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The electronic states of amorphous semiconductors with graded globular inhomogeneities have been
previously investigated using perturbation theory for extended states well within allowed bands and
effective-mass theory for localized states confined to a globule. In the present analysis we obtain
solutions for localized, intermediate, and extended states of systems with sinusoidal grading in one
dimension, using effective-mass theory and solutions of the Mathieu equation. The states near the crests of
the undulating band edge are obtained for the first time; the earlier analysis for localized states is
confirmed. Fine structure in optical spectra is predicted for globular materials. Perturbation theory is
used to determine the dependence of the minigaps on the grading function for multilayer films.

L. INTRODUCTION

In a previous publication' a model involving
graded globular inhomogeneities was proposed
for some amorphous semiconductors, and analyses
were made of their electronic states. Subsequent-
ly, the origin of the graded inhomogeneities in
some materials was attributed to spinodal separa-
tion.? The analyses of the Schrodinger equation
for the wave functions were restricted to energies
where different approximate solutions could be
obtained: one range of energies allowed perturba-
tive solutions (this range was in the middle of an
allowed band of the zero-order crystal), and the
other range permitted solutions by effective-mass
theory for states found to be localized to the
central regions of a globule. The band edge was
defined to be the locus of the classical turning
points of the bound states and was position depen-
dent with a dependence which resembled the grading
function. Representative states and the position-
dependent band edges are illustrated in Fig. 1. The
case shown is the “deformation”-type characteristic
of materials with compositional inhomogeneities;
the “electrostatic” -type characteristic of inhomo-
geneous doping has similar individual undulating
band edges which however are in phase with each
other.

An energy range between those susceptible to
these approximations remained unsolved at that
time and that energy range and associated wave
functions for a particular grading function are the
topic of this paper. We have obtained solutions in
the effective-mass approximation for states at
the energy of the crests of the undulating band
edges in the case of periodic grading and for states
tightly bound to globular regions. We shall also
point out some properties associated with different
periodic grading functions. We note that this study
is also relevant to multilayer semiconductor
films where quantum effects are expected.

In real materials with either globular or laminar
inhomogeneities the periodicity will only be ap-
proximate. This is the case for spinodal separa-
tion® and for multilayer films. Any randomness
in the interglobule or interlayer distances or in the
extrema of the potential undulations will tend to
make the amplitudes of the wave functions of
specific lower tight-binding electronic states con-
fined to a particular globule or layer and thus
localized therein. This provided some of the basis
for the earlier calculation of tight-binding states.!
With the exact periodicity of the present model
these states are degenerate from inhomogeneity to
inhomogeneity so that the electron or positive hole
is no longer localized to a particular inhomogeneity
and its wave functions will have equal amplitudes
in all equivalent globules or layers. However,
with sufficient tight binding the interglobule or
interlayer tunneling time is long enough so that
self-trapping or localizations by lattice polariza-
tion can occur in polar materials. Self-trapping
for these states and polaron effects for higher
states go beyond the present analysis.

II. SINUSOIDAL GRADING AND THE
MATHIEU EQUATION
The particular case which we will treat in detail
is that of sinusoidal grading. The Schrédinger
equation which must be solved for the case of this
grading in one dimension is

—(Z2/2mV%P 1V 9+ (V5 = V,) 31 +cos2ax/p)b = By,
1)

where V , and V5 are the unit-cell potentials for
the perfect A- and B-type crystals both with
lattice constant @, and p is of the order of 100 A.
The solutions of Eq. (1) are obtained from working
in an effective-mass approximation similar to an
earlier analysis® for systems with monotonic
gradings
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- (72/2m*)V2F, () +3 V(1 +cos2mx/p)F, (¥) = EF, (¥),
@)

where m* is the effective mass, E is measured
from the edge of the band to which the theory is
applied,

Vo=f bE (Ve =V 0,7 dT ®)
and

P(F) =thy, o )F, (F) , 4)

where u,,_o(F) is the periodic part of the Bloch
functions. We have assumed also that the effective
mass is independent of position; this is in general
not valid for real systems, however, in the present
analysis we are interested primarily in the effects
of the sinusoidal potential.

In the usual effective-mass problem we think
of the unperturbed particle of mass m* as free
since the only potential involved is the periodic
one which has been eliminated. In the present
problem, the potential periodic with the lattice
distance has been eliminated but the grading
produces an effective potential, therefore, the
particle of mass m* is moving in a potential which
has the same position dependence as the grading
function. We have taken the grading function and
thus the potential to be periodic. The globular
inhomogeneities arising from spinodal separation
are approximately periodic® and the multilayer
films can, in principle, be made periodic.

Equation (2) separates so that the ¥ and z direc-
tions are solved by plane wave solutions. With
periodic boundary conditions,

9@
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FIG. 1. Representation eigenstates for a “deforma-
tion”-type undulating-band-gap semiconductor, including
the effective-mass function Fy(f) for the lowest localized
state and the modulated plane wave part ¢, (¥) of the
eigenfunction of a representative extended state (modified
from Ref, 1).

E,=(72/2m*)2n/a)n? | (5a)
E,=@#?/2m*)27n/8Pn% , (5b)

where 7, and 77, are integers and @ and B are the
periods involved in the normalization

The equation in the x direction can be put in the
form

dzQ

—dgg- +(b—SC0529)Q =0, (6)

where 6=mx/p and

* 2 * 2
b2 (B)s, o2 (2,
where E, is part of a separation constant and can
be interpreted as the energy in the x direction so
that E=E +E +E,.

Equation (6) is Mathieu’s equation whose solu-
tions have been investigated and partially tabu-
lated.® The characteristic values b for which there
are stable solutions of Eq. (6) fall into bands. This
behavior of E, is shown in Fig. 2 where we have
chosen p=100 A and V,=0.377 eV so that s =100.

It is seen that the acceptable values of b are
discrete for small b; begin to broaden into bands
before the value of s is reached; continue to have
forbidden ranges for b > s until finally one range
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FIG. 2. Energy eigenvalues for a sinusodial perturba-
tion. Dashed line is one period of the perturbing poten-
tial with amplitude 0.377 eV and period 100 A, Cross-
hatched areas are allowed bands. (E=0 is the band edge
of the component with the lower band edge.)



2202 GEORGE B.

of acceptable b’s becomes adjacent to another and
the b values which solve Eq. (6) can be considered
continuous. Solutions to Mathieu’s equation have
earlier been extensively investigated by Slater®
relevant to the energy bands of perfect crystals.

The effective mass functions” which correspond
to the characteristic b’s are

Se(d,Vs ; cosf)= i vpcosl(s +2p)6] , (7a)

=00

So(b, Vs ;cosf)= i £, sin[(s+2p)8) ,  (Tb)

p==wx

where Se and So are even and odd elliptical sine
functions, and v, and §, are computed by continued
fractions and restricted by normalization condi-
tions. It is possible to get approximate expres-
sions for these functions® in the limit b<s, for
which

Se, (b,V's ;cosb)=A, i { ¢, ls1/4(0 =3 +2pm)]

P =m

+¢q[s‘/4(9+én+2pn)]},
(8a)

So, (b, Vs ;cos6)~B, Zn: {¢q-1[51/4(9~%ﬂ+21’7f)]

p==w

— il st/ (0+3m+2pm]}

(8b)
where
6, (©)=e"% 121 ()

and the H,(¢) are the Hermite polynomials. The
index q designates solutions which correspond to
increasing b (in the case where the solutions are
periodic, ¢ is the number of zeroes in 0< §<3m).
For q =0, the solution to Eq. (6) is

©

Seo(b, VS ;cos6)~A, » . {exp[-3s'/2(6~4m+2pm)]

p ==co

+exp[-3st/2(6+ 37+ 20},

(9)
which is a set of Gaussian curves centered on
+37+2p7 with 1/e width: 6,,, =272 /s'/%. This
limit was obtained in a different manner in our
previous paper! where individual globules were
solved in three dimensions radially.

This analysis indicates what happens to the states
around the band edges—states of the A- and B-type
material which are at energies near the energy of
the pure A (crest of potential) are rearranged into
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bands at energies above and below the former A
edge and the states near the energy of the pure B
edge become tightly bound to the globules.

When a single period describes the grading func-
tion the allowed and forbidden bands are sharp.
It is expected that when several p; are included
in the potential (i.e., several periods) the features
of a single period f (x) will disappear and the
allowed regions will broaden. The tightly bound
states are a consequence of the inhomogeneities
in material and should exist wherever there is a
concentration of type B (smaller gap) globules
which are distributed in the A matrix either peri-
odically or with some randomness. The randomness
removes the degeneracy so that the tight-binding
states become localized to particular globules.

III. EFFECTS OF THE FORM OF THE GRADING
FUNCTION ON ELECTRONIC STRUCTURE

In Sec. II a mathematically simple grading func-
tion was treated in detail; in this section we treat
two grading functions by approximate methods
for purposes of contrasting their effects on
electronic states. We will use an abrupt grading
which corresponds to layered materials with
abrupt heterojunctions and the sinusodial grading
treated previously\. We will use perturbation
theory to get an indication of what is happening
as we change from one grading to another; per-
turbation theory has the advantage of providing
analytic answers to problems whose exact solu-
tion can be had only numerically but has the
disadvantage of being valid only in a restricted
range of energies, in this case, those energies
in the central region of a band.

We begin by solving the Schrddinger equation

—E22m)VE+V @+ (Vp =V ) f W =£y, (10)

where f (x) will remain a general periodic grading
function with period p until we need to specify it
further.

The zero-order wave functions ¢, =(1/VL Ju, ,e**
and ¥,=(1/VL Ju,,.,e”*** are degenerate. We are
interested in the effect of the perturbation on
these states, and in particular, which states are
split. The matrix element connecting unperturbed
states is

Hiy= [ W05 -V 60, dx

The splitting, Hj,, is given by solving the secular
equation of degenerate perturbation and yields

1 -4
H{2 = A f uk (x)u;k'k (x)(VB - VA)f(x)e 2ikx g
(11)
Examining the H/,for various k values will reveal
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what levels have the degeneracy removed (there-
fore which wave functions need to be generated by
degenerate perturbation theory) and which do not,
i.e., H{,=0. We can expand the terms in the in-
tegrand of Eq. (11) in two series with different
expansion lengths. The u} ,(c)uk, (x)(Vz -V ,) is
periodic in ¥ with periodicity a and can be expanded
in a set of lattice vectors of the space reciprocal
to the space of length a, i.e.,

o0

uk , Ok, W)V =V, = Z C,e2™vE/e (12)

ER

and f (x) is periodic in x with periodicity p and can
be expanded in a set of lattice vectors of the space
reciprocal to the space of length p, which is of
course an integral multiple of a, i.e.,

fe)= 3 Dyermine/e 13)

p==

so

H{2=% >.C, > D,
n

v

L
% f g2Tivx [a gaMinx /p p=ziks gy (14)
0

The integral in Eq. (14) where L is an integer
multiple of p is proportional to a Kronecker &
function, thus

H,= Z Cy Z Doy, v(v/a +u/p) ¢ (15)
v u

In the general case, therefore, we can say that
in the central region of the band in first-order
perturbation theory states which are split by the
perturbation occur at 2 values which are integral
multiples of 7/p away from band edges. This is
the expected results for a periodic perturbation.

It is important to look at the coefficients in the
series to see if in any particular case these states
are indeed split. We will first look at the situation
of an abrupt grading function

flx)=0, (4N +1)ip<x<(4N +3)ip
=1, (4N+3)ip<x<(@N+5)ip, (16)

where N takes on positive and negative integer
values.

Where we work out the Fourier coefficients for
this f(x), we find

Dy=3 and D, =(1/au)sinzmu for p#0.

This means that only the odd-integer terms survive
since for all even p, D, =0. We can rewrite Eq.
(15) as

1 .o T
H{Z_—_ z Z ;;_L— (sm '—2'> cyék, T(v/a+p/p)

v p=odd
+ Z %cuﬁk,wu/a . (17)
v

We can contrast this with the expression we ob-
tain with a sinusoidal perturbation. In that case
the Fourier expansion of f (x) yields only three
terms

f(x)___%+%ezﬂix+%e-21rix/p .

The three k values which leave Hj,#0 are outside
the range of validity of the perturbation theory
(they are at the band edge and +7/p away from the
band edge), and therefore for the range of energy
over which this analysis is valid there are no finite
H}, in this order of perturbation theory.

So to first order in the perturbation we find
many of the states split in the abruptly graded
case and no states split in the sinusoidal case,
for the range of energy of the analysis.

The wave functions generated through perturba-
tion theory for the states where it is applicable
are given in Ref. 1 neglecting the effect of de-
generacy. If we write the perturbed-state wave
function as ¥, (x) then since H,, =H,, and A* =H,,
for the degenerate states the proper wave functions
are

PO)=A/V2) P (6) +9, ()]
and
P () =1 /V2) P (%) =, (x)]

with 9,(x) taking the form in Ref. 1, Eq. (15).

We thus see the possible consequences of diffu-
sion of materials deposited in layers. To begin
with the A - and B-type materials are clearly
defined and there are many k2 values which are
substantially split; as time increases diffusion
will shift the grading functions to something like
a sinusoidal grading and many of the minigaps
will disappear. This calculation will be changed
if we go to higher orders in perturbation theory.
Higher orders will give more, finite H;,. We can
observe that if diffusion is complete the material
will be a mixed crystal and the situation of no gaps
will be an exact solution.

The qualitative features of the above have been
pointed out by Esaki and Tsu® for both the square
well and sinusoidal perturbations. The range of
energy of interest in that work was quite close to
the band edge. The present work has examined a
broader range of energy higher in the band, and
shows a decrease in the magnitudes of most of the
minigaps as diffusion occurs despite the fact that
the diffusion occurs in a way which keeps the
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perturbing potential profile periodic in some
distance p large compared to the period of the
lattice.

The structure in the energy states shown in
Fig. 2 is specific to E,. The total energy which
includes the continua in E, and E, will have less
evident structure, and therefore fine structure
in the optical spectra is only expected with properly
polarized radiation. The lower narrow bands are
describable as tightly bound in the x direction.
The bound or localized character means that the
electronic particle is bound to regions which are
rich in the component with the lower band edge
but can of course be in those regions in any layer.
In addition, as noted earlier, with tunneling times
in excess of the periods of lattice modes self-
trapping by lattice polarization is to be expected.

For globular inhomogeneities E,, E,, and E,
will all be quantized for the lower states and
therefore fine structure is predicted in the optical
spectra. Transport will involve interglobule
tunneling for systems for which the lower band
edge lies within the globules; such transport has
been shown to involve the well-known T'/* depen-
dence of mobility.°

IV. CONCLUSIONS

The electronic states of systems with one-
dimensional sinusoidal compositional gradings
can be determined by effective-mass theory and
solutions of the Mathieu equation. Tightly bound
states in the troughs of the undulating band edge
are confirmed; modulated extended states near
the crests, determined for the periodic case. In
first-order degenerate perturbation theory many
more minigaps are shown to exist for periodic
square-well gradings than for sinusoidal gradings.
The latter exhibits additional smaller minigaps
in higher order, as in the solutions of the Mathieu
equation. Significant features in the optical
spectra and electronic transport for systems with
globular or laminar inhomogeneities are predicted.
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