92$ 2 8$ "
1 82$ 1

~&yp ~» ~&» - 2 B~yg &ys ~&)s 2 ' 8&pg &ps ~~ps 2 8&» 8&ps &12+23

p, v
12+ 23 13)+ (+13 + +23 +12) + + +

2 BK13 ~+2 ~13+23 ~» &is ~as
(6)

The effects of the polarizability between the three
particles of Fig. 1 are expressed in terms of X/

Z,Z2, p/Z, Z3, and v/Z2Z3 . These quantities play
an important role ' in the solid state and are usu-
ally neglected in atomic systems such as He and H

of Fig. 2. Again mathematica. lly the coefficients X

and —p. of Eq. (6) correspond to the charge unit Z
for He and H . The screening of the distances x, ,
by the dielectric constants and the effect of the po-
larizability in the solid state then transform the
mathematical treatment of exeiton complexes into
a general three-pa. rticle atomic-physics problem
given in Eq. (6). The values of X, p, v, and o of
Eq. (6) always take either integer or noninteger
values. The integer numbers for these quantities
correspond to particular cases that represent the
atomic systems. The exciton complexes usually
belong to the noninteger number category. Equation
(6) then no longer concerns only a problem of the
solid state, but is a general form for any three-
particle system in atomic physics. For instance,
the particular cases with 0=1, the He atom '~ and
H ion, '4 correspond, respectively, to the two sets
of values &=2, p, = —2, v= —1, and &=1, p, = v= —1.
Thus all the possible methods used in atomic phys-
ics by Pekeris, ' Pluvinage, ' and Callan, ' ' or
any variational calculations which take into account
the charge screening" "(effective charge) for he-
lium, can be applied successfully in solving Eq. (6)
for the exciton-ionized-donor complex. The only
difference between exciton complexes and atomic
systems comes in at the end when one tries to con-
vert, for instance, the length and energy into A and
eV. In this case, for atomic systems K,« = 1 and

w, =rno, where mo is the free-electron mass.
The one big difficulty met by the different authors

in trying to solve completely the three- and four-
particle systems is the singularity that occurs in
the exchange integral from 0 to ~. Also the corre-
lation effect' ' ' ' incorporated into the wave func-
tion itself that contains the repulsive-potential
coordinates r23 (Fig. 1) or 3'» (Fig. 2) complicates
the calculations. To avoid this singularity and
meantime include the correlation effect, Callan's
idea.""to consider only this integral from f„" in-
stead of f2 tremendously simplifies the different
calculations and can even be helpful in solving sys-
tems having more than four particles. In this case
the wave function does not include the coordinate
&23 (Fig. 2). The results 2 obtained for helium are
quite comparable to those given by Pekeris' meth-

od, which is one of the most complicated treat-
ments.

There are, of course, some differences between
the exciton-ionized-donor complex of Fig. 1 and
that of helium. For example, in exciton complexes,
it is preferable to use the terminology of interpar-
ticle coordinates or interparticle distances rather
than the corresponding interelectron quantities in
the usual atomic systems. This is due to the fact
that in exciton complexes the particles are not only
of one type, as in atomic systems, but are of two

kinds, namely, electrons and holes of different ef-
fective masses. Meanwhile, Eq. (6) is valid for an
exciton complex as well as for any atomic system
of three particles. In this case, there exists a new

criterion that one does not find in atomic systems.
With o = 0, for instance, in an exciton-ionized-donor
complex, the system turns out to be the H, 'ion. The
solution for such a complex has to take into consid-
eration such a. criterion. Also for exciton complexes
the polarizability ' plays an important role that
has to be taken into account. The value of R that
represents the lower limit of the integral p, /3'» can
then be chosen such that for & = p. = v = 1 (polarizabil-
ity neglected) one has to get the well-known value

(0. 6 a.u. ) for the binding energy of H2' thatcorre-
sponds to 0 =0.

In Callan's method ' ' the total wave function is
given simply by the product of bound-state hydro-
genic wave functions, which correspond to attrac-
tive Coulomb potentials, for the nuclear coordi-
nates. In this wave function the interacting charge
Z=2, which is the same for the attractive poten-
tials along the coordinates x» and x», has been
screened as usual ' by the variational parameter
P determined from the minimization of energy. The
approximate wave function for He corresponding to
the totally uncorrelated hydrogenic-type atoms
treated by Kellner has been written in the form

(Z-g) (r»+r(3
1

For the exciton-ionized-donor complex the at-
tractive potentials corresponding to bound hydro-
genic states are along the coordinates r» and r, s

(Fig. 1). In Eq. (6) the coefficients & and v of these
two potentials are not the same as in the case of He
along 3'» and Y13 (Fig. 2). They are different due to
the polarizability effect. To follow the same tech-
nique as in atomic physics, the screening procedure
for both X and v leads to the use of two different
variational parameters 0, and as, instead of only
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TABLE I. Fundamental constants for CdS.

e xsg Ks

CdS II 0.171" 0.7 (Ref. 26)
Cds III 0. 205

0. 182
0.173 9.35 (Ref. 29) 10.33 (Ref. 29) 9.8278 5.24 (Ref. 29) 306
0. 207
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edited by D. G. Thomas (Benjamin, New York, 1968), p. 735.
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p, 327.

one for Z in the case of He [Eq. (7)j. Following
Callan's method and applying this screening tech-
nique as in atomic physics'o"'" '7 to Eq. (6), the
approximate totally uneorrelated wave function C'

can be expressed as the product of the two bound

hydrogenic wave functions. The solution can be
written in the form

@—e")t1"12 e v1/ (1+fy)r23 (8)

with

$1 ——X —CT1 P1 = V —0'3,

where o, and o, are positive variational parameters
determined from the minimization of the energy of
the system. Another alternative solution of Eq. (6)
is to consider the approximate wave function (8)
with X, and v, themselves as the variational param-
eters, instead of o, and o, of Eq. (9). The calcu-
lated values of &, and v, will certainly be different
from those of ~ and v. The differences between
them can be interpreted as being due to the charge
screening. Since the technique given in Eqs. (8)
and (9) is quite similar to that of Eq. (7) commonly
used for He, it is quite logical to apply a procedure
such as that of Eq. (9). It is also worth mentioning
that the screening procedure of Eqs. (8) and (9) has
already been quite successful in treating the same
complex by the Pluvinage method, 3' and an excel-
lent agreement with experiment has been obtained
in CdSe.

In Callan's method the value of R has been de-
termined by the minimization of energy. The pur-
pose of the present work is to develop a method for
solving complexes having a large number of par-
ticles which already exist experimentally. Conse-
quently, one expects to deal with a large number
of variational parameters, which usually requires
a great deal of computer time. Thus the determi-
nation of 9—not as a variational parameter but such
that the correct binding energy is obtained for the
corresponding cr= 0 system —is justified. Another
strong justification for the determination of R in

this manner is the excellent agreement with experi-
ment reported in this paper for the exciton and
neutral-donor dielectric constants K„and K~ as
well as for the binding energies of the neutral do-
nor E~, of the free exciton E„, and of the complex
itself (E —ED). This agreement obtained simulta-
neously for these quantities has never been found

by any other, even a sophisticated, theoretical
treatment.

With the wave function given in Eq. (8), the total
energy is

E= ——'+ (X —X)~ —— ' + (v —v)a+ '+I (iO)—
I v',

2 ' N 2(i+ o)

where N is the normalization constant

2 1 1N= CC dv= ————,
ab a b~

2 1 1 1 t „„11
I, = ~" d7= —————,~e-""+ —+-

ab d a b) a b

8 4I4=-2~ (&~a+&23 —~is) 4' 47
~12&23 ~& 12 ~&23

with
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a = &] + vg/(I + o)i b = X, —vi/(I+ 0),
c=a+ b= 2&„d=a —b=2v, /(1+ o) . (18)

Using the approximate wave function 4 of Eq. (8),
the mean values X, p, , and v are given by

(17)

1 1 yi»g 1 -c g 1 1 ~ ~ 1 -c p+R — e ——e 4 + — -e +—e
4a d"' c' b d"' c

Q d C4 C4 C4 C4
(18)

++D i f i2 ~ri2 2 ~ +2 dti3 3 +
~

+ c3 + iibiii ii2 biiig giiia ~Y + aii diii3 ~F biii diii3
I

(19)

a = X g + 2 IC8 + Q/(I + o) i

b = Xg+ 2K' —vg/(I+ o) i

c' =a'+ b', =Q —6

b" = X, ——,'~, —v, /(1+o),
a" = X i + —,

' v„+ vi/(1+ o),

b = A. g
—

p Kg —vg/(I + o') i

c4 ——a+ b+ w„, d'" = a —b+ v„,

a, = (2m,*(u/k)'i', a „=(2m„*&a/k)'i'. (20)

To compute the oscillator strength f, of the ex-
citon-ionized-donor complex, the formula given
by Glauberman et a/. ' ' is used:

fq f„(ma„/0) E(me+/m„*)——,

2

E( g+/m~)mJI C (+JQ +$3) d
"12="13

(21)

N. (22)

In these equations f„and a„are, respectively, the
oscillator strength and the radius of the free ex-
citon, 0 is the volume of the elementary cell, and

N is the normalization factor expressed by Eq.
(11).

IV. COMPUTATIONS AND COMPARISON

VfITH EXPERIMENT

The experimental values for (E —Eo)/ED, ED, E„
and E,.corresponding to exciton-ionized-donor com-
plex in CdS are known quantitatively. ' ' Further-
more, for this semiconductor the values of (E —ED)/
ED calculated either by Suffczynski et a~."' or by
the sophisticated method developed previously by
the authors are still in poor agreement with experi-
ment. For instance, the best calculated value
for this quantity is 3.5x 10, which is compared
to 2. 5 x 10 obtained from experiment. ' This
semiconductor can then be considered as a test
for the method described in this paper. The cal-
culations are carried out for the different avail-
able values of the electron effective masses. The
program sIMpLEx written in double precision for
a UNIVAC 1108 computer has been used to calcu-
late the minimum of the energy E in Eqs. (10)-
(20). This minimum corresponds to certain values
of R, o.» and 0, For 0=0 and X=p. =v=1, the
value of R has been chosen such that the binding
energy of the system corresponds exactly to the
value known for H2'. Using this value of R=1.1091
a. u. the value of KD has been chosen such that

TABLE II. Calculated values of X, p, w, a~, 0'3, K„, and KD in CdS.

CdS I 1.000 00 0.984 003 l.03119 0. 2 0.6 8.757 8 9.031
CdS II l. 000 00 0.987 902 l.035 31 0. 205 25 0.601 25 8.754 1 9.063 2

CdS III 1.000 00 0.977 768 l. 028 05 0.203 0. 588 8.723 3 8.968
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Expt. Calc.

TABLE III. Experimental and calculated values for K„, E„, ED, and (E —ED)/ED in CdS.

Kx E„(meV) ED (meV) 10 (E —Eg) /ED
Expt. Expt. Calc. Expt. Calc.

CdS I 8.67 (Ref. 31) 28 (Refs. 27 and 28) 27.1995
CdS II 26. 06
Cds III 30.627

32.8 (Refs. 27 and 28) 30.234
28. 519
34.919

2. 5 2.435
2. 673
2. 115

A. =1, and the calculations have been carried out
in a, self-consistent manner to obtain reasonable
agreement with experiment, at least for the bind-
ing energy E~of the neutral donor. The justifica-
tion for this procedure of the determination of R
is discussed in Sec. III. The values of o, and o 3
corresponding to the minimum energy of the sys-

. tem can be determined. In Table I the different
values of the fundamental constants m,*, m&, K„
K„and (d for CdS I, CdS II, and CdS III are given.
In Table II the calculated values of X, p, , v, o„
o3, K„, and K~ are reported for this se miconduc-
tor. The experimental values of K„, E„, ED, and
(E —E~)/E~ as well as the calculated values of E„,
ED, and (E —E~)/ED are compared in Table III for
the three different types of CdS considered. From
Tables II and III one can see that the electron ef-
fective mass m,*=0.18 corresponding to CdS I gives
the best agreement with experiment. From Table
III one can notice that the value (E —E~)/E~ =2.435
x 10 calculated from the method developed in
this paper is in better agreement with experiment
than 3.5x 10, reported previously using the
sophisticated Pekeris method. Table II shows
that for all the three types of CdS the values of
o, are generally greater than those of o,. This
result is quite appropriate to the physical picture
in which the screening between the exciton par-
ticles is greater than that between the electron
and the fixed hole (Fig. 1). The values of p, cal-
culated in Table II are slightly different from
unity, which is the value of X. In this case the
dielectric constant between the hole of the exciton
and the fixed hole of the neutral donor is different
from K~, which is in turn different from K,. With
the three different available values of the effective
mass ~,* corresponding to CdS I, CdS II, and
CdS III the static dielectric constant K, does not
correspond to the experimental value of ED. In
the aspect of the hydrogenic formula of Eq. (5),
once the calculated value of E~ is in agreement
with experiment, the dielectric constant KD also
has to be in agreement with a corresponding ex-
perimental va, lue. In this problem one can con-
clude that there are five different types of dielec-
tric constants: the optical dielectric constant K„

the static dielectric constant K„ the dielectric
constant KD of the neutral donor, the dielectric
constant K„of the exciton, and finally the dielec-
tric constant between the hole of the exciton and
the fixed hole of the neutral donor.

With the wave function C of Eq. (8) and 0 =49.4
xl0~4, the value f /f„= l. 7 x10 is obtained from
Eqs. (21) and (22) for the relative oscillator
strength corresponding to CdS I. This value is
one order of magnitude smaller than that given
in Ref. 30. On the other hand, it can be com-
pared to those obtained by Rashba40 (5 x104) using
a. phenomenological theory and those obta, ined by
Suffczynski (8.8 x 104), whose wave function is
more complicated than that of Eq. (8). The agree-
ment between the method presented in this paper
and other theories for the relative oscillator
strength is another strong argument for the valid-
ity of such a method.

The simplification of this method and the agree-
ment with experiment for the exciton-ionized-
donor complex in CdS indicate a substantial ad-
vance in the solution of the complicated exciton
complexes. The truncation of the Coulomb re-
pulsive potential at a distance R seems to be
quite appropriate physically. This is also adequate
due to the fact that two like charges cannot get
closer than a certain distance from each other.
The development of this method as applied to the
exciton-neutral-donor or neutral acceptor complex,
as well as to the excitonic molecule, is in prog-
ress.
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