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Ora Entin-Wohlman, Guy Deutscher, and Raymond Orbach~
Department of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel

(Received 20 August 1974)

The inverse lifetime, 1/v„of spin-flip processes for the conduction electrons in a Heisenberg
ferromagnet is calculated in the first Born approximation. It is found that the temperature derivative of
1/r, varies as ~T —T, ~'" v ' and is negative above T, and positive below T, . Comparison is made
with the behavior of the electrical resistivity near T, . The impact upon the superconducting transition
temperature is examined.

I. INTRODUCTION

Conduction electrons are scattered in magnetic
materials by thermal fluctuations of the localized
spins. This process yields an anomalous contri-
bution to the spin-flip scattering cross section of
the conduction electrons near the critical tempera-
ture T,. The anomaly arises from the critical-
temperature dependence of the spin-spin correla-
tion function which appears in the expression for
the differential scattering cross section. In this
paper, we study the critical fluctuation singularity
in the inverse lifetime I/w, of the spin-flip pro-
cesses for the conduction electrons. Such a term
is important, for example, in the determination of
T, for superconductors either containing magnetic
impurities, or involved in proximity -effect sand-
wiches.

The expression for I/v, in first Born approxi-
mation contains the spin-spin correlation function.
Near T, the dominant contribution comes from
long-range fluctuations, i.e. , small values of mo-
mentum transfer. This is because the Fourier
transform of the correlation function gg appears in
the expression for 1/7„but is multiplied by k
as compared to the average of gg. As a result, we
shall show that d(l/7, )/dT varies as v~ hT~ "" '
[d T= (T —T,)/T, j for T~ T„where above T, it is
negative and below positive. The appearance of
the spontaneous magnetization below T, does not
change the singularity in d(l/~, )/dT as one passes
through T, . This is because below T„ the in-
coherent scattering caused by the presence of the
spontaneous magnetization gives a contribution to
d(1/7, )/dT which varies as

~ hT~ + '. This basically
short-range behavior is less divergent than the
long-range critical fluctuations, the latter varying
as

~

~T~'"-~-'
The anomaly in the electrical resistivity p due to

critical fluctuations was first discussed by de
Gennes and Friedel. They argued that the domi-
nant contribution came from the long-range criti-
cal fluctuations. However, it was shown by Fisher
and Langer that above T, the short-range fluc-
tuations are dominant. This is because g„" in the

expression for p is multiplied by 4 as compared
to its average value (and by ks as compared to
1/y, ). For T& T„p has a temperature dependence
similar to the magnetic internal energy. Thus
the leading singularity in dp/dT varies as [ r T~ '.
Contra. ry to the temperature dependence of d(l/g, )/
dT, dp/dT is found to behave differently below T,
than above. Thus, Fisher and Langer point out
that the contribution of the incoherent scattering to
dp/dT caused by the square of the spontaneous mag-
netization varies as

~
d T~ s '. In the case of dp/dT,

this is the dominant term for T & T, .
The purpose of this paper is to apply modern

scaling theory to the problem of spin-flip scatter-
ing near the critical point of ferromagnets. The
results will be similar to the early conclusions of
de Gennes and Friedel' (who calculated p), because
their treatment assumed the Ornstein-Zernike
form for the correlation function for all wave vec-
tors. This form heavily weights the small-wave-
vector region. However Fisher and Langer dem-
onstrated that large-k contributions are most im-
portant for p as a consequence of the 1 —cos8 fac-
tor in the transport integral (proportional to k )
in combination with the correct large-k behavior
for gg. The de Gennes and Friedel approach for p
is formally correct, but they make use of the Orn-
stein-Zernike result outside of its region of va-
lidity (i.e. , they use it for all k) leading to an
incorrect conclusion. In the case of 1/v, however,
the absence of the 1 —cos 8 transport weighting
factor means that the small-k region is dominant
and use of an Ornstein-Zernike-like function is
allowable. For this reason our results look ap-
proximately the same as those of de Gennes and
Friedel. We use scaling theory, however, to ob-
tain the precise behavior in the vicinity of T,.

We outline the calculation of 1/7, in Sec. II, then
compare our results with the resistivity in Sec.
III. Our concluding remarks in Sec. IV include a
discussion of the implications of our results.

II. CALCULATION OF 1/v;

We assume an s-d or s-f exchange model for the
interaction between the conduction electrons and
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Here, $C, is the conduction electron's Hamiltonian,
and g&~, and g@ are, respectively, the creation and
annihilation operators of conduction electrons with
a wave vector q and a spin 0. A&4 is the Heisenberg
Hamiltonian for the localized spins S„- with wave
vector k, and & ~ describes the interaction be-
tween the conduction electrons and the localized
spins, where I&. &

is the interaction strength.
In lowest order in time-dependent perturbation

theory, the transition probably per unit time for
the conduction electrons's spin to flip, I/v„ is
given by

dtexP 2 5 E'g —6'k ~ t gk g (2)

Here f~ is the Fermi distribution and gg(t) is the
time-dependent spin-spin correlation function for
the localized spins

g;(t) = (s„-(t) s „-) —(s„-) ~ (s „-) .

We now perform the time integral and the sum-
mation over q. By Fourier transforming gp(t)

gP(t) =
2
—gI((u) e '"', (4)

the time integral yields a 5 function so that (2) can
be rewritten in the form

4& v, 2 nz d(o,—=
h2N (2,'). +II.-l hk

(n/2m)(g anq)

x . . . dxf (h'q'/2m)

(5)x[1 —f (5 q /2m+ hx)] 5(m+x),

where v, = V/N= 3x /k~.
It can be seen from Eq. (5) that hw is at most

the localized spins, and an isotropic Heisenberg
interaction between the localized spins. The Ham-
iltonian of the system is

K X8 +X4 +Xs~4

where

of the order of k~T, near the transition tempera-
ture. We shall show below that small wave vec-
tors dominate the integrand of (5) near T, . The
principal frequencies kw «k~T„and we can there-
fore expand f(e; —h&o) in a power series in h to.
Using the fact that ( —Sf/9&;) behaves like a 5 func-
tion of width k~ T, around &g = &~, we obtain

1 v m21 21——Z II.I'-
k

&& —g„-((u)[k, T, —h(uf (e~)], (6)

(6)

Here, $ = $0~ AT~' is the correlation length. The
critical index z = 2, so that at the critical tem-
perature and as k- 0, the characteristic frequency
vanishes (critical slowing down).

As we shall argue, the dominant contribution to
the sum over k in Eq. (6) arises from the region
of small wave vectors. As one approaches T„ the
v„ term is negligible compared to k~T, . Indeed,
when the sum over k is transformed to an integral
the keT, term gives kgb(t=0) which at T= T, is
proportional to k" '. In the region of small wave
vectors, this is much larger than the p„ termwhich
varies as k"" ' near T= T,. By neglecting the sec-
ond term in Eq. (6) we omit inelastic scattering
processes for the conduction electrons. This ap-
proximation is plausible at low wave vectors where
the critical fluctuations are so slow that the amount
of energy exchanged with the conduction electrons
in a spin-flip process is negligible compared to
k~ T, .

Neglecting the second term in Eq. (6), the tem-
perature derivative of 1/v; is

k T
d(1/~, )/d T =,'~ ', ' dk

l
I-„l' kg'„-, (9)

2Ep Sky

where g„'-=dgg(t =0)/dT. In order to investigate the
behavior of d(1/r, )/dT close to T„we shall as-
sume that )I„j is a smooth function of k which does
not change much over the region of integration.
Thus d(1/7, )/dT~ f dkkgf.

The behavior of d(1/7, )/dT for T & T, is then ob-

where we have kept only the first-order term in
the expansion of f (e; —he).

When the limits of the (d integral are taken to
z ~, the first integral in Eq. (6) gives g~(t= 0),
i. e. , the equal-time spin-spin correlation function.
The & integral for the second term gives

Nfl
—, ~g;(~) =t sg„-(t)/stl~-0=-t~fg'(t=o» ('f)

where vk" is the initial decay rate of the correlation
function. From scaling theory, v~ ~ ~, where
+„ is the characteristic frequency of the spin-spin
correlation function, and has the scaling form



ANOMALOUS SPIN- SL IP L IF ETIME N EAR TH E. . .

tained as follows: Above T„gg has a finite maxi-
mum at some fixed k. ' Therefore g„'- changes its
sign at some value kc (see Fig. 1). Because of
the sum rules for g„-(t=0),

1/Vs

1—g g; (t = 0) = NS(S + 1), T & T, .
k

(10)

f dkk go=0 and thus d(1/7, )/dT~ f dkkgg&0. This
follows because the latter integrand is more heavi-
ly weighted near k= 0 than the former, and g„'- is
negative near k= 0. The leading singular term is
found by using the scaling function for gg(f = 0) for
k$ « I'.

FIG. 2. Schematic plots of 1/vs and d(1/7's)/dT for
T T~. At T=T, the leading singular term in 1/Ts tends
to zero as )DT I

~" ~. The leading singular term in. d(1/
7,)/dT diverges at T~ with the critical index 2& —p — 1
= —0. 986 (Ref. 8).

g Twg~g+2P , dD(x')&i
dxx yD x + 2vx

N .—Qgf(t = 0) = NS(S + 1) —NM (12)

where cVM is the spontaneous magnetization, and
therefore f dkksgtt~ I ETI s '. The leading singu-
lar term in f dkkg-„' again comes from the low-k
region and therefore again varies as ( ATI " ~ '
according to scaling theory. Now, however, the
coefficient in front of it is positive (see Fig. 2).

(11)
where the terms in the brackets are temperature
independent. For x «1,

fl-'(x')= C-'(1+x' —Z, x'+Z, x'+. . .),
where C is the amplitude of the static susceptibility
X near T„y= C I hT I, , and the coefficients Z2„are
calculated in the & expansion. Using the scaling
law v = v(2 —q) we find that d( /Ir, )/dT diverges
with the index qp —1.

Below T„gt is presumed positive4 (see Fig. 1)
and therefore d(1/7, )/dT &0. In fact, this (strong)
assumption (for all k) is not necessary. The scal-
ing hypothesis is alone sufficient to generate this
change in sign because we are interested only in
the small-k regime. Below T„ the sum rule for
the correlation function is

The term in the spin-spin correlation function
which is proportional to the square of the sponta-
neous magnetization, and yields the incoherent
scattering below T„has a weaker anomaly than
I GATI

"". We write I/v., as follows:

1 1 1
dk kg)= —

2 dk k
k~ ~ Ap

x e'"' ' ((S, ~ S,) —(S,.) ~ (S,)), (13)

and approximate the sum by an integral. This
gives

dBA2 SR So — SR ~ So EB, 14
S

where E(R) is a, decaying oscillatory function

F(R) =[1/(k R) ](I —cos2k R) . (15)

2((S S,) —(S )')=2[S(S+1)—M j . (16)

Below T, this contributes to 1/v, a term propor-
tional to —(T, —T) s This resul. ts in a, positive
contribution to d(1/7, )/dT, proportional to I b, TI s

This term is less singular than IETt " " '. The
temperature derivative of I/r, is therefore domi-
nated by the latter, and diverges in the same man-
ner for T approaching T, either from above or
from below (see Fig. 2). The leading singular
term in I/v, vanishes at T, as I ETIs" ". The crit-
ical index 2p —y=~ is very small, gp —0.014 in
second order in the E expansion.

III. COMPARISON WITH THE ELECTRICAL RESISTIVITY

Since E(0) =2, the term R=O (incoherent scattering)
in Eq. (14) yields

T~Tc

FIG. l. Schematic plots of g= de(t= 0)/dT for T~~T, ,
The peaks at k=0 are proportional to lAT I

" for T I'~.
Above T„J'dk k g„-' = 0 and below T~, J dk k gt ~

I b, T I
ts '.

The behavior of 1/v„d(l/r, )/dT near T, is dif-
ferent from that of p, dp/dT (Figs. 2 and 3). The
dominant contribution to I/z, arises from long-
range fluctuations. However, p contains the trans-
port tluantity (1 —cos 8) so that the divergent long-
range fluctuation contribution is quenched and most
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d(1/r, )/dT (0, T & T,

Tc Tc

FIG. 3. Schematic plots of the resistivity p and dp/dT
for T —T~. As T T~ from below the leading singular
term in dp/dT diverges as I DT (

+'. As T —T, from
above the leading anomalous term in dp/dT varies as
IDT I and does not diverge for G. &0.

u dk —[gg(t = 0)], (18)

while that for dp/dT is proportional to

Now, from Fig. 1 we see that dgg/dT is large
and negative for small k near T„while it is posi-
tive and reasonably well behaved for large k. '

For Eq. (17) to be valid, the area under the posi-
tive peak must cancel that under the negative
(small-k) peak. But Eqs. (18) and (19) weight dg„-/
dTat opposite ends of the k scale compared to
Eq. (17) [small k for Eq. (18); large k for Eq. (19)].
Hence,

of the contributions arise from short-range fluc-
tuations. The temperature derivative of I/y,
diverges with the same index as T approaches T,
from below or above, and the appearance of a spon-
taneous magnetization does not influence the lead-
ing singular term. The leading singular term in

dp/dT, however, varies as ihT) ' above T„being
proportional to the magnetic specific heat. In the
case of an isotropic Heisenberg ferromagnet,
where &&0, it will therefore not diverge at T,
Below T„ the appearance of a spontaneous mag-
netization causes a divergent term -

i ATi ~ ' in
dp/dT (Ref. 4) ( see Fig. 3).

The dominance of the large-k fluctuation con-
tribution to p and dp/dT does not allow for the
direct application of scaling theory. This is the
cause for the asymmetry of behavior above and
below T, The op.posite is true for I/v, .

It is amusing to use the sum rule [Eq. (10)] to
compare the temperature derivatives of 1/v, and

p immediately above T,. From Eq. (10),

u'u —[g;(f=o)]=0 .d (»)
The expression for d(1/v, )/dT, Eq. (9), is propor-
tional to

—(p)&0, T&T,

for T close to T,. Hence, our remark that the two
quantities behave oppositely above T,.

Below T, the presence of the magnetization com-
plicates the comparison, [e.g. , Eq. (17) is no
longer true] and one must return to the detailed
discussion of Sec. II. Nevertheless, as we show
there, scaling allows us to predict the change in
sign of d(1/7, )/dT below T„and to demonstrate
that the strength of the divergence is the same as
it is immediately above T,. Detailed knowledge of
dg~/dT is not necessary [ e. g. , that it is positive
for all k (if indeed it is)]. The validity of the seal-
ing hypothesis at the small-wave-vector limit, ap-
plicable as it is in our calculation, is all that is
needed. This is not the case for p, where assump-
tions about the explicit form of de/dT at large k
are needed.

Another reason why the calculation of I/v, in the
critical region is more satisfactory than for p has
to do with the assumption of elasticity in the scat-
tering process. Scaling theory is applicable at
small k, and one can explicitly demonstrate the
validity of the static (elastic scattering) approxi-
mation [see the discussion after Eq. (6)]. This is
not necessarily the case for p. Quoting Fisher and
I anger: ".. .all the relevant properties. . . may
be described by an equal-time spin-spin correla-
tion function (elastic scattering). (Owing to the
thermodynamic slowing down of critical fluctuations,
this is plausible for low wave numbers k, but it
may bear further investigation for the higher val-
ues of k which we claim are also important. )"
Thus, one may rely more comfortably on the pre-
dicted behavior for 1/7, than for p, giving impetus
to a detailed experimental study of the former.

IV. CONCLUSIONS

We have demonstrated that the spin-flip rate
I/r, for conduction electrons in a ferromagnet
near T, is symmetrical above and below T, . The
derivative d(1/7, )/dT is discontinuous at T„ im-
plying a. cusp in I/z, at T,. This behavior has im-
implications for any physical property which de-
pends on I/q; and not on the transport weighted
value (1/7, (l —cos 8)).

Such a property is superconductivity, where
Abrikosov and Gorkov have shown that I/v,
strongly supresses the superconducting critical
temperature T, and can lead to gaplessness. Thus,
consider a superconductor containing magnetic im-
purities where, above T„superconductivity is not
destroyed (T, & T,). Then, as the temperature is
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lowered, the increase in I/g, at T, can quench the
superconductivity and the material will go "nor-
mal. " As T is further reduced two eventualities
can occur. If the spin-orbit relaxation rate of the
conduction electrons is sufficiently short, ' the
appearance of the spontaneous magnetization will
not have undue influence and the material will go
superconducting again. If not, the material will
remain normal till zero temperature.

A more flexible example is that of proximity-
effect sandwiches where T, can be easily controlled
in the normal magnetic film. By appropriate al-
loying, T, can be made less than the T, of the
superconducting film, and following Werthamer's
calculation in Ref. 2, the superconductivity can

again be destroyed in the vicinity of T, . This may
have already been seen in the work of Sato' on
thin (Pd: Ni): Pb sandwiches.

In summation, the cusplike behavior of I/7,
near T, allows one to observe the impact of 7, on
other measurable quantities. A careful analysis
of experimental results (e.g. , re-entrant super-
conductivity) may allow one to probe the long-
range behavior of the spin-spin correlation func-
tion directly.
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