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A new many-body theory perturbationally consistent to all orders of the perturbation is presented and

applied to the Hubbard problem as an example. Use is made of the recent Kim and Wilson

commutator projection operator to derive the Dyson equation for the one-particle Green s function and

an exact set of coupled differential equations for the damping or self-energy term which are solved

self-consistently. The Hubbard I result follows in our first approximation and the Esterling-Lange (EL)
-type result in the second. Since we keep the hopping finite throughout the calculation, no degeneracy

problem is encountered as in EL.

I. INTRODUCTION

The purpose of this paper is to present a self-
. consistent many-body perturbation theory of the

single-particle Green's function. The idea is to
derive the Dyson equation in an easy and straight-
forward fashion by means of the Zwanzig-Mori'
projection-operator method. This is accomplished
through the useful commutation projection operator
recently introduced by Kim and Wilson. ' The pres-
ent approach deviates from usual perturbation cal-
culations by ensuring a self-consistent result in
every order of perturbation. Basically this is
achieved by developing, through the projection-
operator approach, a chain of equations for the
self-energy or damping term and its time deriva-
tives in Zubarev fashion. The chain breaking in
our approach lies in the neglect of commutators
with appropriate parts of the Hamiltonian which are
internal to the particular averages involved, but
only aftetexplicitly ens'uring a perturbationally
correct result. In order to demonstrate the use-
fulness and ease of such an approach we apply the
method to the Hubbard model, which has recently
received much attention in the solid-state com-
munity because of its great importance to many
current phase-transition problems. The well-
known Esterling-Lange-type result is reproduced,
including terms of the two-site and three-site va-
riety which they neglected. However, we might
point out that the present method has not sur-
mounted the well. -known difficulties inherent to the
Hubbard problem when treated in perturbation
about the atomic limit. ' For the exact nature of
this limitation for the Hubbard problem and a more
complete discussion of the types of system which
are not bothered by such a restriction, the reader
may directly consult the material following Eq.
(3.39). A brief outline of the paper follows.

In Sec. II, after introduction of the Hubbard
Hamiltonian, we use the Zwanzig-Mori projection-

operator method in the format of Kim and Wilson
to derive the Dyson equation for the Laplace-trans-
formed single-particle Green s function. This is
accomplished through the use of a linear combina-
tion of commutator projection operators of the Kim
and Wilson variety. Section III contains basically
three different exemplary orders of perturbation
for the so-called damping term. The first of these
is to use the unperturbed Liouville operator in the
projection-operator-modified time propagator ap-
pearing in the damping term, keeping the full en-
semble average for the remainder of the calcula-
tion. This leads trivially to the Hubbard first re-
sult. The next order of approximation is obtained
by deriving an exact equation of motion for the
damping term and again uses the unperturbed Liou-
ville operator in the projection-operator-modified
time propagator appearing in the inhomogeneous
term of this equation. The third order of approxi-
mation consists of deriving an exact equation of
motion for the mentioned inhomogeneous term. We
obtain then a new inhomogeneous term which we
treat perturbationally as before, and the continu-
ance of this procedure directly generates any arbi-
trary order. Special mention is given to the inher-
ent difficulties of our expansion in the hopping rpa-
trix elements t;&. There exists two important
neighborhoods in frequency space, &u, v —I-O(t, &),
where not all terms of order t, &

have been collected.
Bari, and later Esterling, were the first to pin-
point this special difficulty with the Hubbard model.
However, in problems where expansion about the
Hartree-Pock result is valid, such difficulties do
not arise.

II. BASIC THEORY

Consider the Hubbard Hamiltonian

H = HI+H~ +Ht

where
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I~
H, -=2 Z n, ,n.. .

joe

H =- —p, nj,

(2. 2)

(2.8)

a judiciously chosen P, the Dyson equation, as
shown originally by Kim and Wilson. To see how
this is accomplished, let us define the anticommu-
tator projection operator similar to that used by
Kim and Wilson

and
Pg. x = cg. ([Cg. , x].& (2. 12)

L, x-=[&. , xl (2. 6)

Ht ~ ~fj Cfecjei
$,j,e

Here Ct~, (C„)is the Fermion creation (destruc-
tion) operator for the Wannier state at lattice site
Rj., nj, -=cj, Cj, -, I is the intra-atomic Coulomb re-
pulsion, p. the chemical potential, and t,j the hop-
ping matrixelementfrom site i to site j. It is also
convenient to define the Liouville operators I., in
the following manner.

for arbitrary X. We see immediately that we have
a set of orthogonal projection operators, i.e. ,
Pfe P]e p

a,nd

P)e Pje X ~$j Pje X e

We now choose P of Eq. (2. 1Q) to be

(2.18)

P = QP),— (2.14)

which obviously satisfies the basic projection oper-
ator condition PI =P. From Eq. (2. 8) we have

for p=I, p, or t and X any arbitrary operator. Here[, ] is the ordinary commutator, and we further
define

—„CJ.(t) = tI.C',.(t),
and therefore we can write

(2.16)

I.r+I. + (2.6)

We shall now derive by the Zwanzig-Mori pro-
jection-operator method an exact equation of mo-
tion for the single-particle Green's function 6 de-
fined by

G„.(t) =t&[c... c',.(t)],&,
with C&~, (t) the usual Heisenberg operator

(2. V)

(t) —e&Ht c't e flit etLt ct, ct (t p) —ct
(2. 8)

Here [, ], is the anticommutator and the bracket
(. . .) signifies the grand canonical average is to be
taken over the full H of Eq. (2. 1). Use of Eq. (2.8)
in Eq. (2.V) gives for our equation of motion

—„G„.(t) =-([c„,f,c'„(t)],& . (2.9)

-„G„.(t) =-&[C... IPc,'.(t)],&

-([c„,z, (i-p) c,', (t)].) . (2. iS)

We now choose a projection operator which pro-
jects out of the complete motion of C~&, (t) the needed
Green's function G and then relates in an exact fash-
ion the complementary part (1 —P) C~&, (t) to G at an-
other time 7. One gets in this simple manner, with

The essence of the projection-operator formalism
of Zwanzig and Mori is to break up C&~, (t) in the fol-
lowing way:

c,'.(t) = pc,'.(t)+(i —p) c',.(t), (2. ip)

with P an appropriate projection operator. The
time derivative of Eq. (2.9) is thus broken into
two parts:

1 —gP,.~c,', (t)l
) j

1 —Q P„~—c),(t)i~
~ ~

a

~

~

~I~

e8

=i 1 — PIe LCje t

Ct
s I

z

+i 1 — Pie L 1 Pre C'je ~ ~ 2 16

Note that we have used the easily verified fact that
the P&, commute with the time differential operator,
s/st. The formal solution of Eq. (2. 16) can be
seen to be

i
1 - g p,. ic,', (t)

)
I'=e"&'-~~'~~&'

~
1 —g P ~C' (Q)le~ Js

+i dv e"
~

1 - Q P), (L

~l 1-QP~. ~~ +Pi. 'ic].(t-~)
i ~ ) i j

Advantageously, with our particular choice of P„
[see Eq. (2. 12)] the initial term on the right-hand
side of Eq. (2.1V) is identically zero. Use of Eqs.
(2. 1.4) and (2. 1V) in Eq. (2.9) gives

8—G;„(t)=i+A„,G,~, (t)

d~ y„,(~) G„,(t —~), (2. 18)
0
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where the so-called frequency 0 and damping y
terms are given by y„,(t) = — I.C... e"&' ~(~(~'~ 1 —QP„~LC,',

n„..-=([c... I.c,'.].), (2. 19)

since, for any X and P,

(3.1)

(f)

(a. 20)
Thus we have a formally closed equation for the
single-particle Green's function G(&,(t). This e(lua-
tion is easily solved by introducing the Laplace
transform,

([X,Ll'].&
=- ([LX, l'].) . (s. 2)

This arises basically from the cyclic invariance of
the trace implied in the ensemble averaging. We
shall also show that the first L on the right-hand
side of E(l. (3.1) may be exactly replaced by Lz.
For this purpose we need the easily verified iden-
tities

M«, (~) = dte '"'M„,(t) (a. as)
Lg Cgg + IÃg g Comfy

(3.3)

C4 foo

M„,(f) =— dree'" M„,(&u)
c-f ~

(2. 22)

We now take the Laplace transform of Eq. (2. 18)
to find

where (d —= ~ —ie, & =0', and M represents either G
or y. We see from standard arguments that M„,(&d)

can be analytically continued into the lower half of
the complex co plane, as is done for the 'advanced"
Zubarev-type Green's functions. The inverse of
E(l. (2.21) is

L( Cg. =+ Q f»g C». , (s.4)

L~ C), = —p, C~ (s. 5)

The only difference for these identities when C,,
replaces C&~, is that the sign changes on the right-
hand side of these expressions.

From the basic definition of our projection oper-
ator and using Eqs. (3.3)—(3.5), we can write

Ue(&d) = ~(g +z ~(ltr Giga(&)

+i Q y„,((u) G„,(~) (2.23)

1 —Q P(, Lcq~, =In), CJ, + Q t»~ Ct, —pCj~,

I

—Q C„C„,
~
In(, C), + Q t»~ C», —p, c),

noting from Eq. (2.7) that G(&, (0) —=f 5,.&.

Now we can directly Fourier transform this re-
sult into momentum space k as follows. Define

=I(n&, —(n&,)) CJ,

1 — Pic Lr C (s.8)

M», (up) = ge '"''"' "~'M (&d)
(i g)

so that

( ) g e(k'(R( Rj) M ( )
1

k

(a. 24a)

(a. 24b)

E'equation (3.1) can be further simplified from the
observationthat the term L, +L„operating on C„
leads to a linear combination of terms C~„with
constant coefficients. Such a term, as we now

demonstrate, does not make any contribution to
y, i, (t). This follows immediately from the easily
verified simple identities

with N the number of lattice sites and M =G, y, or
A. Use of E(ls. (2.24) with E(l. (2.23) gives the
Dyson equation,

GL(M) = M —+h —Z Qa(&d) (a.as)

which represents the starting point of the present
work.

III. PERTURBATION CALCULATION

In this section we present our self-consistent
perturbation scheme. For the purpose of this cal-
culation we shall put the damping term y(&, (t) of
Eq. (2.20) in a more useful form. We first move
the initial L operator in the numerator of Eq.
(2.20) to the left of C„,thereby changing the sign
so that

ekt (1 E)P)fJ)L 1 P L Cf 0
8

gg Ae & le g je
l +

(3.7a)

(s.7b)

Thus we are able to write down immediately our
exact starting formula for the damping function y,

I

(f)=- L C e "r( ('~ 1 —pP,. L, C,'.
(s. 8)

As mentioned in the introduction, our first approx-
imation is to approximate the full L in the expo-
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nential in Z by LI+L„.Let us briefly sketch this
procedure in order to demonstrate that this ap-
proximation is indeed the Hubbard first result.
Starting with

([)}= L C e"(' r&J'-&c&«r+&1 &

fja I far

The "frequency" term 0&&, is trivial to evaluate ex-
actly. We find from E(ls. (3.3)-(3.5)

"o.-=&[«. Lcj.l.&

t ~ t
C)ar In~ e Cga+ ~ ~rg Cua —&Cga

x~ 1- gP„'~L,C,'. (s.9)
= 5)]I&ni, & + t&] —i], 6&& (3.14)

we expand the exponential, since its effect can be
calculated exactly. We recall from Eg. (S.6) that

Since in the end we need the Fourier transform of
Eq. (3.14), we work that out here:

~1-g p„g,,c,', =I(n, .-&n, .&) c'„.(s. lo)&(t
~

I J(t .t-(t ]-(t i() ~

In the same way we can arrive at the nth-order
term

g ~-fk+ (Rg-Ry ) ghr k)a
(&-4)

e1

e '"' '"' "&)(5„I&n, ,& + t„—p, 5„)
=I&n, ,&+ ~„—p, (5.15)

i 5~]I'(1——
& n].c&}&n],&

(d -[I(1—&», .)) —v]
(3.13)

1 —Q P&, (Ig +L„) 1 —Q P„~L~C],

=[1(1—(ttt, )) —tt]"(1-+P„)ICJ,. ($.11.)„(
Using this result we are able to write y in the sim-
ple form

(i) 5 I2 &+ &(1 &&& )) tet(l(1 ()t] tt» tt ] (3 12)

Of course it is the Laplace transform of y which we
need, that being

where al, is the Fourier transform of t,&. This is
just the Hartree-Fock result.

Now, taking the Fourier transform of y in Eq.
(3.13), using Q-„,of (3.15), we get as our first ap-
proximation to Gg((d) [E(l. (2.25)] the Hubbard
first result, i.e. ,

G=„,((t&) =
(1& —e„—I&n],& (1&/ [(d - I(1 —&n],&)]

(s. 18)
where ~ —= & + p, .

In order to develop the second approximation, we
need an exact e(enation of motion for y, &,(t). From
the definition for Z in Eq. (3.8) we can immediately
write down its time derivative:

—y„.(t) = —i( C C(1 tQ P)

e"C«tt ( tP(),P 1)Ctt.
=-i L~ C) Ie""~' «& 1 —gP, ~L C~I fer le) I je

I

+ P&[L, C... c',.],& c... I. "'' '1-+P,. I.,c,',

LL, C ~it (1 Elple)L 1 pI ker le I ja
l +

~&(]-]:, , &i I- i P &[L, C... C'„].) I,C... e"(' '» &'] 1-P P„)L,C'.. (s. 17)

where we have used Eqs. (3.2) and (2.12). We
note that from E(ls. (3.3)-(3.5), E(l. (3.7), and
'E(l. (3.8) the last factor in the second term of Eq.
(3.17) is essentially p&],(t}, since

&[Lr c... c',.],&= —5), I&n&,&,
and the identity

(s. 19)

For completion, we need the commutation average

I.C e '" ~»c'~~ 1 —gP I, C~

['
I., C„,e"(' '&~&c&'~1 —g-P,. L, C'.,

(s. 18)

LL~ C& = (L~+I,„)L~cq +L& L~c&,

&]}LrC( +L& Ls Cr (s. 2o)

which again comes from using Eqs. (S.3) and (3.5).
These identities allow us to write Eq. (3.17) in the
interesting and useful form
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l

—„-i[I(1-(n,.&)-]] ];, (t)=iA, , (t), (3.21)(9

where

A,],(t) =

I I C e""~] ]n) 1 —QP„Lic],
(3.22)

The first approximation, Eq. (3.12), is now

clear: A...(t), which is explicitly O(t,]), was set
equal to zero in Eq. (3.21). Again in the spirit of
the first approximation we now replace, in the ex-
ponential operator of A, ,,(t), L] +I.

„

for the full L
to get the second approximation. Here we need the
identity

ef t {1-Q~P~ff) (LI+LIJ ) 1 P(
le I je

i—rj (t = o) iI' &],."" " -~-[I(1-&...&)- ~]'Q-II(1-&n, .&)-~P
(s. so)

With this result we can immediately write the in-
verse Green's function), I (n; .&

&u' I' I3-„,
(d' —I(1 —(n, ,&) [(d'-I(l —(n, ,&)]'

(3.31)
It is worthy of mention that this form represents
the Esterling-Lange-type5 result in its more com-
plete form.

To develop our third approximation we need the
exact equation of motion for our A term. We find
from Eq. (3.22)

8—A;;, (t) =i L, Li C;„e""

iitl(1-&n. n))-n] (n (n &) CiPl j~(y fLj g jg (3.23)

B(],—= ——
a L, Li C]„1—QP„LiC], . (3.25)

By a bit of lengthy but straightforward algebra
of the variety amply demonstrated heretofore, we
can write the Fourier transform of B;j, in a more
recognizable form:

a„.= gt„.(c',.c,.&

—g e "("("])-t„((tn-, .I], .&+(c,'.c, .c', .c,.&)
{l-j)

which follows directly from our previously derived
identity, Eq. (3.11). We can now write for A,],(t)

(t) e(t t1(1 (n] ())) 4 ] I2 II (3.24)

where

X 1 — ~la L 1 — Ptv LI Cia

L L C It{1 P)Pgg)L
t I i]yt

1 P)( LI + Lt 1 P)(I LI Cj(y

~ L L C erat {1 Q)P) )L
t I i err

]. — P), Lt 1 — P), LI Cj,

(3.32)
But, from Eq. (3.11)for the casen= 1, we canwrite

P) LI +L 1 — P)~ LI Cj~

= (((1 -(n, .,)) —g]() —Q n, )I, C,'. . (3.$.8).

Again from Eqs. (3.3) and (3. 5) we see that

Qt„((C,', C,-, + C,', C;,)n„)
where

(s.25)
1- P), Lt LI Cj, (s. s4)

and

] ~ w w
jk {R~ Rj) ~$jo ~ e ke y

k

4n], =-n, , —(n],&

(3.27)

(3.2s)

Use of Eqs. (3.33) and (3.34) in Eq. (3. 32) yields

q(
—((1() —(n, .)) —p])A„.(n9

l,
—„-i[I(1 —&n, .&) —] ]&I ]„,(t)
fs

&&ft&I {1-{nj„~))-e&~3 gija ~ (s.29)

Taking the Laplace and Fourier transforms of Eq.
(3.29), we get

The second approximation arises from the substitu-
tion of Eq. (3.24) into Eq. (3.21) to obtain

=i L, L, C]„e""] ]()) 1 —Q P(, L,Lic],

-=iI'D, ,.(t) . (3.35)

We now clearly see the nature of the second ap-
proximation: D...(t) of Eq. (3.35) is taken as zero. .

Although this appears as correct perturbation pro-
cedure since D is explicitly proportional to the hop-
ping (t;])a, a bit of caution is in order. In fact such
a procedure is not correct for the Hubbard model
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in the atomic limit. We shall demonstrate that the
frequency dependence of D, or it's Laplace trans-
form, possesses "dangerous poles" in the vicinity
of (d .and. ~ -l in this limit. We might note at this
point that D has a structure similar to p of Eq.
(3.8), except that I,, Lz has replaced Lz in the nu-

merator of the expression. Keeping the full D,z, (t)
for the moment we find for the Laplace-Fourier
transform of A in Eq. (3.35) the result

X 1 — I le Lt LE C)c ~ (s.s9)

This caj,culation of Eq. (3.89) is no longer sim-

ple because of the g, P„in the exponential operator.
However, it follows a path so similar to that of
earlier approximations that we relegate the explicit
calculation to the Appendix. The result has the
troublesome form

D-„,(&) ~A-„,/u)'+A-„, /((u'- I), (s.40)
(s),

where the Ag, 's are static averages explicitly pro-
portional to (i,z) . The unwanted feature here is
that we are looking for the zeros of Gg, (v) [see Eg.
(3.88}], and these occur in the neighborhood +',
&u'-I=O(t, )zfor small i„;so D~(~) of Eq. (3.40)
is of the same order as B-„„andthus our procedure
has not collected all the terms in Gg(&o) which are
first order in t;&. This is a manifestation of the

inherent difficulty of expanding about the atomic
limit pointed out by Bari and later by Esterling.

That this troublesome feature is indeed peculiar
to the Hubbard-like atomic-limit Hamiltonian is
best illustrated by expanding instead about the ki-
netic-energy (hopping) term. Here in Eq. (3.89)
L would be replaced by L, +L„andwe find that in
this approximation something like

D-..(~) = Z -„"', (3.41)

with again X-„,a static average proportional to (t,z)3.
We see here that D;„(&u)involves a sum (or integral}

A"„,(~) = iI' [B-„,—iD„;(~)]/f ~ —[I(1—(nz .)) —u]] ~

(s. se)
Also if we do likewise to y in Eg. (3.21) we find

r;(~) =-i[a.(i=0)+iA- (~)]/g~ - [I(1—(n, ,)) —p]].
(3.37)

Finally substitution of Eqs. (3.36) and (3.37) into
Eg. (2.25) yields the exact result,

z( ), I(nz .) (o' I'[ah, —iD-„.((u)]
[~' - I(l —(n, ,))] [~'-I(1- (n, ,))]'

(s.ss)
The third approximation result follows directly

in the footsteps of the others, i.e. , replacement of
LE+L„for L in the exponential operator in D,

(i) L L G &fz(z E p ~+)(Lz+z+)1
iffy g 2 t E key

over k, yielding a term which has no dangerous
poles in the neighborhood of Gf„(&u)=0, and can be
replaced in normal "damping-like" fashion by a
frequency-independent complex number of order
(t,z)~. Recapitulat:ing, we see that if an expansion
is done about the unperturbed system containing a
"band" of energies we will not have difficulty. On

the other hand, an expansion about an unperturbed
system with a finite number of levels yield the
trouble depicted in Eg. (3.40).

Returning to the complete definition of D&z, (t) in

Eq. (3.35) we find that we can no longer find a sin-
gle and useful equation of motion satisfied by D.
Thus our self-consistent perturbation taken in-
volves an iteration of the operator e~t -~P&a)~ in D.
We note the operator identity

t
J t (A+B) f tA ~ e&7'A B~f(™')(A+B d7

0

ftA ~ ~f7'A Bek(t 7')A d 3 42

for any A and B. Our essential approximation in-
volves breaking up (1 -g, P„)Linto two parts and

using Ezl. (8.42). Such a breakup in perturbation
fashion would be to choose A =(1 —g, P„)I.o and
8=(1-$,P~,)L„,where I,o means take the commu-
tator with respect to the unperturbed part H0 and

L„means take the commutator with respect to po-
tential part V of the Hamiltonian H. Note that such
an approximation to the exponential operator is in-
ternal to the outer averaging process and in this
sense is like chain breaking, and that it is of course
self consistent at every stage of the perturbation,
withstanding atomic-limit- (finite level) type ex-
pansions. Also the equivalent of infinite-order
perturbation theory (i.e. , diagrammatic-like ex-
pansions) can be done trivially by this method and

will be reported elsewhere. Finally, we mish to
point out for large I the projection operator, Eq.
(7.12), which projects out the kinetic-energy (hop-

ping) term is really not appropriate here. One

mould really like to project out the intra-atomic
Coulomb repulsion term. This can easily be done

by modifying the definition of the projection oper-
ator. Such a procedure leads to a "D" term which

is proportional to (t&z}3 alone and not I (t,z)~ and is
more convenient to handle for large I. This calcu-
lation wQl also be reported in a later paper.

It is apparent that the above approach is particu-
larly suited to a whole range of solid state problems
where there exists the possibility of a phase tran-
sition. Recent treatments of some problems in super-
conductivity have convinced us that the method may
serve as a powerful approach to strong-coupling
problems such as vibrational relaxation in molecu-
lar solids and liquids. We ought to mention that
the main ideas of this article have been stated in
an earlier note. e
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APPENDIX: EVALUATION OF D,yo(t)

In this section we present the details of the cal-
cul.ation leading to (S.40).

D (t) L L C e& t (1 r&P &() & (I/+L~ &
1

i/a 3 t I la~I

x 1 — P,. L, L, C,', =-D,.
„

t . Al

We again write, as in Eq. (S.42),

M„,((d) = m„,((u) /[1 +zr((u) ] . (A10)

We now take the Laplace transform of (AS) insert-
ing (A10) for M,&, (&u), to obtain

(
—

) (
—

)
.g a) $ (((&)

ming

(((&)
(All )1+ix e

Use of (A9) in (A7) and taking the Laplace transform
gives

it~A+B & ktA f (t-7&A ~el7 PL+a) (A2)

d)t, (t) =—
2 L, L~ C) e"'

for any operators A and B. Here we set A=LI+L
and B=—g, P„(LI+L,) and use (A2) in (Al) to find

t
D„.(t)=d„.(t)-i d7a„.(t-7)M„.(7), (As)

0

where

d„.(t) =f...(t) —ga«. (t) b„,, (A12)

where

f)q, (t) —= (1,/I') ([L,I.I C)„e"( ' ' L, LI Ct, ],),

and
(Als)

Now d and m can be decomposed further. From
(A4) and (A5) we find

(A4) b,), ——(1/I) ([C„,L, L~ Ct, ]„). (A14)

where
The f„,(t) explicitly involves three site corre-la-
tions. From (A8), (A9), and (A14)

a&„(t)= (1/I) ([Lg LI C„,e" ' I' ~' C„],), (A5)

and where
mv (t) (&&» (t) Z&'» (t) b

lg

where

(A15)

x 1 — P„'LtLIC,', . W6

We again apply (A2) to (A6) to find

M„(()=m„,(t) —i,Q I der„,(t- )M„,(r), (A7)
ly 0 ( ) ( )

. a& (~)m„,((d)

1+ix v)
(A17a)

b„..(t) -=(1/f) ([C... (I., +L.) e"&'~"-& I., L, C,'.],)
(A16)

and involves tuo-site correlations. Consider the
Fourier transforms of (All), (A12), and (A15).
W'e obtain

where
d ((u) =f„,((u) —a (~) b (A17b)

x1 P LLCt (A8)

m& ((u) =h& (&u) —~((u) b~ (A17c)

Use of (A17b) and (A17c) in (A17a) yields for D„,(&u)

D~, (~) =fg.(~)-ag.(~) "1 '. ('—,
,1+irju) j

(A18)

-=5„,& (t) .

~„,(t) =-([c„,(L, +L.) e"&'~' & c'...],)
= 5„,[e*'&'-'&(I- p) (», .) -e-""V(1-(~, ,))]

(A9)

What we have accomplished here is to remove
the projection operator from the exponential, and
we are left with all the time dependence in the form
e"' I' ', which is easily calculable. That the
form, Eq. (S.40), arises is now simply verified.
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